
*
*
*
*
*
*
*
*
*
*
*
*

OPTIMIZATION TECHNIQUES IN COMPUTER

SYSTEM DESIGN AND LOAD CONTROL

by

PREM SWARUP SINHA

Technical Report TN 81-16
September 1981

*
*
*
*
*
*
*
*
*
*
*
*

Department of Computer Science
University of British Columbia
Vancouver, B. C., V6T-1W5

This report was submitted as a thesis in partial fulfillment
of the requirement for the degree of Doctor of Philosophy.

OPTIMIZATION TECHNIQUES IN COMPUTER SYSTEM DESIGN AND

LOAD CONTROL

by

PREM SWARUP SINHA

B.Sc., Delhi University, India, 1971

M.Sc., Indian Institute of Technology, New Delhi, India, 1973

DI!T, Indian Institute of Technology, New Delhi, India, 1974

A THESIS SUBMITTED IN PARTIAL FU:i:..FILMENT
.

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming

to the required standard

....... ✓-~.:

. ~-.... L ~ · .

,···1-. ~ ' \.(_ _, L~ I~~
· · · · ~. r:,· · r · yr · 3.;1 ·z. · · · · · · · · · · ·

I- 1'-- . -•••••• •".,I• • • • • • • • •. • • • • ' ■ •••••••••••

THE UNIVERSITY OF BRITISH COLUMBIA

SEPTEMBER 1 9 8 1

c Prem Swarup Sinha, 1981

OF

ii

ABSTRACT

Analytic modelling has proven to be cost-effective in

the performance evaluation of computer systems. So far,

queueing theory has been employed as the main tool. This

thesis extends the scope of analytic modelling by using

optimization techniques along with queuing theory in

solving the decision-making problems of performance

evaluation. Two d!fferent problems have been attempted in

this thesis.

First, a queueing network model is developed to find

the optimal capacities and speeds of the memory levels in a

memory hierarchy system operating in a multiprogrammed

environment. Optimality is defined with respect to mean

system response time under a fixed cost constraint. It is

assumed that the number of levels in the hierarchy as well

as the capacity of the lowest level are known. The effect

of storage management strategy and program behaviour are

characterised by the miss ratio function which, together

with the device technology cost function, is assumed to be

represented by power functions. It is shown that the

solution obtained is globally optimal.

iii

Next, two adaptive schemes, SELF and MULTI-SELF, are

developed to control the flow of jobs in a multiprogrammed

computer system. They periodically determine the number of

jobs from each class that should be activated to minimize

the mean system residence time without saturating the

system. The computation is based on the estimated system

workload in the next interval. An exponential smoothing

technique is used to reduce the error in estimating the

values of the model parameters. The service provided to

each class (specifically, the mean response time) may be

adjusted by changing the weight associated with the job

class. From our simulation results, the schemes appear to

be both stable and robust. Performance improvement over

some of the existing schemes (50%, L=S and the Knee

criteria) is significant under some workloads. The

overhead involved in its implementation is acceptable and

the error due to some of the assumptions in the formulation

and solution of the model are discussed.

iv

TABLE OF CONTENTS

1. INTRODUCTION AND PROBLEM DEFINITION

1.1 The Importance of Performance Evaluation •...•.......

1. 2 Approaches to Computer Medell ing 2

1 .3 Analytic Modelling 3

1.4 Thesis Overview .. 7

2 • MEMORY HIERARCHY DES I GN • 9

2.1 Introduction and Review 9

2.2 System Description, Assumptions and Notation 14

2. 3 Queueing Model 19

2.4 Formulation of the Optimization Problem .•..•...•..• 27

2.5 Solution of the Optimization Problem •.•••••••••••.• 33

3 . ADAPT I VE LOAD CONTROL . 4 3

3.1 Introduction and Review .•..•.......•....•.....•.... 43

3. 2 System Model • • . • . • • • . . • • 55

3.3 Saturation Estimation ..•••.•..................•••.. 57

3.4 Optimal Selection ••••.••••••..•••..•.•...•...•....• 67

4. MULTICLASS CONTROL•.......................... 78

4.1 Introduction 78

4.2 Multiclass Saturation Estimation 79

4.3 Multiclass Optimal Selection•..•...... 85

5. SIMULATION RESULTS AND ERROR ANALYSIS• 89

5. 1 Introduction 89

5.2 Description of the Simulator ..•.••......•.•...•..•. 90

6.

. 5.3 Simulation Results

S.4 Error Analysis .
CONCLUSIONS AND EXTENSIONS .
REFERENCES ...
APPENDIX A ...

V

96

1 1 1

1 1 6

1 21

128

vi

LIST OF TABLES

2.1 Optimal Storage Sizes•........•.........•..•.•••.... 40

5. 1 Mean Response Time • • . • • . • 97

5.2 Resp. Time for Various Values of in L=S Criterion 98

5.3 Resp. Time and %Imp. for Workload in Table A.3 ••.•.... 99

5.4 Resp. Time and %Imp. for Workload in Table A.4 •....... 99

5.5 Resp. Time and %Imp. for Workload in Table A.5 100

5.6 Resp. Time and %Imp. of SELF, 50%, L=S and Knee 104

5.7 SELF Resp. Time with Diff. Weights Under Heavy Load 105

5.8 SELF Resp. Time with Diff. Weights Under Light Load 105

5.9 SELF and MULTI-SELF Resp. Time with Static Beta 107

5.10 SELF and MULTI-SELF Resp. Time With Dynamic Beta .••.. 109

5.11 SELF Resp. Time With Static and Dynamic Beta •......•. 110

5.12 MULTI-SELF With Static and Dynamic Beta•.... 110

5.13 %Error and %Imp. Under Static, Dynamic, No Smoothing . 113

A.1 Workload for Table 5.1 ..•......•.......•............... 129

A.2 Workload for Table 5.2 129

A,3 Workload for Table 5.3

A.4 Workload for Table 5.4

A.5 Workload for Table 5.5

A.6 Workload for Table 5.6

A.7 Workload for Table 5.7

A.8 Workload for Table 5.8

.................................

.................................

.................................

129

129

1 3 1

1 3 1

132

132

A. 9 Workload for Tables 5. 9 through 5. 12 • . . • . . . • • . . . • • • • • • . 1 32

...:::..~~-

'

\

vii

LIST OF FIGURES

2.1 Storage Hierarchy in a Multiprogrammed System .••.•....•. 16

2.2 Queueing Network Model "A" of System •................•.. 19

2. 3 Queueing Network Model "B" of System • • . 21

3.1 Simple Central Server Model .••...••...•....••.........•• 47

3.2 Saturation point .. 49

3.3 Under-saturated and Over-saturated Regions •...........•. 50

3.4 General Central Server Model 55

3. 5 Saturation Point .. •· 57

3. 6 System Bottleneck . 62

3. 7 Load Control Model . 67

3.8 Active Constraints .•.•............•........•............ 72

3.9 Inactive Constraint ...•.••......•..•............•....... 73

5.1 Mean System Jobs Under Light Load

5.2 Mean System Jobs Under Heavy Load
1 0 1

102

viii

ACKNOWLEDGEMENT

I would like to thank my advisor, Dr. Samuel T. Chanson,

for his guidance and constant encouragement during the past

three years of my graduate studies. I am also thankful to the

members of my committee, Dr. David R. Cheriton, Dr. David G.

Kirkpatrick, Dr. Uri Ascher and Dr. Mabo R. Ito for their

interest and constructive comments.

I would also like to thank my colleagues Ezio Catansariti

and Mark C. Fox for carefully reading an early version of the

thesis. A very personal note of gratitude to my parents,

brothers and sisters. It was almost impossible for me to

accomplish this achievement without their constant support and

encouragement from half way round the globe.

Finally I am grateful to the Department of Computer

Science, University of British Columbia for the financial help

in the form of Teaching Assistantship and University Summer

Research fellowship.

:.

CHAPTER

INTRODUCTION AND PROBLEM DEFINITION

1.1 The I mpo r tance of Performance Evaluation

Performance criteria are major consideration in the

design of computer systems. Therefore, knowledge about

program characteristics, system load and optimal design

theory are important aids to the prevalent intuitive and ad

hoc methods. The increasing demand for computer resources

has made computer system designers, data processing and

corporate managers, system analysts, programmers as well as

the user community at large more concerned about system

efficiency and utilization. Despite continual reduction in

the cost of hardware, inefficient resource utilization
.

represents unnecessary wastage. Moreover, there is an

increasing interdependency among users. Whether in a large

centralized system or in a distributed computing

environment where resources are shared, poor performance- of

one component affects many users.

There are different measures of

response time, throughput rate

utilizations. Optimization of one

performance

and various

measure

2

such as

resource

does not

necessarily optimize other measures.

important to select a proper measure or

measures to be consistent with the

particular study.

