
THE COMPLEXITY OF REGULAR EXPRESSIONS
WITH GOTO AND BOOLEAN VARIABLES

by

Karl Abrahamson

TECHNICAL REPORT 82-3

March 1982

.-.1

:I
,1

I ..

I

ABSTRACT

Regular expressions can be extended by adding gotos and Boolean

variables. Although such extensions do not increase the class of

expressible languages, they do permit shorter expressions for some languages.

The output space complexity of eliminating Boolean variables is shown to be

double exponential. The complexity of eliminating a single goto from a

regular expression is shown to be n(n log n), a surprising result considering

that n gotos can be eliminated in single exponential space.

l . INTRODUCTION

It has long been recognized that the basic control structures of

structured programs - while-do, if-then-else, sequencing - are weak. From

the beginning, those control mechanisms have been augmented by a) gotos

(where needed), and b) assignments and tests of Boolean variables (fairly

freely). It is natural to ask how much power gotos and Boolean variables

add to structured programs.

Regular expressions are a convenient abstraction of structured

programs. We view a program as a language, whose alphabet is the instruction

set, and whose members represent the sequences of instructions which the

program might execute. It is possible to add gotos and Boolean variable

assignments and tests to regular expressions in a natural way. Then we can

ask how difficult it is to eliminate them.

Regular expressions afford several advantages over the usual structured

programs for theoretical studies. An obvious one is that we can restrict our

study to languages, without being concerned with the semantics which lies

behind structured programs. But at least as compelling is that the extensions

we are interested in - gotos and Boolean variables - can in fact be eliminated

from regular expressions. In contrast, it is not always possible to eliminate

gotos from a structured program without adding variables (see Greibach,

p. 4-62), or, dually, to eliminate Boolean variables without adding gotos.

It appears to be the nondeterminism of regular expressions - viewed as the

"backtrack" variety, as opposed to the "irrevocable choice" of Dijkstra's

guarded commands - which gives regular expressions their added power. Indeed,

- 2 -

we can define an expression E to be deterministic if checking s £ L(E) never

requires that we backtrack or remember more than one position in E. It can be

shown that the deterministic expressions with gotos represent all regular

languages, while (ab)*{a ub) is equivalent to no ordinary deterministic expression.

The results presented in this paper all have a strong form, namely that

the problem of eliminating a given extension (gotos or variables) is of a given

complexity, even when the input is constrained to be deterministic, while the

output need not be. However, for simplicity, we ignore determinism, explicitly

stating and proving only the form with unrestricted input. The reader should

have no difficulty modifying the proofs for deterministic inputs.

The first problem we consider is that of eliminating gotos from regular

expressions. It is well known that gotos can be eliminated at the cost of an

exponential length blowup, by converting the expression to a finite automaton,

where gotos are nothing special, and then converting the finite automaton to

an equivalent regular expression, by standard techniques. Conversely, a

result of Ehrenfeucht and Zeiger implies that gotos cannot always be eliminated

at polynomial cost.

We present a new result concerning elimination of a single goto from an

expression. Although intuition suggests that one goto can be eliminated in

linear space - which would be consistent with an exponential space requirement

to eliminate all gotos, one at a time - we show that the worst case size

increase incurred in eliminating a single goto from a size n regular expression

is at best n(n log n), and at worst O(n2). The preceding results can be found

in section 4.

In section 5 we look at the question of whether changing the names of

alphabetic symbols, by using a string to represent each symbol, can make a

language easier to represent by a regular expression. That is to say, is there

- 3 -

a homomorphism h such that, although Lis hard to represent, h(L) is easy?

his required to be one-one, so that any string is recoverable from its image

under h, permitting us to imagine a post-processor following the expression,

whose output is just the members of L. In some cases, h(L) is far easier to

represent than L. But in others no one-one homomorphism seems to help; we

can prove that if neither of h(cr) and h(o) is a prefix or suffix of the other,

for cr f o, then, for a certain language X, h(X) is no easier than X. The

central result, the basis of all of our lower bounds for Boolean variable

elimination, can be described as an extension of a result of Ehrenfeucht and

Zeiger concerning a hard language K for regular expressions. We extend their

theorem to certain homomorphic images of K.

