
THE COMPLEXITY OF SOME POLYNOMIAL NETWORK 
CONSISTENCY ALGORITHMS FOR CONSTRAINT 

SATISFACTION PROBLEMS 

by 

A.K. Mackworth and E.C. Freuder 

Technical Report 82-6 

August 1982 





The Complexity of Some Polynomial Network Consistency 

Algorithms for Constraint Satisfaction Problems 

A.K. Mackworth 
Department of Computer Science 
University of British Columbia 

Vancouver, B.C., Canada 

Abstract 

E.C. Freuder 
Department of Computer Science 
University of New Hampshire 

Durham, N.H., U.S.A. 

Constraint satisfaction problems play a central role in 

artificial intelligence. A class of network , consistency 

algorithms for eliminating local inconsistencies in such problems 

has previously been described. In this paper we analyze the time 

complexity of several node, arc and path consistency algorithms. 

Arc consistency is achievable in time linear in the number of 

binary constraints. The Waltz filtering algorithm is a special 

case of the arc consistency algorithm. In that computational 

vision application the constraint graph is planar and so the 

complexity is linear in the number of variables. 





- 2 -

Introduction 

The purpose of this paper is to analyze the network 

consistency algorithms described in (Mackworth, 1977a). 

A constraint satisfaction problem (CSP) is defined as 

follows: Given a set of n variables each with an associated 

domain and a set of constraining relations each involving a 

subset of the variables, find all possible n-tuples such that 

each n-tuple is an instantiation of then variables satisfying 

the relations. In this paper we shall consider only CSP's in 

which the domains are discrete, finite sets and the relations are 

unary or binary. These restrictions are not necessary for 

consistency techniques to be applied (Mackworth, 1977a, 1977b; 

Freuder, 1978). 

-Since graph colouring is an NP-complete CSP it is most 

unlik~ly that a polynomial time algorithm exists for solving 

general CSP's. Accordingly, the class of network consistency 

algorithms was invented (Waltz, 1972; Montanari, 1974; Mackworth, 

1977a; Freuder, 1978). These algorithms do not solve a CSP 

completely but they eliminate once and for all local 

inconsistencies that cannot participate in any global solutions. 

These inconsistencies would otherwise have been repeatedly 

discovered by any backtracking solution. One role for network 

consistency algorithms is as a preprocessor for subsequent 

backtrack search. 

A k-consistency algorithm removes all inconsistencies 

involving all subsets of size k of then variables. For example, 



- 3 -

the node, arc and path consistency algorithms detect and 

eliminate inconsistencies involving k=l, 2 and 3 variables, 

respectively. Freuder (1978) generalized those algqrithms for 

k=l, ••• ,n thereby producing the complete set of solutions to the 

CSP. 

Node, arc and path consistency can be achieved in 

polynomial time. The most significant result is that arc 

consistency is achievable in time linear in the number of binary 

constraints. If the constraint graph is planar (see, for 

example, (Waltz, 1972)) then that time bound is also linear in 

the number of variables. 

The Complexity of Node and Arc Consistency 

The algorithms below are reprinted from (Mackworth, 1977a) 

which should be consulted for a full explanation. The domain of 

variable i is Di and p,. 
1) 

is the binary constraint relation 

{predicate) between variables i and j corresponding to an edge 

between vertices i and j in the constraint graph G. The edge 

between i and j may be replaced by the directed arc from i to j 

and the arc from j to i as they are treated separately by the 

algorithms. Let the number of variables be n, the number of 

binary constraints be e (the number of edges in the constraint 

graph) and the edge degree of vertex i be di. The time unit used 

for our complexity measures will be the application of a unary or 

binary predicate. We shall assume for simplicity of description 

of the results of the analysis that each Di is the same size, a, 



- 4 -

and that there is no internal structure to o1 or Pij such as 

strict ordering that could be exploited. 

procedure NC(i): 
D1 +- D1 ,..., {x I P1(x)} 
begin 

for i +- 1 until "do NC(i) 
end 

NC-I: t/,e 110,lt cunsisltn<'y algorithm 

Using NC-1, node consistency is achieved in 8(an) time. 