Therefore it

a combination

objectives of

is

of

a

Once the system is in production, structural problems,

particularly those related to the computer architecture are

often difficult to remove. A significant change in the

system structure may be required to remove bottlenecks in

the system. Therefore it is desirable to study a model of

the system before it is configured. This also allows the

designers to study different models of the system and

select the best suited for the specific application.

1.2 Approaches to Computer System Modelling

The study of computer system modelling and performance

analysis employs three different methods viz., measurement,

simulation and analytic techniques. Direct measurement

techniques are not always applicable, particularly to

design problems because they require the system to be in

existence. Also production systems may not be available

3

for experimentation. Moreover, it may not be practical to

implement certain control mechanisms if the system was not

initially designed to facilitate extensions or

modifications.

Simulation techniques are the most popular, since they

are able to represent the characteristics of the modelled

system more closely than is possible with currently

available analytic techniques. However simulation models

are expensive to build, validate and use.

Although analytic models are more cost-effective for

evaluating and predicting computer system performance, they

are harder to formulate and to solve in general. Recent

advances have made analytic models increasingly capable of

representing more closely the characteristics of the

modelled system.

1.3 Analytic Mode ll ing

Queu~ing theory has been the major tool used in

analytic modelling of computer systems. A queueing network

is a network of service centres. Each centre has one or

more queues associated with it. Customers wait in queues

for their turn to be served by the server. At each service

centre the distribution of the service times for each class

of customers and the scheduling algorithm are known and

4

fixed. After being served at a centre the customer moves

to other service centres or exits from the system according

to a fixed set of transition probabilities which may or may

not be class and/or workload dependent.

A queueing network is said to be open if job arrivals

are independent of job departures and the number of jobs

present in the system. In a closed queueing network, the

number of jobs remain constant. Whenever a job leaves the

system, a statistically identical job is-injected into the

system to replace it. A computer system can be considered

as a network of queues with various processing devices as

the service centres.

The analysis of a queueing network can be classifed

as:

{i) exact analysis using classical queueing theory,

{ii) approximate techniques,

(iii) operational analysis.

As discussed below, none of the three approaches is

superior to the others under all circumstances.

Exact solutions were first given by Jackson [Jack63].

5

He showed that in a queueing network composed of

exponential service centres, the equations governing the

equilibrium distribution of the system states exhibit a

product form. This means the probability that the queueing

network is in a particular state is equal to the product of

the probabilities that each individual service centre is in

its corresponding state divided by a normalizing constant.

Gorden and Newell [GoNe67) simplified the product form

solution for closed queueing networks by developing a

separation of variables solution technique. Buzen [Buze73]

introduced the widely used central server model and

provided efficient algorithms for computing the normalizing

constants, the equilibrium distribution of system states,

throughput rates and queue length distributions. Most of

the work in queueing theory assumed identical jobs until

Basket et al. [BCMP75] extended these results to cover

multiple classes of jobs, different queueing disciplines

and non-exponential service distributions.

Approximate techniques give either an approximate

solution to the original network or an exact solution of an

approximate model. Norton's theorem as defined by Chandy

et al. [ChHW75b] (analogous to Norton's theorem in

electrical engineering) plays a major role in the

development of approximate techniques. The model involves

replacing a subnetwork that has a single input stream and a

single output stream with a single composite service

6

centre. The resulting queueing network is repeatedly

simplified until it permits analysis by global balance

techniques. It is shown that, if the original system has

the local balance property, then the reduced model is exact

in the sense that the queue length distribution at the

service centres (not the system) are identical in the

original and the reduced network. Good references for

approximate techniques can be found in Chandy

et al. [ChHW75b] and Courtois [Cour77].

Operational analysis was first introduced by Buzen

[Buze76] and a good survey can be found in [DeBu78]. With

this approach, one can obtain most of the results of

stochastic analysis without making the assumptions (often

unrealistic) required by queueing theory. The main

drawback of this technique is that it is not suitable for

performance prediction and does not lend itself to the

study of transient system behaviour.

Although queueing theory is an essential tool for

computer system performance modelling, it does not solve

the problems of decision-making. For example, it can

provide the values of various syst~m performance measures

for a combination of system parameters but it does not

provide a best combination of system parameters that will

optimize certain performance measures. Recently, some work

has been done to apply optimization techniques along with

7

queueing theory to solve such problems ([ChSiB0a],

[ChSiB0b], [HiMT79], [TrWaB0], [TrWSB0]). In this thesis,

optimization techniques are used along with time series

analysis and queueing theory in solving the decision-making

problems of large computer systems. The techniques

developed have been applied to the two problems of (a) the

design of a memory hierarchy, and (b) the job flow control

in a multiprogrammed system.

1.4 Thesis Overview

The thesis consists of five more chapters. In

chapter 2, the problem of memory hierarchy design in a

multiprogrammed system is studied. First a queueing

network model of a multiprogrammed memory hierarchy system

is developed. An expression for its response time is then

computed in terms of the capacities and speeds of various

levels of memory. The optimal capacities and speeds are

then obtained by minimizing the response time subject to a

fixed cost constraint. A modified version of geometric

programming is used to solve the minimization problem. A

closed form solution is derived and shown to be globally

optimal.

Chapter 3 describes and compares the relative merits

of various existing load control mechanisms. An expression

for the estimate of the saturation point is then derived

8

using operational analysis. An optimal selection of batch

and terminal jobs that should be maintained in the system

is also computed. This chapter also describes how time

series analysis can be used in the estimation of the system

parameters required for computing the saturation point

estimate. One of the main assumptions of the control

scheme developed in this chapter is that all the batch and

terminal jobs are statistically identical in their resource

demands.

Chapter 4 relaxes the identical job assumption of the

model developed in chapter 3. The scheme developed here

can handle any practical number of multiple classes of

jobs. Jobs within a class are statistically identical but

jobs in different classes can be different. In the extreme

case, each job can belong to a different class.

Chapter 5 describes a simulator for a central server

model. The two schemes described in chapters 3 and 4 were

simulated and their performance compared to some of the

existing schemes. The assumptions made throughout the

development of the two control schemes and the errors

introduced by them are discussed.

Chapter 6 summarizes the thesis and suggests further

research directions.

9

CHAPTER 2

MEMORY HIERARCHY DESIGN

2.1 Introduction and Review

A major criterion of computer system design is the

efficiency of its memory resource utilization. Although

the cost of memory is decreasing, the demand for computer

resources is increasing even more rapidly, and in some

applications the problems are getting larger. Therefore,

it is important t6 have an optimal design for the memory

system. The memory system is generally a combination of a

variety of technologies with different cost-performance

characteristics. Such an assembly of interconnected

devices is generally called a memory hierarchy. Management

of the memory hierarchy requires determining where to store

specific information, how to retrieve it and finally when

to move it from one level to another. The objective is to

maintain the more frequently used data in the fastest (and

therefore most expensive) device in order to minimize the

10

retrieval time. It is also necessary to recognize when the

data are no longer needed so that they can be moved to a

slower (and cheaper} device. The design problem considered

in this chapter is to find the optimal sizes and speeds of

different memory devices given a fixed cost constraint. In

the past, this problem was treated using heuristic

approaches rather than quantitative methods. Recently,

quantitative methods have been developed which yield a

better understanding of memory hierarchy configuration

evaluation.

The optimization of a memory hierarchy is recognized

as an important research area [Triv78] and has been

approached from several directions. Various solutions,

optimal under certain constraints, have been obtained.

Ramamoorthy and Chandy [RaCh70] have considered the

problem of finding the type and size of each level of

memory under certain assumptions. Their method involves

solving a linear programming problem with the average

access time of an information block in a program as the

objective function and a given hierarchy cost as the

constraint. The results are then extended to a general

case of multiprogramming. The approach presupposes the

knowledge of frequency of access for each information

block. A drawback of the model is that it uses average

access time as the objective function while ignoring the

1 1

delays due to queues formed in front of the lower levels of

memory.

MacDonald and Sigworth [MaSi75] have dealt with

various combinations of optimization criteria such as fixed

cost constraint, fixed and variable page size etc. They

too assume knowledge of the storage address sequence and

have used its statistical properties extensively in their

work. The objective function to be minimized is again the

average access time, or a function of it (ignoring the

queueing delays), which implies that even with available

program reference strings the scheme cannot be applied to

multiprogramming.

Chow [Chow74] has very nicely applied

programming to obtain not only the optimal size

geometric

and speed

of each memory level, but also the optimal number of levels

of hierarchy for a given cost constraint. The unit of

information transfer is a fixed-size page and the page size

is the same for all levels. The effect of the page

replacement algorithms, the program behaviour (and hence

the workload) and the page size are captured by a hit-ratio

function. A hit-ratio function is defined as the

probability of successfully retrieving the needed

information from a particular level of memory.