By encoding each of the n2 symbols of Kasa sequence of O's and l's,

we can find a size O(log n) extended expression for h(K), while, by our

theorem, h(K) remains exponentially difficult for ordinary expressions.

Results concerning elimination of variables are presented in section 6.

They are based on the main result of section 5. For the case of eliminating

O(n) variables from a size n expression, both upper and lower bounds are

double exponential inn. But for eliminating only one variable, the bounds

differ greatly; the lower bound is quadratic, although the author knows of

no polynomial space method of eliminating a single Boolean variable.

We begin with a description of extended expressions, and some further

preliminary definitions and results.

2. EXTENDED EXPRESSIONS

The syntax and semantics of extended expressions is given in Table 1.

a is an alphabetic symbol, xis a variable name, and A and Bare extended

- 4 -

expressions. A completely formal semantics is complex, and serves no purpose

for this paper. Instead, we give the semantics in terms of side effects, either

on the current location in the expression, in the case of gotos, or on an

auxiliary storage. It should be emphasized that the tests x? and x? are

dynamic, testing the current value of x. Thus a given instance of x? may

be A at one encounter and~ at another. ~ should be thought of as a fence,

implying that a wrong choice was made at some previous time.

The size measure size (E) is the number of alphabetic symbols, gotos,

destinations and variable operations in E. In some cases we also refer to

the length of E, that being the total number of characters used to write E.

Two expressions are equivalent if they represent the same language.

Example 2.1. G1(a • d1 • b)* has size 4 and is equivalent to b • (a • b)*.

Example 2.2. xt • y1 • (y? · E · (x? · Xf u x? · yf))* · y? has size

8 + size (E), and is equivalent to E • E.

We now define the function COST(n,g,v), which it is our goal to bound.

Let ERE(n,g,v) be the class of extended regular expressions of length at most

n, containing at most g gotos and at most v different variables. An ordinary

expression contains no gotos or variables. Let COST(n,g,v) be the maximum

over ERE(n,g,v) of the size of the smallest equivalent ordinary regular

expression. Our bounds on COST(n,g,v) are summarized below.

- 5 -

Expression E Size S(E) Language L(E) side effects/comments

cf> 0 cf> empty set

).. 0 {"} empty string

a l {a}

Xt 1 {A} set x = true

x+ l {)..} set x = fa 1 se

x? 1 cf> if X = fa 1 se,
{ "} if X = true

x? 1 {A} if X = false,
cf> if X = true

d. l {)..} ,
G. 1 {)..} jump to d. , ,
A u B S(A) + S(B) L(A) u L(B)

A • B S(A) + S(B) L(A) • L(B) concatenation

A* S(A) L(A)* Kleene closure

Table l

- 6 -

2. n(n log n) .::._ COST(n,1,0) .::._ O(n2)

; - 1

3. (n/cm) 2 .::._ COST(n,0,m) .::._ 6·42n2m -2 for some constant c.

4. COST(n,0,n/16) > 2 2
n/16-l -l

() 2-E: 5. COST n,0,1 ~ n for every E: > 0, and infinitely many n.

Results l and 2 can be found in section 4. Results 3, 4 and 5 are proved in

section 6, based on the results of section 5.

3. PRELIMINARIES

This section presents some definitions and results concerning ordinary

regular expressions and their relationships to graphs.

Labelled Graphs

An arc-labelled graph is a 4-typle (V,E,L,A), where Vis a set of

vertices, E c V x Vis a set of directed arcs, Lis a set of labels, and

A: E ➔ L assigns a label to each arc. Arc-labelled graphs are hereafter

referred to simply as graphs.

A path from u to vis a sequence u = w0,w1 , ... ,wk= v, where (wi-l ,wi) E: E

for i = l , ... ,k. The trace of path p = w0,w1 , ... ,wk is the string A(w0,w1)A(w1 ,w2)

... A(wk-l'wk). The set traces (G,u,v) is the set of all traces of paths in G

from u to v.

A graph is (forward) deterministic if no two distinct arcs with the same

initial vertex have the same label. A graph is backward deterministic if its

transpose is deterministic.

- 7 -

Lemma 3.1. For every size n > 0 ordinary expression E there is a 2n vertex graph g

with vertices u and v such that L(E) = traces(G,u,v).