Next we analyze the two arc consistency algorithms AC-1 

and AC-3. 

procedure R EVISE((i, .i)): 
begin 

DELETE+- fahe 

for each x e D1 do 

if there is no)' e DJ such that P,ix, y) then 

begin 

delete x from D;; 
DELETE+- true 

end; 
return DELETE 

end 

1 begin 

2 for i +- 1 until II do NC(i); 
3 Q +- {(i,j) I (i,j) E arcs (G), i =I j} 
4 repent 

5 begin 
6 CHANGE +- false 

7 for each (i,j) e Q do CHANGE+- (REVISE ((i,j)) or CHANGE) 

8 end 
9 until , CHANGE 

10 end 

AC-]: tl,e first arc <'tmsistency algoritl,m 



- s -

Consider AC-1. Note that the number of arcs on Q is twice 

the number of edges and the length of Q does not change, that is, 

lol=2e. The repeat loop of lines 4-9 iterates until there is no 

deletion from any Di. The maximum number of iterations occurs 

when only one element is deleted, from one Di on each complete 

iteration. There are then at most na iterations. Each iteration 

requires IOl=2e calls to REVISE. Each call to REVISE requires at 

most a 2 evaluations of p, .• Hence the worst case time complexity lJ 
of AC-1 is O(a 3ne). 

1 begin 

2 for ; - l until II do NC(i); 
3 Q - {(i,j) I (i,j) E arcs(G), i-:/: j} 
4 while Q not empty do 

begin 
select and delete any arc (k, m) from Q; 

5 
6 
7 
8 

if REVJSE ((k, m)) then Q +- Q u {(i, k) I (i, k) e arcs(G), i -:f k,; =/: m} 
end 

AC-3: tl,e third arc co,ui'stency algorithm 

AC-3 is a simpler and more general version of AC-2, the 

Waltz filtering algorithm. It improves on AC-1 by only 

reconsidering arcs that may have become inconsistent whenever a 

deletion from a variable domain is performed. As with AC-1 

initially the length of the queue of arcs waiting to be made 

consistent is IOl=2e. However Q may grow and shrink during the 

iterations of the while loop (lines 4-8) until it is finally 

exhausted. The worst case occurs when each element is deleted 

from each Dk on " Separate successful calls to REVISE and when, 

moreover, none of the arcs to be subsequently added to Q is 

already on it. 



- 6 -

Entries are made in Q when a call to REVISE on an arc has 

succeeded. If REVISE((k,m)) has succeeded then at most (dk-1) 

arcs are added to Q. That number may be entered a times per 

vertex and so the total number of new entries made in Q is: 

n 
> a(dk-1) = a(2e-n). 

k=l 

Regardless of whether REVISE succeeds, one arc is deleted on each 

iteration and so the number of iterations is at most the original 

length of Q plus the total number of new entries: 

2e + a(2e-n). 

Each iteration may require a 2 binary predicate evaluations and 

so, the total number is at most a 2 (2e+a(2e-n)). 

If the constraint graph is not connected each of its 

components may be treated independently so we may assume the 

graph is connected and hence e > n-1 and so the time complexity 

may be written as O(a 3e), that is, linear in the number of edges 

or binary constraints. 

A lower bound on the worst case complexity can be obtained 

by considering the case when the network is already arc 

consistent. The number of predicate evaluations required to 

confirm that could be simply the original length of the O, 2e, 

times~ a 2 or 2a 2e. Thus the worst case running time for AC-3 is 

bounded below by 0(a 2e) and above by O(a 3e). Both bounds are 

linear in the number of edges. 



- 7 -

For a complete graph e = ½n<n-1) and so in general AC-3 is 

O(a 3n 2). However many constraint graphs are sparse1 that is, the 

number of edges is only linear in the number of vertices. For 

such graphs, e is O(n) and so AC-3 is at most O(a 3n) and at least 

n (a 2n). Planar graphs are, for example, sparse in that sense. 

Thus we have shown that the Waltz filtering algorithm necessarily 

has linear behaviour on planar graphs. This behaviour is not the 

result of any special attribute of the vision scene labelling 

domain in which it arose other than the sparsity of the 

constraint graphs. 

Another intriguing question not yet answered is: when do 

node and arc consistency alone provide a sufficient guarantee 

that there is a complete solution? Freuder (1982) has observed 

that the definition of k-consistency implies that any constraint 

network which is j-consistent for all j < k can have each 

variable instantiated without failure on depth-first backtracking 

if the order of instantiation guarantees that any variable, when 

instantiated, is constrained directly by at most k-1 other 

variables. That is, under those conditions, a complete solution 

can be found from the network in linear time. For k=2 a 

constraint graph that is a tree satisfies the requirement1 AC-3 

can be applied in O(a 3n) time since a tree is a sparse graph1 if 

node and arc consistency are thereby achieved a solution can be 

instantiated in at most O(an) predicate evaluations. 