Furthermore, the hit-ratio function and device technology

cost function are taken as a power function of the capacity

1 2

and access time respectively of each level of memory

hierarchy. Chow's analysis ignores queueing delays and

hence is also restricted to a uniprogramming system.

Welch [Welc78] gives a very simple and straightforward

analysis of a memory hierarchy for speed-cost trade-off

with the assumption that the size and access probability of

each level of memory are known and fixed. Rege [Rege76]

uses a very simple two-server queueing network model to

analyze the cost-performance trade-off by using different

sizes and speeds at different memory levels. There is no

optimization study in either case.

Foster and Browne [FoBr76] are among the first to

explicitly account for queueing at devices in the memory

hierarchy to study a related but different problem - that

of file assignment in the hierarchy. Traiger and Mattson

[TrMa71] consider the design problem of a storage hierarchy

using a central server model. But their model is

restricted to three levels. In a later study, Lin and

Mattson [LiMa72] extend the technique to four levels.

Because of the exhaustive nature of the search for the

optimal solution, the technique seems to be impractical

when the number of levels in the hierarchy increases beyond

four. Gecsei and Lukes [GeLu74] reduced the complexity of

the model to some extent but in doing so they had to

approximate each stage of the network as an open-loop queue

1 3

with random arrival.

Trivedi, Wagner and Sigmon [TrWSBO] have used a closed

queueing network model to find optimal CPU speed, device

capacities and allocation of a set of files across the

secondary storage devices by maximizing the throughput

rate. In another work, Trivedi and Wagner [TrWa79] have

obtained the speeds of various secondary devices for a

given set of transition probabilities in a closed queueing

network.

Most previous work in optimization of memory

hierarchies used the mean memory access time as the

objective function for minimization. With a few exceptions

(e.g.,[RaCh70], [TrWa79] and [TrWSBO]-- the latter two were

done in parallel with this work [ChTr79]), they dealt only

with the uniprogrammed environment where only one process

is active at any time and the processor is idle when a

request is made to any memory level. It is not clear that

in a multiprogrammed environment, minimizing the average

memory access time is meaningful since a process may be

blocked while it is referencing information in a certain

level of memory. The following analysis combines

performance evaluation techniques and optimization methods

to extend the analysis of Chow [Chow74] to cover

multiprogrammed systems.

the objective function.

Mean response time is chosen as

With the number of memory levels

1 4

fixed and the capacity of the lowest level known, an

expression for response time is obtained in terms of the

capacity and speed of each level of memory. The optimal

expression of memory sizes and speeds are then obtained

using the Lagrangian function

constraint.

under a fixed cost

Notice that in the uniprogramming environment,

Average response time= c 1 * Average access time of

the memory hierarchy+ c 2

where c 1 = average number of accesses to the

memory hierarchy per interaction,

and c 2 = mean CPU time demand of the process per

interaction.

The parameters c 1 and c 2 are constants for a given

process. Hence the average response time and the average

memory hierarchy· access time are equivalent objective

functions in the uniprogrammed environment.

2.2 System Description, Assumptions and Notation

The memory hierarchy consists of N levels,

M 1 1 M2' ... ' MN, where N is known and fixed. Generally,

the higher the level (i.e., the smaller the index) the

smaller is the capacity, the faster its speed and the more

expensive is its unit cost. It is assumed that information

f.

1 5

present in any level is also present in all subsequent

lower levels. This assumption may not be true for all

levels (particularly for lower levels of memory}. In the

case of a uniprogramming system, whenever the needed

information is not found in the highest level M 1 , a request

is made to each of the lower levels successively until it

is found in a level Mi; i = 2, ••. , N. The processor is

held waiting all the time until the information is

retrieved from M;. As i increases, the time required to

fetch the information goes up. When i exce~ds a certain

value, it becomes uneconomical to keep the processor idle

while the information is being retrieved from Mi,

particularly when there are other processes waiting for the

processor. Thus, in the case of multiprogramming, we have

two types of memory - A and B. While the processor waits

for access to type A memory, it does not do so for access

to type B memory, but releases the current process and

takes the next process ready to run, if one exists. It is

therefore possible for several requests to queue up at a

type B memory level but there is at most one request at any

one time for a type A memory level. The model of such a

system is shown in Figure 2.1 where n, and n 2 are the

number of type A and type B memory levels respectively.

X j , i = 1 , 2 , • . • , N (N = n , + n 2 } i s the Ca pa C i t y Of

memory level M; in the hierarchy. n 1 , n 2 and x 111 are

assumed to be given.

T
y
p
E

A

T
y
p
E

B

\
•

FIGURE 2.1 STORAGE HIERARCHY IN A MULTIPROGRAMMED SYSTEM

1 6

, 7

Following Chow's [Chow74] terminology, we define the

following:

y;, i = 1, 2, ••. , N is the mean transfer

time of a unit of information from level Mi

to Mi., (this does not include the queue

wait time for type B memory levels) and y 1

is simply the mean access time of the

fastest memory.

H(x) is the probability of finding the

required information in a memory level with ,

capacity x.

The hit-ratio function Pi is therefore given by the

difference in probability of finding the information in Mi

but not finding it in Mi.,.

i . e • , Pi = H(xi) - H(xj. 1),

l = 1, 2, ••• , N; H(x 0) = 0. (2. ,)

The miss ratio F(x) is simply 1 H(x) and is assumed to be

a power function of capacity x, a positive constant K1 and

a, defined as:
-a

F(x) = K 1 x (2 • 2)

The technology cost function (i.e., unit cost of a storage

level with transfer time y to the next higher level) is

assumed to take the form:

where i and K2 are positive constants.

18

(2. 3)

Without loss of

generality, we take K1 = K2 = 1, i.e., equations (2.2) and

(2.3) become

and

-1/a

-a
F(x) = X

-b(y) = y.

(2.2')

(2.3')

This means K1 is the unit for storage capacity and K 2

is the unit for cost. Empirical data have shown that

equations (2.2) and (2.3) are good approximations for the

hit-ratio function and technology cost function

respectively (see [Chow74], · [Mats71],[Rege76], [Welc78]).

Mattson's [Mats71] empirical hit-ratio data , for example,

can be approximated by a power function Rege's data

[Rege76] support a i = 0.5 in (2.3) if system costs rather

than component costs are used. However, as stated in

[Welc78], because of ambiguities due to 1) system costs

versus component costs, 2) rapid change in technology, and

3) approximations needed to estimate the average access

times on non-random access devices such as discs, tapes

etc., i (in (2.3')) may take on widely different values

(the range of 0.2 to 0.6 has been used in [LiMa72])

depending on the particular application being analyzed.

Similarly, due to different program behaviour and storage

management strategies, the values of a in (2.2') will vary

from application to application.

19

£•1 Queueing Model

w

The queueing model of the system described in the

previous section is shown in Figure 2.2.

p
0

FIGURE 2.2: QUEUEING NETWORK MODEL "A" OF SYSTEM

p
1

20

The arrival pattern of requests is assumed to follow a

Poisson distribution with mean arrival rate

q 1 , q 2 , ••• , Qn,are the probabilities of referencing memory

levels M 1 , M2, ..• , M~1 respectively and p 1 ,

the probabilities of referencing

p 2 , ••• ,

memory

p Tl are
2-

1 eve ls

Mn,. 1, 1 ••• , Mn,. n1,. respectively. The probability of exit
J

(i.e., termination of task or completion of a request} is

Po•

Define

n,
Q = r q; I

i = 1

n2
p = r Pi,

i=O

then clearly, P+Q= 1.

For· type A memory, the mean effective hierarchy access

time Ti to level M;(i ~ n 1 } is the sum of the mean

individual transfer time between two consecutive levels

from Mi up to M 1

i.e.,
i

Ti = I Yj•
j=l

21

In the case of type B memory the mean transfer times

y;'s are taken as the inverse of the service rates of the

memory levels. Furthermore, it is assumed that the service

rates are exponentially distributed with mean 1 /y i ,

The mean effective hierarchy

access time of type B memory levels are not so easily

obtained because of possible queueing of requests at these

levels. Furthermore, since a process may be blocked while

accessing these levels, it is more reasonable to use mean

response time (or mean request completion time) as the

criterion of optimization. To do so, we first transform

the model in Figure 2.2 td the model in Figure 2.3.