The proof of lemma 3.1 is by standard finite automaton techniques, and

is omitted. (See Aho, Hopcroft and Ullman, p. 318).

Covering and Index

The definitions of covering and index, as well as lemma 3.2, are from

Ehrenfeucht and Zeiger (1976), with minor modifications.

Expression E covers strings iff sis a contiguous substring of some

member of L(E). Let/ denotes• s • ... • s (k times). The index Is(E) of

sin Eis defined as

0 if E does not covers,

k if E covers s k but not k+l s

00 if E covers l for all k.

If Is(E) ; 00 then Eis said to be s-finite.

Lemma 3 .2. Ifs; A and Eis s-finite, then I (E) < 2 • size(E). s

Proof. Let n = size(E). Construct the 2n-vertex graph G of lemma 3.1 for E.

Suppose there is a path pin G whose trace is sk, and which is a subpath of

some path from u to v. Then either p has length at most 2n • size(s) (and so

k ~ 2n) or preaches the same vertex twice, at the same position ins. In the

latter case, a pumping argument shows that G, and so E, is s-infinite. D

Normality

The definition of normality is from Ehrenfeucht and Zeiger. Expression

- 8 -

Eis normal w.r.t. graph G provided there are functions i and f from sub­

expressions of E to vertices of G such that, for every subexpression F of E,

1) L(F) ~ traces(G,i(F),f(F));

2) if F =Au B, then i(F) = i(A) = i(B) and f(F) = f(A) = f(B);

3) if F =A• B, then i(F) = i(A), f(A) = i(B) and f(B) = f(F);

4) if F = A*, then i(F) = i(A) = f(A) = f(F). In this case i(F) is said to

be the base point of F.

A graph G is normal, if, whenever L(E) ~ traces(G,uE,vE) for some vertices uE

and vE' Eis normal w.r.t. G.

Lemma 3.3. If G is forward and backward deterministic, then G is normal.

Proof. The functions i and fare constructed inductively on the structure of

E, from longer to shorter subexpressions.

Basis: Let i(E) = UE and f(E) = VE.

Au B: Given i(A u B) and f(A u B), let i(A) = i(B) = i(A u B)

and f(A) = f(B) = f(A u B).

A· B: Given i(A • B) and f(A • B), let i(A) = i(A • B),

f(B) = f(A • B). It remains to find w = f(A) = i(B).

Assume w.1 .g. that L(A) and L(B) are nonempty, and

a E L(A), b E L(B). Then G contains the following

subgraph.

- 9 -

By forward determinism at i(A • B), w is independent

of the choice of B. By backward determinism at f(A • B),

w is independent of the choice of a. Let f(A) = i(B) = w.

A*: Let i(A) = i(A*) and f(A) = f(A*). We must show that

i(A*) = f(A*). Assume the contrary. Then L(A) contains

a nonempty strings which traces a path from i(A) to f(A),

ands, s • s E L(A*). G must contain the following subgraph.

s

By forward determinism, no other path for s • s, starting at

i(A*), is possible. By backward determinism, i(A*) = f(A*).

D

4. ELIMINATING GOTOS

We begin by reviewing known results concerning the difficulty of elimina­

ting all of the gotos from an expression. Then we prove lower (n(n log n)) and

upper (O(n2)) bounds on the space required to eliminate a single goto, in the

worst case.

Multiple Gotos

The following procedure eliminates the gotos from a size n expression E.

l. Apply lemma 3.1 to find 2n vertex graph G for E, treating gotos and desti­

nations as if they were alphabetic symbols.

2. Convert G to a standard graph G' whose traces from u to v are just L(E),

by altering goto and destination arcs in the obvious way. G' has 2n

vertices.

- l O -

3. Convert G' to an ordinary expression by the standard technique. The

expression has size 6 • 42n- 2 (see Ehrenfeucht and Zei~er (1976)).

Thus we have

Theorem 4.1. COST(n,n,O) < 6. 42n- 2.

A lower bound on COST(n,n,O) can be obtained as follows. Let Kn be the

complete graph of n vertices, each arc bearing a distinct label. Ehrenfeucht

and Zeiger prove the following. 0

Theorem 4.2. There is a path pin Kn such that, if Eis any ordinary regular

expression which is normal w.r.t. Kn' and E covers the trace of p, then

() n- l size E ~ 2 .

