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Abstract 

The problem posed in this paper is the description or planar curves at vary­
ing levels of detail. Five necessary conditions are imposed on any candidate solu­
tion method. Two candidate methods are rejected. A new method that uses 
well-known Gaussian smoothing techniques but applies them in a path-based 
coordinate system is described. By smoothing with respect to a path-length 
parameter the difficulties of other methods are overcome. An example shows how 
the method extracts the major features of a curve, a.t varying levels of detail, 
based on segmentation at zeroes of the curvature, K. The method satisfies the 
five necessary criteria. 

1. The Problem: Detail and Scale 
Achieving a proper notion or detail in a domain is a _prerequisite for the con­

struction of useful descriptions of domain elements. Such descriptions allow, for 
example, efficient coarse-to-fine matching. In vision, the problem of image detail 
is often reduced to the problem of scale. One approach to that problem extracts 
the locations of zero-crossings in the second denvativ-e of the Gaussian-smoothed 
signal, varying the width of the Gaussian kernel to obtain multiple descriptions 
of the signal. This method has been used to extract "edgeu elements at different 
spatial freguencies in an image intensity function I(x,y) of two independent vari­
ables [l). It has also been used to perform automatic peak selection m histograms 
[2] and generalized to extract a new description, the scale space image, of signals 
that are functions of one variable (3). 

Here, we are concerned with the problem or detail at a higher level in the 
visual system for the description of edges and other contours rather than for the 
extraction of edge locations from sensory data. \Ve pose the problem of scale­
based descriptions of planar curves. In our cooperative interpretation project [4], 
we are faced with the task of, for example, matching shorelines, roads and rivers 
extracted from aerial and satellite imagery, at varying scales, and from sketched 
maps. To do this successfully for a shoreline, say, we want to extract scale-based 
descriptions of it as an alternating sequence of headlands and bays. 

2. Necessary Conditions on Any Method 
. In artificial intelligence" we often settle for sufficiency conditions, simply 

finding a method that will ao the job. A more powerful methodology specifies 
criteria that any adequate solution method must satisfy. Here, we propose five 
such criteria. 

Criterion 1 The method must be computational, preferably using local support 
techniques. 

Criterion e The method must produce essentially the same result regardless or 
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the coordinate system imposed on the curve. This implies that the 
descriptions must be well-behaved under rotation, translation, 
reflection and uniform expansion of the coordinate system (or the 
curve itselI). 

Criterion 9 It must not be ill-conditioned. Small changes in the curve should 
not cause large changes in its descriptions. 

Criterion 4 The descriptions should correspond to human performance on the 
task. 

Criterion 5 The method must not require arbitrary choices that afTect the 
descriptions. 

These criteria may not all be easy to justify or trivial to verify~ howeverb if 
accepted, they impose stringent requirements on the class or ah accepta le 
methods. 

Our first candidate method was based on the detail hier31chy for curves used 
in the Mapsee project since its origin (5,6]. That hierarchy is a binary tree of 
straight line approximations to the curve. The initial approximation joins the 
end points. Subsequent approximations recursively refine the initial approxima­
tion by breaking the approximation at the point on the curve farthest from the 
straight line joining its end points. 

This method violates criterion 3. If two points n.re roughly equidistant 
outliers from the current approximation then a small movement of one of them 
could cause a large change m the description. Criterion 5 is also violated. J-r the 
curYe is closed then a purely arbitrary choice of end points is required which has 
a drastic effect on the description. 

A second candidate method considers the curve to be a function of one vari­
able y(x). H that function is multivalued, break it into several piecewise single-­
valued functions. Then apply \Vitkin's techniques (3) to y(x) to extract smoothed 
functions and mark the points or inflection. The problems with that method 
would include the handling of the boundary conditions at the end of each break 
in the curve. Even il those serious problems were solved the method would still 
not satisfy criterion 2. For example, after a reflection, or the coordinate system 
for the curve) through the line '!J - z the method would not produce essentially 
the same result. Smoothing x(y) with respect toy is quite different from smooth­
ing y(x) with respect to x. Similar arguments apply to rotation transformations. 

These considerations suggest using a description based on curvature [7,8] but 
one that is elaborated to analyze the curve at varying levels of detail in scale 
space. 