C
---------------- ----0

w I ---.--..,.....-,- I
p

C C
---- ----n ---- ----n-1
I I l. I I 1

I .1

22

-~ EXIT
p'

0
p

1
C

---- ----,
I I

FIGURE 2.3: QUEUEING NETWORK MODEL "B" OF SYSTEM

23

Here Pi' = p;/P and the mean service time of centre Co

is

,, = P.K

n ,
with 1/K = r q;/,,;

i=1

and ,, 1 = 1 /T i i = 1 , 2 , • • • , n 1 (2. 4)

Taking~+~,, ~,, ~2 , ••• , ~n~to be the arrival rates

of centres C0 , C,, .•. , Cn
1

, respectively, and assuming the

service disciplines of the centres do not depend on the

future service time requirements or on the future path of a

job through the network, we now compute the response time

of the network in model B.

Assuming that the interarrival-time distribution and

all service time distributions are exponential, the model

can be analyzed following Jackson~s [Jack63] approach of

considering each service centre as an M/M/1 queueing model.

Using Little's Law, the mean response time of the

network is given by

R = 1[.~ 2

mean number of jobs in centre i]
~ 1=1

n2
= r

-~-i=1

where

p 1 = (mean job arrival rate of service centre c; /

mean service rate of centre C1)

Now the mean job arrival rate for service centre c;

= [Col + Col 1 i = 0

Col; i = 1 , 2, ... , n2

24

and the mean service rate of service centre C 1

= [•' i

--Y 1 + j i

Hence
R = [('->+w,),,'

c.i -, -_-(... w_+_w ,) ...,/,_,,-,

= 0

= 1, 2,

n 1 +n 2

+ r
i=n 1 +1

... , n2

(2 . 5)

From Figure 2.3, job arrival rate for service centre C1 is

given by

i = 1, 2, ••• , n 2

which, after some algebraic manipulation, can be shbwn to

be equivalent to

n2
w; = (c.i + c.i,) r Pi'

i=1

n2
= c.i r p; .

Po j=i
(2.6)

From equation (2.1), for type B memory, we have

n2
I: [H (X j + 1'1~ - H (X i + "•· 1)]

j=i

(takingH(x,-i) = 1)

= - H(x;.,,_ 1)

'

= Xi + ,,,-1

Substituting 1n (2.6), we get

-o
c.ii = I' Xi+1'1-1

'
where

=>

Also n 1 l

(c.i+c.i,)/.,' = Col I:
Po i=1

q; I: yJ· .
j=1

Substituting

and

g; = H(x;) - H(x; . 1)

F(x;) = 1 - H(x;) = x;,

we have, n 1 -o
(c.i+c.i,)/~• = ., I: x;., y;.

i=l

Substituting (2.7) and (2.8) into (2.5) we obtain

[

.~

1

x~~, Yi
R = 1 1=1 - --- --- -Po n, -o

1-r .,x;.,y;
i=1

where x 0 = 1.

n 1 +n 2
+ I:
i=n 1 +1

25

(2 • 7)

(2 . 8)

(2.9)

Notice that the degree of multiprogramming is not

explicitly represented in the model. It is generally

26

recognized that, for a given size of the main memory, the

degree of multiprogramming affects the performance of the

system. Some systems try to maintain the degree of

multiprogramming at a fixed level. However, except for

some simple systems where fixed partition memory management

is used, the resident sets of active processes change

drastically with time and even the average size differs

from application to application. The influence of the

degree of multiprogramming on performance is largely due to

its effect on the miss ratio function. In fact, in a

paging system using a fixed allocation strategy, the mean

CPU time interval between consecutive page faults e was

found to be proportional to a power function of the size of

the resident set m [BeKu69]

If main memory is shared equally by the active

processes then there is a direct relationship between the

values of parameter o of the miss-ratio function and R.

The system designer is not as much interested in the

absolute values of the degree of multiprogramming as in its

effect on system performance (which in this model is

represented by the value of o in (2.2)).

27

2. 4 ·. Formulation of the Optimization Problem

Since the technology cost per unit of information is

given by

-b(y} = y

the system cost with storage sizes x 1 , x 2, , ••• , x N for

levels M,, M2 , ••• , M,._. with average transfer time y 1 ,

y 2 , ••• , y,..respectively, is given by

N -,
s = r xi Yi

i= 1
(2.10)

Given N, xN, and that the memory system cost is not to

exceed S 0 , the optimization problem becomes:

Min

n 1 -o
r xi., Yi

i = 1
n 1 +n 2

+ r
n, -o i=n,

1- r ,, xi.1 Yi
i=1

N - ,
s.t. r xi Yi s So,

i=1

X 0 = 1; Xi> O; Yi> 0

- 0

X j. 1 y j

i = 1, 2, ••• ,N (2 . 1 1)

The problem (2.11) will have a solution only in the region

where

and

n 1 -o
r ,, x;., y; < 1

i = 1

-a
"x;., Yi< 1 i = n 1 + 1, ••• , n 1 + n 2

This restriction meets one of the assumptions made while

calculating the equilibrium state probability, i.e., the

28

traffic intensity 1 has to be strictly less than one

[Ferr78].

Now by multiplying the objective function by 11Po (a

constant) and adding 1 + n2 to it, the problem (2.11)

reduces to

n 1 +n 2
Min + r

n, -o i=n 1 -o
1-r ,, Xi . 1 Yi 1 - ,, Xi . 1 Yi

i=1

N -,
s. t. r X i Yi ~ (2.12)

~ i=1

The natural constraints xi > 0 and Yi > 0 can be

ignored in the calculation by looking at a solution only in

the positive region of x and y.

Introducing new variables r 0 and r;'s such that

and

n 1 -o
- r,, x;., Yi

i=1

-a
r;. 1 ::!;; 1 - ,, Xi. 1 y;:

The problem (2.12) is equivalent to

n2
Min r 0 1 + r r'f 1

i=1

i = n 1 + 1 , ••• , n 1 +n 2

Traffic intensity is defined as the ratio of the arrival rate
to the service rate at a service centre.

29

n, -o
s.t. ro s r ,, X 1 . 1 Yi

i=1

-a
r i . , s - ,, Xi. 1 y;: i = n, + 1 , n 1 +n 2 •• ■ ,

N --and r Xi Yi < 1 • (2.13)
So i= 1

Seemingly the above problem (2.9) falls under the

framework of the standard Geometric Programming. However,

it does not satisfy one of the conditions required, i.e.,

the number of variables minus the number of constraints

equals one. The difference here is n, + 2. Therefore we ..
expect an n, + 1 parametric solution. Now when we write

th~ Lagrangian equations for this problem, we find that

exactly n, + 1 equations can be derived from the rest of

the equations. Therefore in theory we should be able to

eliminate the above n, + 1 parameters. However, in doing

so, the orthogonality equations thus obtained become

non-linear and we are forced to solve a system of

non-linear equations. Thus the very advantage of using

Geometric Programming is lost. We shall therefore turn to

the Lagrangian multiplier method supplemented with a

technique similar (but not exactly equal) to Geometric

Programming. This is why detailed derivation of the

results are given rather than simply stating the results.

Before solving the problem (2.13) we shall first show

that any solution to this problem is globally optimal.

30

· Let (X 0 ,Y 0) be any stationary point of the problem

and R(X,Y) = P Po R(X,Y) + n 2 + 1

i . e. , ~ R(X, Y) = 0 and ~R(X 1Y) = 0,
°b Xi by;

cxo,yo) (XO,yO)

i = 1 , 2 , ... , N

where R is as defined in (2.5). We shall show that (x 0 ,Y 0)

is a global minimum of R(X,Y).

The following two theorems [Hadl72] are used in the

pr-oof:

Theorem 1. The sum of convex functions is convex.

Theorem 2. If g is a monotonically nondecreasing

convex function defined on the convex subset S 1 c; R 1 and if

f is a convex function defined on the convex subset S., ~ R;l

then the composite function g(f) is a convex function on

s 1 •

We now transform the original function R(X,Y) to

R'(U,V) using the transformation x; = e-tl;and y; = e-v.- and

obtain

N
R' (U,V) = r

i=n,+1
-,

1 -

+

31

n, - ou; _ 1 +v;
- r " e

i=1

Since each of the terms e-U,and e-~i are convex in their

respective variables, it is easy to show, by repeated

application of Theorems 1 and 2 that the function R'(U,V)

is convex. It now remains to be shown that the point

(U 0 ,v0) in R' (U,V), which corresponds to the stationary

point (X 0 ,Y 0) in R(X,Y), is also a stationary point of

R' (U,V) and hence a global optimal point since R' (U,V) is

convex.

Case

c> R' (U,V)
~ u;

i = n,+1, n,+2, ••. , N

-csu;+v; +,
= (-11)(-cs) e

-ou;+v;.,
(1 - " e) 2

= (-,.,)(-a)x; Yi.,
-a

(1 - "x; y;.,) 2

= 'c)R(X,Y)
~Xi

cxo,yo)

= 0

(XO,yO)

32

Case 2. i = 1 , 2, ••• , n ,

~ R' (U 1V) = -"
-au;+v; .. ,

~ (e)
C) u; -ou;+v; .. , <)Uj

(1 - r ; " e) :z

= 'c)R(X,Y)
c} X j

(xo,yo)

= 0 (following same arguments as in Case 1)

Similarly c,R' (U 1 V) = 0

However, (u 0 ,v0) is the global minimum of R' (U,V), and

the transformation between (X,Y) and (U,V) is unique.