Theorem 4.2 is a special case of theorem 5.2; hence its proof is

deferred.

Theorem 4.3. COST(n,n/2,0) ~ n(2✓n/ 2).

Proof. Consider the language L = traces(Km,0,0). We construct an extended

expression E whose language is L.

m-1
F. = d. (u a .. , l j=O lJ

m-1
Fa = do . (Gm u u

j=O

m-1
E = G0(u F j) . d

j=O

.

m

Let a .. be the label of arc (i ,j).
1J

G.) ' i 'I 0,
J

a .. . G.) ' 1J J

- 11 -

E has size 2m2 + m + 3. If E' is an ordinary expression equivalent to E, then

E' is normal w.r.t. Km by lemma 3.3, so size (E') ~ 2m-l by theorem 4.2.

Choosing 2m2 + m + 3 < n < 2(m+l) 2 + (m+l) + 3 gives the desired result. □

Remark. The above proof assumes an alphabet of at least m2 symbols. By making

use of the stronger theorem 5.2, it can be shown that C0ST(n,n,0) ~ n(2✓n/c)
for some c > 0, even for a two element alphabet.

Eliminating a Single Goto

The remainder of this section is concerned with the difficulty of

eliminating one goto from a regular expression, and is independent of later

sections. It seems reasonable that it should be no more difficult to eliminate

all of the 0(n) gotos from a size n expression one at a time, than to do so

en masse. Then, according to our exponential space method of eliminating all

gotos, it should be possible to eliminate each one at the cost of a constant

factor length increase.

Whether or not there is an algorithm for eliminating one goto which,

over the course of eliminating all of the gotos from an expression, averages a

constant factor increase per goto eliminated, I do not know. But it is shown

below that it is not possible to uniformly eliminate one goto in linear space.

Theorem 4.4. C0ST(n,l ,0) ~ n(n log n).

Proof. Consider expression En defined by

- 12 -

F = (a • F l • b)* n n n- n for n > 0,

En = G • F n,

where G is the single goto, and dis its destination. For example,

E3 = G(b3(b2(b1da 1)*a 2)*a 3)*. The reader can check that En represents exactly

the traces from vertex Oto vertex n in graph G , drawn below. n

Graph Gn

If we can show that every ordinary regular expression whose language is

traces(Gn,0,n) has size n(n log n), then we are finished, for En has only

linear size. Note that the choice of start and stop vertices is critical;

indeed, F is a linear size expression for the traces in G from vertex Oto n n
itself.

Claim. If Eis an ordinary regular expression and L(E) = traces(Gn,O,n),

then size(E) > n log(n + 2).

Proof of Claim. The proof is by induction on n. The cases n = 0,1 are trivial.

- 13 -

Because each arc has a distinct label, it is possible to equate traces and

paths, which is done in what follows. Let p be the loop path a1a2 ... anbn ... b1.

Clearly Eis p-infinite. From among the finitely many subexpressions of E,

choose a minimal length one F which is p-infinite. Two facts about Fare

apparent: 1) size(F) ~ 2n, and 2) Fis a star, say F = A*. By its forward

and backward determinism, Gn is normal, and A* has a base point w. Clearly,

A* can neither be entered nor exited except by passing through w. But E must

allow both for the possibility of following any arbitrarily long path among

vertices O, ... ,w-1 before entering w for the first time, and for following

any path among w+l , ... ,n after leaving w for the last time. It is clear that

A* cannot be used in covering those pre-w or post-w paths, and in fact that

if Bis obtained from Eby replacing A* by A, and replacing each occurrence

of a. and b. by A, for j ~ w, then B represents just the paths from Oto w-1
J J

in G 1 . By induction, size(B) ~ (w-l)log(w+l). Similarly, B', obtained by w-
replacing A* by A, and a. and bJ. by A, for j < w, represents just the paths

J -

from w+l ton, which is isomorphic to the pat_hs from Oto n-w-1 in G 1 . n-w-
By induction, size(B') ~ (n-w-l)log(n-w+l). But the occurrences of alphabetic

symbols in A*, Band B' are disjoint, so

size(E) = size(A*) + size(B) + size(B'),

> 2n + (w-l)log(w+l) + (n-w-l)log(n-w+l).