3. A Method 
To satisfy criterion 2, we have to use a path-based coordinate system for a 

curve C. Consider the parameterization 

C = {(z (1),y (t)) I t E (0,11} 

In this section we consider only closed curves so 

z (0) - z (1) and !I (0) ... !I (1). 
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The parameter t is a linear function of s, the path length along the curve 
from (x(0J,y(0)), scaled to range over (0,1). x(t) and y(t) may be considered 
defined over (-00,00) with periodic behaviour: 

2(t+l) = 2(t) and y(t+l) = i{t) 

The method requires smoothing the functions x(t) and y(t) by convolution 
with a Gaussian kernel of width tr. · 

oo -(e-u)' 

Define X{ t,u) =- 2( t) @u( t,tr) = J x( u) tr~ e 2cf' du 

and deflne }1 t,u) similarly. 
-00 

The smoothed curve C" is simply: 

c" = {(-11t,u), Y{t,u)) I t € (0,1)}. 

Notice that C = C0 = lim C". 
cr-o 

The points of particular interest on C6 are the points of inflection. The cur­
vature K- of a planar curve at a point on the curve is the inverse of the radius of 
curvature of an osculating circle tangent at that point with its sign indicating the 
direction of curvature. Define 

,,, == ..!!.! y" == ,Py 
dx dr2 

Then 
11" "=------(l+(y' )~)3/2 

The zeroes of K are of interest. Since to obtain Cc, we are smoothing x( t) and 
Y{t)1 it is cumbersome to return to the image domain to compute y' (x) and 
y 'ix), in order to compute K; moreover, there would be difficulties when 
V -+ oo or y" -+ oo and when y(xJ is multivalued. Accordingly we wish to 
express ~ purely as a function of derivatives of x(t) and y(t). Those derivatives 
can then be computed directly using appropriate masks. Define 

• d% •• tPz 
Z=- z--

dt dt2 

• dy .. ,Py 
11-- y--

dt · dt2 

Then 



_,_ 

d ( iJ) 
dy' dt z 

y"(x) = - = . 
dx z 

zy-zy - ·3 
:t 

a.nd 

IC= zy-yz 
(i'+i/)3/2 

• 8X{tu) · ·· 
In the smoothed curve X{ t,u) -

8 
' , Y( t,cr), X{ t,u) and Y( t,u) are 

needed to compute ,c(t,u). They can be o~tained directly from x(t) and y(t) 
using, 

Vlt) = 8X{t,u) = 8[:i{t)@g(t,u)J=..lt)G)( 8g(t,t.1)) .n, ,a at at ... , at 

and 

a.nd similarly for Y(t,a). Using these equations K(t,u) may be computed directly 
Crom convolutions performed on x(t) and y(t). 

Several remarks about the method are BJ?propriate. First, notice that for 
closed curves, treating x(t) and y(t) as periodic eliminates all edge effects. 
Second, iI C is closed then the choice or the point on C at which t = 0 is purely 
arbitrary but has no effect on the description in terms of zeroes of ,; or the 
smoothed curve. Third, the use or a path-based parameterization of the curve 
giv_es the desired invariance with r~ect to rotation,. t~ansl~tion, reflection ~-nd 
uDJform scale change of the curve. The curvature ,c JS mvariant under rotation, 
translation and reBection. U the curve is scaled by a f.actor w then ,c' = l..,c. 
In particular the shape of the smoothed curve and the relative locations or ~he 
zeroes of " will be invariant. One way to see this is to realize that linear coordi• 
nate transforms commute with linear smoothing operations. Fourth, small 
changes in the original curve may perturb the zero-crossing description for small 
u but for larger values of u their effects will disappear. 

4. An Example 
This method is a~plied to the coastline of Africa in Figure 1 for successively 

doubled values of u. Beside each Cq the functions X(t,o-), Y(t!O') and ,c(t,u) are 
displayed. The domain or tl the mterval [OTl], has been divided into 1024 
equally-sized subintervals !or tnis experiment. lie values or O' are given in terms 
of the number of subintervals. The locations at which" =- 0 are marked on each 
curve. As O' - oo the curve asymptotically approaches its centre of mass. 
Notice also that as u becomes larger the major headlands and bays emerge as 
dominant. At this point we c3n only appeal to the reader's intuitions to justify 
the claim that the results correspond to human performo.nce. 



6. Extensions 
We have only discussed the application to closed curves so far. However, in 

our application, curves do not always close. They may also have free ends and 
junctions, or they may extend b~yond t~e bounds_ or the map or satellite image -
the frame problem. The only difficulty m extendmg our method to these c·urves 
lies in specifying the correct boundary conditions. Extensions to spa.ce curves 
and surfaces m liigher dimensionality spaces should be pursued. 

6. Conclusion 
We have posed a problem of scale-based description of planar curves, pro­

posed five criteria to judge any solution method and described a method that 
satisfies those criteria. 
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Figure 1. Smoothing a Curve: Scale-based Effects 
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Figure 1. {Continued) Smoothing a Curve: Scale-ba,,ed Effects 