Therefore (X 0 ,Y 0) is the global minimum of R(X,Y).

Using similar arguments it can be shown that the

constraint problem (2.9) has a global minimum.

Trivedi and Sigmon [TrSiBO] have independently shown

[ChTr79] that this design problem in general has a global

optimal solution although their objective function was

different and they used a closed queueing network model.

33

2.5 Solution of the Optimization Problem

n 1 -a n2
F(R,X,Y,A) = r 0 1 + r rf 1 +

i=l
A0 (r 0 + r xi., Yi - 1)

i=l

n,+n 2 -a
+ r Ai.,(ri. 1 +µxi. 1 Yi - 1)

i=n,+1

N -1
+ A'(1 I: Xi Yi - 1)

So i=l
(2.14)

Differentiating with respect to R, X, Y and A respectively

and equating to zero, we obtain,

li_ = (-1) r 0 1 + Aoro = 0
bro

bF = (-1) r; 1 + Airi = O; i = 1, 2, •.• , n 2

?>r i

-a -,
(-a)µAoXi Yi+ A' Xi.1 Yi.1 = 0;

So
i = 1, 2, ... ,

-a -,
(-a)µAi.1 x; Yi + A1 x;., Yi. 1 = 0;

So
i = n 1+1, ••• , n,+n 2

--a --~ = µAoXi., Yi + (-1)A' Xi Yi = 0;
"by i So

i = 1 , 2, ... , n ,
-a --µAi . 1 Xi. 1 Yi + <-,>~ x; Yi = O;

So
i = n 1 + 1, ... , n 1+n 2

n 1 -a
~F = r 0 + r µ xi.1 Yi - 1 = 0
bAo i=l

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2. 20)

(2.21)

34

-a
= ri., + P xi., y; - 1 = 0

(2.22)

N --r xi Yi -
5o° i=l

= 0 (2.23)

n, -a n 1+n 2 -a
Define fO : >..o r p X; . 1 Yi + r >.. i . , p X; . 1 y; {2.24)

i=1 i=n 1 +1

60 = rc1 {2.25)

6i = r;, i = 1 , • • • I n2 {2.26)

-a
6 1 ; = >..o p Xi. 1 Yi I fO

i = 1 I 2 , • ■ • , n, (2.27)
-a

>..;. 1 p X i . 1 Yi I f0

i = n 1 + 1 , ... , n 1 +n 2 (2.28)

620= >..o ro (2.29)

62 i = >.. i r i i = 1 I 2, ... , n2 {2.30)

--6 3; = A. '
SofO

x; Yi i = , , 2, . . . ' n 1+n 2 {2.31)

Now clearly,

n 1 +n 2
r 61;

i=1
= {normality) {2.32)

{2.15) => { -1) 60 + 620 = 0 (2.33)

(2.16) => (- 1) 6; + 62i = 0 i = 1 , 2, . . . , n2 (2.34)

(2.17) and (2.18) => (-a) 6 1 i + 6 3 i . 1 = 0

i=2, . . . ' n 1 +n 2 (2.35)

35

(2.19) and (2.20) => 6,i + <-,> 63i = 0

i=l, 2, ••• , n 1 +n 2 (2.36)

Solving (2.32), (2.35), and (2.36) simultaneously, we

obtain

N-i
6,i = (o,) ai -1

N
(a,) -

i = 1, 2, ••• , n, + n 2 (2.37)

Now in order to obtain optimal values for x;'s and y;'s we

first obtain values for £ 0 and ~;•s.

Raising (2.27) and (2.28) to the power 6 11 and (2.31)

to the power 6 31 for i = 1, 2, ... , n 1 + n 2 respectively,

and then multiplying we obtain:

n 1+n 2
I: 61 i n2 bi

(f O) 1 =
an,

~o n ~ i C (2.38)

n,
where an, = I: 6 1 i

i=1

bi = 6 1 ; ♦ 1 ,

C

i=1

i =

X ,.

1, 2,

n 1 +n 2
n

i=1

. . . , n2

From (2.21), (2.25), (2,27), (2.29), and (2.33)

Ao = (2 f O a 111 + v' 4 f 0 an, + 1) / 2

and from (2.22), (2.26), (2,28), (2.30), and (2.34)

Ai = (2 £ 0 b; + 1 + v 4 t 0 bi + 1) / 2

Substituting (2.39) and (2.40) in (2.38)

a ,,
2 f O a "', + 1 + v 4 f O a n, + 1) '

n 2 .---,,--,,..,.....-,---- b ;
n (2 £ 0 bi + 1 + ✓ 4 f 0 b; + 1 > / 2

i = 1

36

(2.39)

{2.4,0)

(2.41)

Substituting the values of £ 0 in (2.39) and (2.40) we

obtain values for the >-.i's • •
From (2.28), (2.31), (2.25) and (2.36)

-- --x; Yi= (o-) x;., y;.,

(2.42)

-o -o
Xi., Yi = (o,> x; Yi.,

l = 1, 2, ••• , n,-1

-o -o
>--o X t\-1 • Y11 1 = Co,) >-. 1 X ti, Y tit 1

-o -o
>-. ; . , X 1 . 1 Yi = (o,) Ai . , + , Xi Yi ♦ 1

i = n 1 + 1 , ... , n 1 +n 2 -1 (2.43)

From (2.42) and (2.43)

GI -(,+1)
(.!..i__) Co,) i = 1, 2, ••• , n 1 -1

X 1 • 1

37

). ; • 1

(2.44)

Taking log

a Z i . 1 = K + (1+a) z ; - z ; + 1

i = 1 , 2, . . . , n,-1

a Z 1. 1 = K + (1+a) z; - Z i + 1 + h;. 1

i = n , , • • • I n 1 +n 2 -1 (2.45)

where z; = log x;; a= aJ;

Adding (2.45) for i = 1, 2, ... , n 1 +n 2 -1

N-1 N-1 N- 1
I a z;., = K(N-1) + (1+a) I

N-1
z i - I

i=1
z;. 1 + I h;. 1

i=1 i=1 i=n 1 (2.46)

Simplifying (2.46)

a z O = k (N-1) + z 1 + a z ,.._ 1 - z"' + L (2.47}

N-1 n 2 -1
where L = I hi.n,= I hi= J(log >.. 0 - log >..nl_

i=n 1 i=O

.
Also multiplying (2.45) by (1/a 1) and then adding for i =
1, 2, ••• , N-1

N N- 1 i N
=> a Zo = K I a + a z 1 + a z 1 • 1 - a z 1 + M (2.48)

l-=-o
N n 2 -1 n,+i n 2-1 n2-i

where M = a I hi I a = I hi a
i=O i=O

38

From (2.47) and (2.48) (taking z 0 = 0)

N N-1 i
0 = K [(N- 1) - I a

i=l
] + (1-a)z1 - (1-a)zN + (L-M)

=> z 1 = [-1- - _B__ 7 K + 1 -a z 1 + L-M
1 -a ~ T=a'-4 ~

Again from (2.44) it can be shown that

z; = l - (1-a 1) N K + 1-a 1 z N

[1 - a (1 - a) (1 -a "') J ~
+ 1-a 1

1-a [L-M tJ
1-a

i = 1 ,

Similarly it can be shown that

Z i = l -
[,-a

+ 1 -a 1

1-a
L-M
[~

i-n, . .
+ r h. a 1 -J

. 0 J J=

i = n 1 , ••• , N-1;

(2.49)

(2.50a)

(2.50b)

Hence all z;'s can be computed using (2.50a) and (2.50b).

From (2.37)

1/1
=> Yi = (Xi/So 6 1 i) i = 1, 2, ••• , n; (2.51)

Hence knowing all x;'s all y;'s can be computed from

(2.51).

If we substitute µ = 0 in the expression for the

steady state residence time (2.9) of a multiprogrammed

system, we obtain the expression for the uniprogrammed

system. Intuitively also, the number of jobs in the system

39

is reduced as the arrival rate in an open network

decreases. As a result, the interaction among the jobs

also goes down. In the limiting case, as the arrival rate

tends to zero, the mean response time coincides with that

of the uniprogrammed case. Now letting ~ = 0 in (2.50a)

and (2.50b) we obtain,
.

log xi = [i
1-a

(1-a 1)N
(1 - a) (1 - a 'R) J

K

+ 1 -a 1 1 og x "';
~

i = 1, 2, ••• , N.

This is the same result obtained by Chow [Chow74].