Node and arc consistency alone may be sufficient in other 

cases not yet explained by these results perhaps due to domain 

specific attributes such as decoupling of constraint subgraphs or 



- 8 -

the degree of restrictiveness of the individual binary 

constraints (Haralick and Elliott, 1980). 

The running time of arc consistency methods has been a 

matter of some controversy. Waltz (1972) reported that his 

program required time "roughly proportional to the number of line 

segments in the scene" (which is the number of binary 

constraints). His program performed arc consistency using AC-2, 

a special case of AC-3. Waltz attributed the linearity in part 

to a special property of polyhedral scene labelling, namely, the 

decoupling effect of T-junctions which limit the _propagation of 

inconsistencies. Mackworth (1975) has some speculations on this 

topic which are not valid. Gaschnig (1979) sceptically observed 

that Waltz provided only six measurements and argued that "Little 

can be concluded from so few datapoints". Gaschnig carried out 

some data analysis that cast doubt on the linear hypothesis, but 

cautioned that "little can be concluded with confidence from this 

plot". 

The Complexity of Backtracking 

The worst case of depth-first backtracking occurs when no 

solution exists solely because of a conflict between the last 

variable instantiated and the other variables. The number of 

pair tests is at most the number of leaves on the search tree, 

an, times the number of constraints, e, and so backtracking is 

O(ean). This emphasizes the importance of reducing the domain 

size a as much as possible. This can be done beforehand by arc 



- 9 -

consistency and indeed for one class of constraint graphs, trees, 

an exponential algorithm can be replaced by a linear one. 

The Complexity of Path Consistency 

The analysis of the path consistency algorithms, PC-1 and 

PC-2, is analogous to the arc consistency analysis. We shall not 

repeat all the justification and explanation of the algorithms 

and the notation from (Mackworth, 1977). 

Montanari (1974). 

PC-1 is due to 

The path consistency algorithms ensure that any pair of 

domain elements allowed by the direct relation R .. 
1) 

between the 

vertices i and j is also allowed by all paths of any length from 

vertex i to vertex j. A theorem of Montanari's (1974) states 

that, in a network with a complete graph, if every path of length 

2 is path consistent then the network is path consistent. Both 

PC-1 and PC-2 thus need only examine all length 2 paths. 

1 begin 
2 yn..,_R 

3 repeat 

4 begin 
5 Y 0 ..,_ Y" 

6 for k ..,_ l until II do 

7 for i 4- 1 until n do 

8 for j 4- I until II do 

9 Yt 4- Yt-' & n,-,. nk-,. >'ti• 
JO end 
11 until Y" = Y0

; 

12 Y ..,_ Y" 

13 end 
PC-I: ti,~ first pot/1 consist~ncy afgoritl,n, 

In analyzing PC-1 and PC-2, we shall use as the time 



- 10 -

complexity .measure the number of binary operations. 

The loop of lines 3-11 is executed repeatedly until no 

change is observed in the total set of binary relations. The 

worst case is that at most one pair of elements is deleted from 

one relation on each iteration. There are n 2 binary relations 

and a 2 elements in each so the number of iterations is at most 

O(a 2n2 ). Each iteration performs line 9 n 3 times. The operation 

vertex k of making the path from vertex i to vertex j through 

consistent requires O(a 3 ) binary operations if implemented 

to O(a 2 • 81 ) conventionally. (This can minimally be improved 

(Aho, Hopcroft and Ullman, 1974).) Hence the worst case time 

complexity of PC-1 is O(a 5n5). 

PC-2 operates in a fashion analogous to AC-3. It is based 

on the following observation: whenever a binary relation is 

modified it not necessary to re-examine, as PC-1 does, all the 

length 2 paths in the network: it suffices to re-examine only 

those length 2 paths containing the modified relation. 

In PC-2 we represent the path from vertex i through vertex 

k to vertex j as the triple (i,k,j). The function 

RELATED PATHS ((i,k,j)) returns the set of length 2 paths that 

include the path (i,k,j) and might have their consistency 

affected by a change in the consistency of (i,k,j). Mackworth 

(1977) gives the details of RELATED PATHS and shows that if itj 

the set returned has 2n-2 members whereas if i=j it has ~n(n+l)-2 

members. 