Size(E) is minimized for w = n/2, giving

Size(E) ~ 2n + 2(%-1)109(%+1),

> n log(n+2) for n > 2. D

- 14 -

A single goto can be eliminated from an expression at the cost of a

quadratic size increase, as the following construction shows. We begin by

defining expressions FIRST(E) and LAST(E). FIRST(E) is defined only when E

contains exactly one goto, and represents all strings which can take E from

its start to its goto. LAST(E) is defined only when E contains exactly one

destination symbol, and represents the strings generated by E if Eis started

at its destination symbol. We define FIRST(E) and LAST(E) inductively on the

structure of E, leaving it up to the reader to verify the properties claimed

for them.

FIRST(G) = " ;
if A contains G,

FIRST(A u B) = r!RST(A)
FIRST(B) if B contains G;

r!RST(A) if A contains G,
FIRST(A • B)

= A • FIRST (B) if B contains G;

FIRST(A*) = (A')*•FIRST(A);

where A' is obtained from A by replacing G by¢.

LAST(d) = " ;

LAST(A u B) = rAST(A) if A contains d,

LAST(B) if B contains d;

LAST (A • B)
= rAST(A) · B if A contains d,

LAST(B) if B contains d;

LAST(A*) = LAST(A) • A*.

It is easily checked that length (FIRST(E)) = O(length(E) 2), and similarly for

LAST. The goto-free expression ELIM(E) equivalent to Eis then defined as

follows. Trivial cases are left out. Let A/¢ be obtained from A by replacing

G by¢.

- 15 -

Au B. Assume w.l .g. that A contains G and B contains d. Then

ELIM(A u B) = (A/~) u Bu FIRST(A) • LAST(B).

A• B. Case 1: A contains G, B contains d. Then

ELIM(A • B) = (A/~) • B u FIRST(A) • LAST(B).

Case 2: A contains d, B contains G. Then

ELIM(A • B) = A • (FIRST(B) • LAST(A))* • {BN)

A*. ELIM(A*) = ELIM{A)*

The reader can check that ELIM(E) is equivalent to E, and

length(ELIM(E)) = O(length(E) 2). When all redundant symbols are eliminated,

length and size are related by a constant factor. We have shown

Theorem 4.5.

5. RECODING

2 COST(n, 1,0) ~ O(n) . 0

We have seen that the complete graph Kn has a useful property for

studying the power of regular expressions, namely that every ordinary

expression whose language is traces(K ,0,0) has size at least 2n-l. If it
n

were possible to find a size O(log n) expression with Boolean variables for

the traces in Kn, then we would immediately have a double exponential lower

bound on the space required to eliminate all of the variables from an expression .

- 16 -

Unfortunately, Kn has n2 different labels, killing all hope of any

kind of expression with size less than n2 for traces (Kn,0,0). But suppose

each arc is labelled not by a distinct symbol, but by a distinct binary

number; that is, a string of O's and 1 's. There is hope of finding a very

small expression with Boolean variables for the traces in such a graph. On

the other hand, it is not clear that the traces in that graph remain hard

for ordinary expressions. Indeed, it is quite possible that the recoding
n-1 completely invalidates the 2 lower bound of theorem 4.2, as the following

observation shows.

Leth be the one-one homomorphism which maps symbol aij to string bi• bj,

over alphabet {b0, ... ,bn_ 1}. Let L = traces (Kn,0,0). By theorem 4.2, no
n-1 ordinary regular expression for L has size less than 2 . But

n-1
E = ba(u b.b.)* bo u A

i=O 1 1

is a size 2n + 2 ordinary expression for h(L). Thus, recoding each symbol by

a distinct string permits ordinary expressions to economically describe the

traces in Kn.

The preceding observation makes two suggestions:

1) regular expressions may not be quite as weak as suggested by theorem 4.2,

in the sense that all that is required for them to be economical, at least

in some cases, is a simple renaming of symbols;

2) any lower bound proof which relies on homomorphically recoding Kn will have

to take care in how the recoding is done.

Later in this section we show that interpretation (1) is probably not

warranted, by exhibiting a language which is hard for regular expressions, and

- 17 -

remains hard even under any homomorphism in a reasonably broad class, namely

the class of homomorphisms h for which neither h(o) nor h(o) is a prefix or

suffix of the other whenever a r o. In fact, the language we exhibit is

itself the image of traces (Kn,0,0) under just such a homomorphism.