The following example illustrates how the optimal solution

for a multiprogrammed environment approaches the ones for a

uniprogrammed environment as~ tends to zero.

Example

For the case N = 4, n, = n 2 = 2, and a=, ~ 1, the

expression for optimal x;'s are

)._ 0 · S

[T,]

[~ ~] 2

)._ 2 · S [T,]

Taking x 4 = 10 8 and S0 = 4 * 10 10 , (the actual units

depend upon the normalization factors used in equations

(2.2) and (2.3)) the values of x 1's are given in Table 1

for different values of~- The values of the speeds of the

40

memory hierarchy are obtained by dividing the values of x

in Table 1 by 10 10 • Thus for~= 0, the speeds for M 1 , M2 ,

M3 , and M• are 10ns, ,~s, 1oo~s and 10ms, respectively.

~ X 1 X2 X3

100 100.08 10031 1003905
1000 100.77 1 031 3 1039305

10000 107.24 13224 1418069

0 100.00 10000 1000000

Table 2. 1

Ootimal Storage Sizes for N=4, x~=10 8 , Sc=4*10 10
, •o=6=1

The values of x's for~= 0 are the ones obtained by

Chow for a uniprogrammed system.

From the data gathered from an Amdhal 470 v/6 model II

running the Michigan Terminal System, we estimate that

w ~ 5 request/sec. in a moderately heavy load and Po,

which differs widely from process to process, is in the

range of 1/1000 to 1/10,000. Hence ~(=wp 0 } = 10,000 is not

unreasonable. From Rege's empirical data [Rege76], o is

roughly equal to 1 and the storage unit K1 is about 200

bytes. Thus the optimal solution for~= 10,000 (Table 1}

is x 1 ~ 21K bytes, x 2 ~ 2.6M bytes, x 3 ~ 280 M bytes and

x. ~ 20 B bytes. If the unit of cost is 0.00055¢ 2 , S0 will

be approximately $200,000.

41

Because of the closed form results we are able to make

the following important observations. From equations

(2.50a) and (2.50b) we find that the optimal sizes of the

various levels of memory are independent of the given

system cost constraint 5 0 • An intuitive explanation lies

in the often cited observation that about 10% of the memory

is accessed 90% of the time [Welc78]. Thus, after a

certain point, the miss-ratio will decrease only marginally

with an increase in memory size. Thus one can conclude

that once each level in the hierarchy has the optimal size

given by (2.50a) and (2.50b), any additional money should

be invested in acquiring faster memory rather than more

memory. On the other hand, the optimal sizes of memory

hierarchy is rather sensitive to the miss-ratio parameter

o. The smaller the value of o in (2.2) (and hence the

smaller the values of a, K, and Min (2.50a) and (2.S0b))

the larger the values of the x;'s.

Furthermore, we observe that there is a considerable

difference between uniprogrammed and multiprogrammed

results when ~ is large (i.e., when arrival rate of

requests is large and/or the exit probability of a process

is small which implies a large number of active process

competing for limited system resources simultaneously).

2 The cost unit is
assuming , = 1.
available data, it is
to Chow's [Chow74].

obtained by using 1979 DEC prices .and
Although J = 1 gives a poor fit of the

used so that the results can be compared

42

Finally, Chow [Chow74] reported that in a

uniprogrammed system, the ratios of the capacities as well

as the speeds of adjacent levels of memory for the optimal

configuration are constant if a,= 1. This constancy in

the ratio of capacities was also emperically observed (see

reference 11 in [Chow74]). Equations (2.50a) and (2.50b)

show that in a multiprogrammed environment this is true for

the first n 1 levels and for the next n 2 levels separately.

The results presented in this chapter are not intended

to be used directly by the designers and evaluators in the
• final configuration. This is because memory may not be

available with the capacity/speed characteristics computed.

Also some of the assumptions used in the formulation and

the solution of the problem may not be satisfied in

practice. However, they are useful as guidelines and as an

configuration in an iterative design technique (see for

example, chapter 8 of [Ferr78]).

43

CHAPTER 3

ADAPTIVE LOAD CONTROL

3.1 Introduction and Review

One of the principle ideas behind multiprogramming is

to make more effective use of the system resources, many of

which can be simultaneously utilized. However, in order to

avoid excessive interactions among the competing jobs,

which will result in general degradation of system

performance, the number and composition of jobs in a

multiprogramming set should be carefully controlled. The

policy that controls the flow of jobs in a multiprogramming

system is called load control policy. Therefore, in order

to p~ovide an acceptable level of service, most

multiprogramming computer systems employ some form of load

control policy.

Load

maintaining

queues and

control policies are typically built around

two sets of queues, often called the eligible

the multiprogramming queues. Jobs in the

44

eligible queues must wait until the control policy decides

(depending upon the system state or some other criteria) to

move them to the multiprogramming queues. Only jobs in the

multiprogramming queues are allowed to actively share the

system's resources.

In a large computer installation or a distributed

computing environment, generally a large number of jobs

with different characteristics and resource demands are

executing at the same time. The number of jobs competing

for limited system resources changes from time to time.

Their resource demands also change with time. For such a

system , a static control policy (one which is insensitive

to job characteristics and job-mix) cannot be expected to

give good performance at all times.

There are various load control mechanisms available

which are optimal under various conditions. The optimality

of a control mechanism is always relative to the objective

function selected (i.e., the performance measure) and a set

of constraints. A control mechanism that is optimal with

respect to one performance measure may not be optimal with

respect to others. Furthermore, a control mechanism may or

may not be realizable because of the underlying

assumptions. The one that is unrealizable cannot be

implemented in practice but can be used as a standard for

comparison.

45

A natural load control mechanism, particularly for

paging systems, is accomplished by controlling the degree

of multiprogramming. Previous work directed towards this

end is primarily represented by the development of the

working set policy 1 ([Denn68b],[Denn70],[Denn71],[RoDu73]).

More recently, efforts to optimize the system work capacity

lie mainly in keeping some measure related to program

behaviour (usually paging behaviour) within some

predetermined bounds ([DKLP76],[DeKh76],[LePo76],[GrDe77]).

The 50% criterion [LePo76] ,for example, aims at maintaining

the utilization of the paging device to around 0.5. The

L=S criterion [DeKh76) proposes to keep the system lifetime

approximately equal to that of the page swap time. The

Knee criterion ([DKLP76],[GrDe77]) suggests that the mean

resident set of each process should be maintained at the

value associated with the primary knee 2 of its life-time

function, where life time is defined to be the mean virtual

time between two successive page faults [DKLP76). Though

the most robust of the three, the Knee criterion also

involves considerable amount of overhead.

The above mentioned criteria are not based on

According to this policy, the number of jobs allowed in the
multiprogramming queue is limited such that the sum of their
working sets can be accomodated in main memory. The working set
W(t,T) of a process at any time t, with window size T, is the
set of distinct pages referenced by the process during the most
recent time interval of length T.
2 The point where the curve of the system life time vs number
of active jobs has maximum slope.

46

mathematical models and are not proven optimal. There are

conditions under which they may perform poorly. If the

system is execution bound, the 50% criterion does not work

well. If the system is both execution and l/0 bound, the

L=S criterion does not give good results. These criteria

mainly aim at increasing the throughput rate by loading the

system up to the point when the measured indicator suggests

that further increase in system load may cause "thrashing"

[Denn68a]. The methods are applicable only to paging

systems. Furthermore, for interactive systems and combined

batch-interactive systems, one is interested not only in

maximizing the system throughput rate but also in

guaranteeing good response times to the interactive jobs

(possibly at the expense of the batch jobs).

Landwehr [Land76] studied a combined batch-interactive

system and proposed a scheme to activate batch jobs

depending on the terminal load. The emphasis of the study,

however, was on model formulation and its validation.

There was no attempt to prevent the system from saturation

or to optimize performance.

Hine et al. [HiMT79] studied the problem from a

slightly different viewpoint. Their goal was to control

the main memory allocation for each class of job in order

to provide different response time to each class while

maximizing the CPU- utilization. They employed a

47

mathematical model but optimization was achieved by an

exhaustive search technique. A heuristic extension of the

method was also given which provided good but not optimal

results. Moreover, their model assumes that the

distribution of service time for various service centres

and the values of various system parameters are known.

In the following example we explain, using a simple

queueing network model, how some of the schemes discussed

above, which employ static criteria for saturation

estimation, may not produce satisfactory results under

various load conditions.

Example 3.1

Consider a simple closed queueing network model. In

order to reduce the complexity of the model so that a

graphical explanation can be given we consider a system

having only one I/0 unit and a CPU.