- 11 -

proce,1ure REVISE ((i, k,j)) 

begin 

Z +- Y,1 & Y;,. · ykk • Y,.1 
if Z = Yil then return false 

else Y11 +- Z; return true 
end 

J begin 
2 
3 

Q +- {(i, k,j) I (i ~ j), ,(i = k = j)} 
,vhile Q is not empty do 

4 begin 
s 
6 

select and delete a path (i, k ,j) from Q; 

7 en 
•d·r REVISE((i, k,j)) then Q +- Q u RELATED PATHS((i, k,j)) 

8 end 

PC-1: the second path consistency algorithm 

In analyzing PC-2 we use reasoning analogous to that used 

in analyzing AC-3 by examining the effect of successful and 

unsuccessful calls to REVISE on the length of the queue of paths 

waiting to be made consistent. 

when i=j, an element has 

On the successful calls to REVISE 

been deleted from Y .. and !2n(n+l)-2 
11 

paths (at most) are added to Q. This can occur at most na times 

since there are at most na non-zero entries initially in all the 

Yii" When i < j an element has been deleted from Yij and 2n - 2 

paths are added to Q. This can occur at most ½n<n-l)a 2 times. 

And so the maximum number of new entries on Q is: 

na<9<n+l)-2) 

= (a2+2)n3 + 
2 

+ ½n<n-l)a 2 (2n-2) 

a 2 2 2 (2-2a )n + (a -2a)n 



- 12 -

On each iteration of lines 4-7, one path is deleted from 

Q. If REVISE is unsuccessful on that path no new paths are added 

to Q whereas if it is sucessful a number of new paths must be 

added as enumerated above. Since the iteration proceeds until O 

is exhausted the maximum total number of iterations is the number 

of paths originally on O, (n3+n 2-2n)/2, plus the maximum number 

of new entries computed above. The worst case time complexity of 

PC-2 is then O(a 5n 3). This is an improvement by a factor of n 2 

over the bound on PC-l's behaviour. A lower bound on the worst 

case behaviour of PC-2 is obtained by considering a network which 

is already path consistent yielding 0(a 3n 3 ) so the algorithm is 

truly cubic in its behaviour. 

Conclusion 

We have shown that arc consistency is achievable in time 

linear in the number of binary constraints. For a fully 

connected graph of n nodes the time complexity of AC-3 is nca 2n 2) 

and O(a 3n 2) but for sparse graphs, which occur in many 

applications, the complexity is 0(a 2n) and O(a 3n). Path 

consistency is achievable in Q(a 3n 3 ) and O(a 5n 3 ) time. 

Moreover, the additional implementation complexity of the 

AC-3 and PC-2 when compared with AC-1 and PC-1 is justified by 

guaranteed worst case complexity of O(n2) and O(n3 ) respectively. 

It should be noted, however, that AC-1 and PC-1 have more 

inherent parallelism than AC-3 and PC-2. 

Finally, we note that there are several ways to use these 



- 13 -

algorithms to achieve complete solutions to constraint 

satisfaction problems (Mackworth, 1977a, 1977b1 Freuder, 1978) 

but even the simple approach of using them to preprocess 

constraint networks before backtracking is applied is attractive 

because at the cost of linear, quadratic or cubic time they may 

reduce the worst case time complexity of backtracking 

exponentially by reducing the size of the variable domains. 

Acknowledgements 

We are grateful to Raimund Seidel and David Kirkpatrick 

for useful discussions on this topic. This material is based 

upon work supported by the Natural Sciences and Engineering 

Research Council Canada under Grant A9281 and the National 

Science Foundation under Grant No. MCS-8003307. 



- 14 -

References 

Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design and 
Ana11sis of Computer Algorithms, Addison-Wesley, Reading, 
MA, 974. 

Freuder, E.C., Synthesizing constraint expressions. Comm. ACM 
21, 11 (Nov. 1978), 958-966. 

Freuder, E.C., A sufficient condition for backtrack-free search. 
~- ACM 29, 1 (Jan. 82), 24-32. 

Haralick, R.M. and Elliott, G.L., Increasing tree search 
efficiency for constraint satisfaction problems. Artificial 
Intelligence 14 (1980), 263-313. 

Gaschnig, J. Performance measurement and analysis of certain 
Report, search algorithms. CMU-CS-79-124 Tech. 

Carnegie-Mellon Univ., 1979. 

Mackworth, A.K. Consistency in networks of relations. 
Artificial Intelligence~, 1977a,,99-118. 

Mackworth, A.K. On reading sketch maps. Proc. IJCAI, Cambridge, 
MA, 1977b, pp. 598-606. 

Montanari, u. Networks of constraints: fundamental properties 
and applications in picture processing. Information Science 
2, 1974, 95-132. 

Waltz, D.E. Generating 
shadows. Tech. 
1972. 

semantic descriptions of scenes with 
Report MAC AI-TR-271, MIT, Cambridge, MA, 