1n-Expansions

Our goal is to generalize theorem 4.2 to a larger class of graphs, by

distilling from Kn those properties which seem to be required by Ehrenfeucht

and Zeiger's proof. Those properties are listed below, as properties of

Kn-ex pans ions.

Definition. A Kn-expansion G is a 5-typle (V,P,E,r,A), where (V,E,r,A) is a

labelled graph, and Pc Vis a set of exactly n primary vertices. In addition,

G must satisfy

1. Every subgraph of G, including G itself, is normal.

2. Every lQ..Q_Q path is uniquely determined by its trace; that is,

t £ traces (G,u,u) ~ t is the trace of .exactly one path in G.

3. For every pair of primary vertices u,v £ P, there is a path

p = (u=u 0,u1, ... ,uk-l'uk=v) in G, where none of u1, ... ,uk-l are

in P. Path pis called a primi t iv e path from u to v;

4. For every non-primary vertex u, there is a primary vertex v such that

every loop path from u to itself passes through v.

Note that Kn is itself a Kn-expansion, with no non-primary vertices.

There are other Kn-expansions as well.

Example 5.1. Let u be the log n bit binary representation of u. We have seen

- 18 -

that by coding aij' the label on arc (i,j), by i # 3, the traces in Kn become

easy for regular expressions. But suppose the order is reversed, with a
1
.• . J

coded as 3 # i. That recoding maps the traces in Kn into the traces in a

certain Kn-expansion en. For n a power of 2, en has n primary and 2n(2n - 2)

non-primary vertices. One of those primary vertices and its surrounding

non-primary vertices is drawn below for n = 4.

+ primary vertex

The #-arcs are connected in such a way that there is a path with trace 3 #,

from primary vertex i to primary vertex j, i ,j E {0,1 ,2,3}. This results in

at most one #-arc entering or leaving any vertex. en is forward and backward

deterministic, and hence is normal. Property 2 follows from the fact that

every loop unambiguously names the primary vertices visited. Other properties

of Kn-expansions are simple to check.

Definition. If G is a Kn-expansion, say that His a Km-subexpansion of Giff

l. His a Km-expansion;

2. His a subgraph of G;

3. the primary vertices of Hare a subset of those of G.

Note that if G is a Kn-expansion and His obtained from G by deleting

any k primary vertices and associated arcs, then His a Kn-k-subexpansion of G.

- 19 -

We are now ready to prove the main theorem about Kn-expansion, general­

izing theorem 4.2. The proof closely follows the lines of Ehrenfeucht and

Zeiger's proof of theorem 4.2, but of course requires more careful consideration

on certain points, in particular on the difference between traces and paths.

Theorem 5.2. Let G be a Kn-expansion, H be a Km-subexpansion of G, and v be

any primary vertex of H. There is a loop path pin H from v to itself such

that, if Eis any ordinary regular expression covering p, and Eis normal w.r.t.

() m-1 G, then size E > 2 .

Proof. The proof is by induction on m form ~ n. The case m = l is trivial.

Assume m > l. Let ~ and G denote addition and subtraction modulo m. Let

u0 , ... ,um-l be the primary vertices of H, and let Hi be the Km_ 1-subexpansion

of G obtained by deleting Ui01 from H. By induction, there is a pa th pi in

H.
1

from u. to itself such that, if Ei covers the trace of pi, and E. is normal
1 1

w.r.t. then size (Ei) 2m-2
Let si,j be a primitive path from to p.' > • u. u.

1 1 J

in H. For i = 0, ... ,m- l , define

where k = 2m, and pk denotes k-fold iteration of loop path p. qi is a path in

H from ui to itself. We must show that if Eis normal w.r.t. G, and E covers

() 2m- l the trace of qi' then size E > • Let tj be the trace of pj.

Case l. Suppose Eis tj-finite for some j £ {O, ... ,m-1}. Lett= tj. The

definition of qi implies that It{E)?.. 2m. By lemma 3.2, size (E)?.. 2m-l .