48

Figure ~-l Simple Central Server Model

The response time for such a system with N jobs is

given by [CoDe73]

N+l
R(a,p 1 ,P 2 ,N) = 1 • __ 1_-~<~P-z~/~'~v~1~>-

ap1 N+l
P2/,p1-(P2/,p1)

N

(3 • 1)

where, Pi and p 2 are the mean service rates of the CPU and

the I/0 device respectively and a(=1-,> is the probability

that a job leaves the system after being served by the CPU.

The equation of the asymptote of R (i.e., as N--> c:::,,o)

can be shown to be

R = (1/op 1) * N. (3.2)

As the system load increases the slope of the response

time vs system load curve also increases. This increase is

initially small. A system is considered to be saturated

when the slope becomes significant. The saturation point

49

N* of the system can be approximated by the point of.

intersection of the asymptote with the horizontal line R(l)

(see Figure 3.2) and is given by

R

l
I - -;

I
I

I

N* -->N

Figure 3.2 Saturation point

Thus the system is saturated when the condition

holds.

(3. 3)

(3.4)

50

N*

l

o, 02
-->o

Figure l•l Under-saturated and Over-saturated Regions

In order to show pictorially that static schemes at

times leave the system either underutilized or

supersaturated, we shall assume that the system parameters

~, and ~2 are constant.

Figure 3.3 is a graph of equation (3.3), relating the

remaining system parameters N* and 0(=1-,). Thus , if the

operating point of the system lies within the area enclosed

between the point AOB, the system is not saturated.

The values of parameters like N* or o are fixed in

most control schemes. Whenever the values of the observed

parameters exceeds some predetermined fixed value, normally

obtained empirically, the system is assumed to be

saturated. If the control scheme uses (N 1 ,o 1) as the

saturation point then this scheme will leave the system

51

under-utilized because it cannot operate in the unsaturated

region S 1 U S2 • If the control parameters are (N 2 ,o 2) then

the system is allowed to operate in the saturated region

S3.

MTS has five parameters which control the system load.

If any one of the observed values exceeds some

precalculated fixed value the system is considered to be

saturated (for more detail see [Chan79]). If we consider

this in two dimensions only

parameters), then the analogy of

earlier can be applied directly.

(i • e • ,

Figure

only

3.3

two load

discussed

The control algorithm described by Landwehr [Land76]

is also insensitive to variations in job characteristics

because the values of the break points bi's (defined in the

scheme [Land76]) are fixed and do not depend on the

instantaneous workload characteristics.

The control scheme described by Hine et al. [HiMT79]

characterizes jobs only by their page fault rate. The

scheme does not take into consideration the variation in

the I/0 requirements of the jobs. Moreover, the use of

life-time function gives only a global picture of the

system paging characteristics and not the local behaviour.

It should now be clear that a control policy which

52

does not base its decision on job characteristics and

instantataneous system conditions will not perform

optimally under all circumstances. We need an adaptive

control policy which is able to dynamically recompute the

system saturation point as the characteristics of the

workload change. From among the waiting jobs, several sets

of job-mix can be selected to attain the calculated

saturation point. Therefore the scheme should also be able

to select the one that optimizes some system performance

measure(s}. Listed below are some recent work in adaptive

load control policy.

Badel and Leroudier [BaLe78] have proposed an adaptive

load control policy by introducing a system "dilatation"

function. The system "dilatation" function is defined as

the ratio of the real execution time of N programs running

one at a time to the real execution time of the N programs

running simultaneously (i.e., degree of multiprogramming

equal to N). They observe that the "dilatation" function

attains its maximum value when certain principles are

satisfied. The principles are equivalent to L=S and 50%

criteria. The implementation of their scheme is, in fact,

implementation of these criteria. We shall see in chapter

5 that the schemes developed in this thesis are better than

these criteria.

Schonbach [SchoBO] describes a macro scheduler for

53

high productivity. It is assumed that the "system balance"

point is already specified. Here, system balance is a

state in which various processor utilizations are at some

prespecified levels. The macro-scheduler then chooses,

from among the waiting jobs, a job-mix which maintains

system balance. The scheme does not include external

priorities and is applicable only to non-paged systems.

Lo [LoB0] describes a load control policy using

stochastic control theory. The policy is shown to give

optimal results. The main weakness of the scheme is that

its implementation requires the job parameter values to be

known. It also makes the usual queueing theory

assumptions, such as exponential interarrival and service

time distributions which may not be satisfied in practice.

With the exception of Lo's and Schonbach's schemes,

most of the control policies mentioned above are not based

on mathematical models and are not expected to give optimal

results in all situations. On the other hand, Lo and

Schonbach make such strong assumptions in their formulation

that it is impracticable and sometimes impossible to meet

those assumptions in practice.

In the next three sections we develop a dynamic load

control scheme. First, we derive an expression for the

system saturation point. The expression depends upon

54

parameters that are directly measurable from the system,

thereby reflecting instantaneous change in the state of the

system. The control policy computes the optimal number of

jobs that should be activated from each class so that the

system is neither under-utilized nor saturated.

~ I .
i

55

3.2 System Model

We here describe a queueing network model of a

computer system. Figure 3.4 is a diagram of such a network

which is widely cited in the literature.

Figure 3.4 General Central Server Model

The network consists of M service centres -- a CPU, a

paging device, and (M-2) I/0 units. Each service centre

consists of a server and an associated queue. · Upon

arrival, a job waits in the queue if the server is busy.

56

When a job completes its service at the paging device or

any of the I/0 units, it always rejoins the CPU queue.

When a job finishes its service at the CPU, it either

leaves the system or visits one of the other service

centres. A new job always joins the CPU queue.

This model assumes that no job overlaps its

requirement of different devices i.e. , no job is being

served by more than one service centre at the same time.

This assumption may not hold in practice. However the

error introduced is generally not significant [Buze78b].

We shall assume, for the time being, that all jobs are

identical in their resource demand. Specifically, the

branching frequencies from the CPU to the paging device or

one of the I/0 devices or out of the system is same for all

jobs. Also the mean service rates at various centres are

same for all jobs. We shall relax these assumptions in

Chapter 4 where we analyze a multi-class model.

We shall use operational analysis as introduced by

Denning and Buzen [DeBu78] to study such a system. The

main reason for using operational analysis rather than

classical queueing ·theory is that we do not need to

determine the distribution of the system parameters

required by classical queueing theory. The values of the

system parameters can be directly measured from the system

57

or derived from the measured quantites. Moreover, the

assumptions made to make the mathematics tractable can be

verified by the analyst.

3.3 Saturation Estimation

Most load control mechanisms are based on some system

saturation definition. Various system saturation

definitions have been proposed ([Klei68],[Ferr78],[DeBu78].

Invariably the system is considered to be saturated at the

point the response time starts to rise rapidly with an

increase in some system load index. Under the assumption

that all jobs are identical in their resource demands, the

number of active jobs or the degree of multiprogramming can

be considered to be a measure of system load. A typical

response time curve against degree of multiprogramming is

shown in Figure 3.3 which is shown again in Figure 3.5 for

convenience.

R

l

-I

I ,

I
I

--> N

Figure 3.5 Satu r ation Point

58

Badel et al. [BaLP75] propose to use the "dilatation"

function as a measure of system load. Badel and Leroudier

[BaLe78] later used this function in various definitions of

saturation critera. For Kleinrock [Klei68], a system is

considered to be saturated at the intersection of the

asymptote of the normalized mean response time curve vs the

number of active terminals and the horizontal line

corresponding to when there is only one job in the system

(see Figure 3.5). If the system is not allowed to get

saturated according to this definition, the mean response

time of the active jobs does not exceed an acceptable

level. However, it is implicitly assumed that the program

population is homogeneous and the system is in a stationary

state. In the following analysis, the system saturation is

computed at the end of each small interval (usually a few

seconds long) during which the stationary assumption is

more reasonable. One may argue that this may lead to end

effects (i.e., discontinuity at the initial and terminal

point of the observation interval). The end-effects,

however, do not affect the validity of operational laws

since these laws can be shown to be internally consistent

and valid for all initial and terminal states so long as

the operational assumptions are satisfied [Buze78b]. As

well, since we assume all jobs to have identical resource

demands, the homogeneity condition is satisfied. We shall

now find an expression for the system saturation point.

59

Let S 1 , S 2 , ••• , S~be the M service centres as shown

in Figure 3.4. S 1 is the CPU, S 2 is the paging device and

S 3 , ••• , S~ are the various I/0 units.

The following are observed quantities from the system.

They are mean values within an observation period and, as

such, are functions of time which is omitted for clarity.

T observation period

x; observed number of completions at centre

s; during T

Bi the total amount of time during which the

service centres; is busy during T

c; observed number of requests for centre

s; during T

q; request frequency, the fraction of jobs

proceeding to service centre Si after

completing a service request at the

CPU(= Ci/X,), i¢1.

We now compute the following operational quantities.