- 20 -

Case 2. Suppose Eis tj-finite for all j E {O, ... ,m-1}. The finitely many

subexpressions of E can be divided into those which are tj-finite and those

which are not. For each j, let Fj be a minimal length subexpression of E

which is t.-infinite. It is clear that F. = A~ for some A .• From the set
J J J J

{F0, ... ,Fm_1}, choose a minimal length member Fr.

Fr inherits E's normality, and Fr covers tr Thus, by induction,

() m-2 size F > 2 .
r -

Claim. There is a k E {0, ... ,m-1} such that, if x E L(Fr), and pis a path

in G with trace x, then p passes through uk (a primary vertex of H).

Given the claim, we finish the proof of theorem 5. 2 as follows. By

property 2 of Km-expansions, tk&)l is the trace of no path except Pk(±)l.

But Pk©l is a path in HkJ=;'l, and so does not pass through uk. Since, by the

claim, any member of Fr defines a path which does pass through uk, E can cover

t~@l for arbitrary d (as it must) only if E covers tf~1 without entering Fr,

or some subexpression of Fr is tk@l-infinite. But the latter possibility

violates the minimality of Fr.

Let B be obtained from Eby replacing F by A. By the preceding r

argument, Bis tk@1-infinite; in particular, B covers tk©l. By induction,

size (B) > 2m-2. But size (E) = size (B) + size (F) > 2m- 2 + 2m- 2
> 2m-l.

r -

Proof of Cl aim. Fr= A; has a base point bin G. By property 2 of Kn-expansions,

every member of L(Fr) traces exactly one path in G, namely one beginning and

ending at b. If we can show that bis in H, then property 4 of Km-expansions

guarantees the existence of uk.

Fr was chosen to be tr-infinite, where tr is the trace of Pr· If pr

- 21 -

does not pass through b, then some proper subexpression of Fr must be

tr-infinite, violating the minimality of Fr. Thus Pr contains b, and, since

pr was defined as a path in H, bis a vertex in H. D

Before proceeding to Boolean variables, let us briefly examine the

question of whether it is possible to recode any graph so as to make its

traces economically representable by a regular expression. Call a homomorphism

h simple, for lack of a better term, if, for cr Io, neither h(cr) nor h(o)

is a prefix or a suffix of the other. Simple homomorphism are one-one, so

that if L(E) = h(L)~ every member of E corresponds to a unique member of L.

We know by theorem 5.2 that L = traces (Cn,0,0) cannot be represented by any
. 2n- l expression of size less than , where en is the Kn-expansion of example

5.1. We show that h(L) is no easier, for any simple homomorphism h, by showing

that h(L) = traces(C~,0,0) for some Kn-expansion C~. Given h, add non-primary

vertices to en so that each arc labelled cr is replaced by a straight line path

labelled h(cr). In doing so, the only important property of en which might

have changed is its forward and backward determinism. Restore determinism by

merging vertices, as illustrated for h(O) = abc, h(l) = adc.

b C C

b

a
d

d C C

Backward determinism can be restored similarly. The important observation is

that for simple homomorphisms, the vertex merging cannot propagate to the

#-arcs in en, and so no other property of Kn-expansions is compromised.

- 22 -

Not all one-one homomorphisms are simple, and it remains open whether or

not any one-one homomorphism exists to simplify any given language for regular

expressions. However, given the weakness of regular expressions, it appears

unlikely that such homomorphisms always exist.

6. ELIMINATING BOOLEAN VARIABLES

We begin with a simple minded upper bound on COST(n,0,m), the space

required to eliminate m Boolean variables from a length n expression. Then we

turn to lower bounds. We are unable to prove a completely satisfying lower

bound on COST(n,0,m), and settle instead for a few special cases.

The variables can be eliminated from expression E in a straightforward

manner: 1) apply lemma 3.1 to find a graph G for L(E), treating each variable

operation as if it were an alphabetic symbol; 2) encode the variable values

into the vertices of G by making 2m copies of G; and 3) convert back to a

regular expression. Analysis of that process gives

Theorem 6.1. COST(n,0,m) .::_ 5.4P-2, where p = m 2n2 . D

There is no reason to believe that the above procedure is optimal.

Indeed, when m = 0, the procedure introduces a potential exponential size

increase when no work at all is required. But for the case of m close ton,

we can prove a lower bound which coincides with the above upper bound to the

point that both are double exponential.

The lower bound proofs depend on theorem 5.2, and are proved simply

by exhibiting short expressions, with variables, for the traces in a certain

Ks-expansion. We have already seen one Ks-expansion, namely Cs of example 5.1.

- 23 -

In order to write an expression E for traces (C ,0,0), we introduce some s s
abbreviations. Let s = 2k, and let x1 , ... ,xk,yl , ... ,yk be Boolean variables.

1. ne.
1

= el . e2 .
2. X + 0 = TIX. -t;

1

3. X = 0? = nx ?• i . '

4. X + y = nGi? . X. 't u y.? . X. t) ;
1 1 1

5. y+ random = n(y. 't u Y; t) ;
1

6. gen X = rr(x.? .
1

0 u x.?
1

. l) .

Then let

Es= (x + 0)((y + random)(gen u)#(gen x)(x + y))*(x = 0?).

Es represents traces (Cs,0,0), but has size only 16k + l. Choosing

16K + l < n < 16(k+l) + l, we arrive at

Theorem 6.2 . C0ST(n,0,n/16) ~ 2P-l, where p = 2n/1S-l_ □

Theorem 6.2 can be generalized by using fewer variables, at the cost

of a longer expression. To that end, we define the K -expansion Crs' which r•s
is constructed by completely connecting r copies of C

5
• More precisely, make

r copies of C . Draw an arc labelled a .. from vertex u in copy i to vertex v
S 1 J

in copy j if there is an arc labelled# from u to v in Cs. Finally, erase

all of the #-arcs.

An expression for traces (Cr,0,0) can be constructed as follows, for s
s = 2k. Let Ebe a length at most 4r expression for traces (Kr,0,0). Replace

each occurrence of a .. in E by the expression lJ

- 24 -

(*) {y + random)(gen y)a;j{gen x)(x + y),

where x and y are k bit counters, as before. Calling the new expression E',

let

E11 = (x+ O)E'(x = O?).

E" represents traces(c;,o,o), and has size at most 4r(l4k + l) + 2k. Applying

theorem 5.2 yields

Theorem 6.3. There is a constant c > 0 such that, for all n and all k > 0,

COST(n,0,2k) ~ (n/ck)s/2, wheres= 2k. □

It is worth noting that theorem 6.3 can be strengthened somewhat for

small values of k. Counter y can be eliminated by using

s-1
u

i =O
(k • a . . • (gen x)(x + k))

lJ

in place of (*). Although the resulting expression is much larger than E11
,

it has half as many variables. Analysis shows that the bound becomes

COST(n,O,k) ~ (n/cks)s/ 2, wheres= 2k, c > 0.

Our last lower bound is for a single variable.

Theorem 6.4. For every£> 0, for infinitely many n, COST(n,0,1) 2-£
> n

Proof. Otherwise theorem 6.2 could be violated by eliminating variables one

at a time. □

- 25 -

Theorem 6.4 is not very satisfying, for while its bound is only qua­

dratic, the best known upper bound is not even polynomial. The question of

which bound needs to move is significant, for there are times when a few

variables are a great convenience, but are only affordable if COST(n,O,1) is

polynomial inn. On the other hand, finding COST(n,O,1) to be worse than

polynomial is a very strong statement about the power of regular expressions.

7. CONCLUSION

It is disappointing to find the lower bounds so high. Even a quadratic

increase must be considered a high price for eliminating just one variable, and

the actual cost may be far greater. Since a few variables can be very helpful,

for such uses as holding a character for later reference, it would be worthwhile

to learn whether a fixed number of variables can be eliminated in polynomial

space. Through considerable work, the author has managed to lose all intuition

on the matter.

Of course, regular expressions are a convenient form of representation

for som~ languages. Simple homomorphisms increase the power of regular

expressions, in a quantitative sense. It is conceivable that arbitrary one-one

homomorphisms increase their power still further, though very unlikely that

they can help in every case.

References

l. Aho, A.V., J.E. Hopcroft, J.D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass.

2. Ehrenfeucht, A. and Zeiger, P., "Complexity Measures for Regular
Expressions", JCSS 12, 134-146 (1976)).

3. Greibach, S.A., Theory of Program Structures: Schemes, Semantics,
Verification, Lecture Notes in Computer Science 36, Springer­
Verlag, Berlin, Heidelberg, New York.