Mean service rate of servEr Si = ~, = Xi/Bi

System throughput rate T = (X 1 • q 1) / T

= (X 1 /B 1) (B 1 /T)

Utilization of servers; =Pi= B; / T

60

(3.5)

= (B 1/X 1)(Xi/X 1 }(X 1 /B 1)(B 1 /T)

Using the job flow balance assumption x; = c; i¢1

(i.e., the number of requests for service at centres;

during an interval is equal to the number of departures

from the centre) we obtain:

p, = p , . (" 1 /";) qi; i¢1 (3 . 6)

M M
=> I: p ; = p 1 + I: p 1 (.,,/,,;) q;

i=l i=2

If there is one and only one job in the system it can

· be present at only one service centre. Therefore

M
I: pi = 1

i=1

Which implies that the CPU utilization with exactly one job

in the system is given by:

-1
(,,,/,,;) q; + ,] (3. 7)

Using Little's Law, the mean response time of the

system with N jobs is given by:

61

R(N) = N / T

Using (3 • 5)

R(N) = N/(,,,g,p,)

= N g;/(,,,p;g;) i:it1 (3. 8)

From (3 . 7)

[
M ,] R (1) = (1/,,,g,) r (,,,/,,;) g; + (3 . 9)

i=1

The equation of the asymptote (i.e., as N approaches

infinity) is more difficult to derive. Let us first

consider the simple case of a non-paging system. The

asymptote occurs at the point when the utilization of a

service centre (i* say) reaches unity (i.e., it becomes the

first bottleneck of the system).

From Buzen's analysis [Buze71], i* is that service

centre which has the highest utilization in the interval

(note that i* may vary from interval to interval as the

workload characteristics change). If the CPU is the

bottleneck, the equation of the asymptote is simply:

(3.10)

Otherwise, using equation (3.8) and noting that_., as well

as the ratio (g 1/g 1) remains unchanged as N increases, the

equation of the asymptote is given by:

62

R(N) I: N q;* / (,,;*qd ' i* ¢ 1 (3.11)

For a paging system the eventual bottleneck as N approachs

infinity must be the paging device. It need not however,

be the first device to be saturated.

Case(i) The paging device is not the first to saturate.

In this case, as the system is saturated before the

paging device is fully utilized, the asymptote should be

computed based on the first device to reach saturation.

Therefore equation (3.11) is still valid (see Figure 3.6)

Case(ii)

R

I

R{ 1)+---=- ----

N*

1
I
I

I
I

-->N

Figure 3.6 System Bottleneck

The paging device is first to saturate

The ratio gj*/q 1 will continue to increase as N

increases and will approach infinity. A realistic approach

63

consistent with the one used in Case(i) is to use the

values of q;*/q, corresponding to the point the paging

device first gets fully utilized. However, this ratio is

not easy to estimate. The observed values of q;*/q 1 can be

used if the system is close to saturation (i.e., N* N,

see below). Otherwise the saturation load will be

under-estimated. This is not a problem when the system is

lightly loaded. As can be seen subsequently, when the

system workload becomes heavy, the control policy will

adjust itself and the observed ~atio will eventually reach

the desired value. Thus the saturation load N* i.e., the

point of intersection of equations (3.9) and (3.10) is

given by :

M
N* = 1 + ~ (/ ') q· '- ,,, ,,, 1 (3.12)

i=2

if the CPU is the bottleneck. Otherwise it is given by

equation (3.13) as the point of intersection of (3.9) and

(3.11):

N* = (" i * /" 1 qi*) [~ (" 1 /" i) qi + 1]
i=2

(3.13)

Thus now we have equations (3.12) and (3.13) as

estimates of system saturation point under the assumptions

made earlier. Both equations (3.12) and (3.11) can also be

derived using classical queueing theory with exponential

distributions of service times.

64

Most proposed schemes assume a fixed saturation load.

The Michigan Terminal System for example computes the

values of five factors at fixed intervals. If one or more

exceeds the corresponding predetermined static saturation

value, the system is assumed to be saturated. For the 50%

criterion, the saturation point corresponds to the load

beyond which the utilization of the paging device will

exceed 0.5+c, where c is some positive constant. The L=S

criterion to a certain extent assumes the system to be

saturated when the mean system life time is below the page

swap time, which is fixed for a given paging device.

Chanson [Chan79] has shown that the saturation load is

really a function of the characteristics of the current

workload and cannot be very well represented by some

constant measure. For the present model, these work load

characteristics are q; and Pi, i= 1, 2, ••. , M. Any model

that does not take these into consideration will sometimes

over-estimate and sometimes under-estimate the system

saturation load. The fact that on the average the

over-estimation is equal to the under-estimation provides

no comfort when the goal is to optimize performance at all

times.

Therefore the first criterion for load control is to

keep the system from saturation. For a multiprogrammed

paging computer system, the simplest way to accomplish this

65

is to keep the number of active jobs below N*, where N* is

given by equations (3.12) and (3.13). Since the system

throughput rate is a non-decreasing function of N before

the system saturates [Buze71], activating N* jobs whenever

possible will also maximize the system throughput.

Three cases have to be considered:

(i) the system is saturated (i.e., N > N*)

(ii) the system is under-utilized (i.e., N << N*)

(iii) the system is close to saturation but not yet

saturated.

Only case(iii) is of interest, because if the system

is under-utilized, it is unnecessary to apply any control

measure. Each job will be activated as soon as it arrives,

until the condition for case(iii) is reached. If the

system load is properly controlled, the system will attain

saturation infrequently and only for brief periods of time.

When the system is saturated, one simple control measure is

not to activate any more ~atch jobs until the system comes

out of saturation. If the system reaches saturation state

frequently and remains in this state for extended periods

of time, then it is highly probable that the hardware is

inadequate to handle the normal work load and the system

66

should be upgraded.

In the next section we consider a combined

batch-interactive system with the assumption that the batch

and terminal jobs are identical in their resource demands.

In a typical environment the terminal jobs have relatively

higher priority than the batch jobs. Therefore, their

waiting times should be a function of their relative

priority. Our objective is therefore, to maximize a

weighted sum of the waiting times , without saturating the

system.

\

1-! Optimal Selection

The combined batch-interactive

consideration is shown in Figure 3.7.

I

I
Terminal

I

I
Batch

I~----.

I Control

system

Subsystem

g
0

q
2

g
3

g
M

Figure 1-1 Load Control Model

67

under

System

I

I -I
g

1
XIT

I
I .

68

Upon arrival into the system, batch and interactive

jobs enter the control unit A and B, respectively, A

control policy then decides whether to admit any job from

the control units into the subsystem. Only those jobs

which are present in the subsystem are allowed to compete

for system resources. In the previous section we have

derived the maximu~ number of jobs N* that should be

allowed in the subsystem. Let:

N* be the maximum number of jobs that should

be allowed in the subsystem (obtained in

the previous section),

s, be the mean total interactive jobs in the

system (observed during the previous

interval),

S2 be the mean total batch jobs in the

system (observed during the previous

interval),

N, be the number of interactive jobs to be

maintained in the subsystem during the

next interval (to be calculated),

N2 be the number of batch jobs to be

maintained in the subsystem during the

next interval (to be calculated),

69

R be the mean response time of the subsystem

(not required in the final algorithm),

R1 : be the mean response time of

interactive jobs in the subsystem,

R2 be the mean response time of

batch jobs in the subsystem.

In order to keep the subsystem from saturation it is

required that

N1 + N2 ~ N*. (3.14)

We want to compute the optimal values for N1 and N2 •

Using Little's Law, the throughput rate for interactive

jobs is:

T, = (N, / R,). (3.15)

Similarly the throughput rate for batch jobs is:

70

(3.16)

Under the assumption that the terminal and batch jobs

are identical in their resource demands, the values R1 and

R2 will be the same and will not change as long as the

equality is satisfied in condition (3.14), irrespective of

the values of N1 and N2 •

Under the job flow balance assumption [DeBu78] (which

should be verified) interactive and batch jobs will be

entering the subsystem at the rates T 1 and T2 respectively.

Therefore, on the average, an interactive job enters the

system every 1/T, sec. It follows that on the average, the

waiting time in the control unit for interactive jobs

(using Little's Law) is given by:

W1 = (5 1 - N,) / T 1 (3.17)

Similarly the waiting time in the batch control unit is

given by:

(3.18)

In a real system interactive jobs are normally given

higher priority compared to batch jobs. Let c, and C2 be

the weights associated with the interactive and the batch

jobs ·respectively. Our objective is to minimize a weighted

sum of the waiting times in the control unit.

the optimization problem becomes:

Min z - Min <c,w, + C2W2)

subject to N, + N2 s N*

0 s N, s 5 1

0 s N2 s 52

71

.Therefore

(3.19)

Using (3.15), (3.16), (3.17) and (3.18), the above

problem (3.19) can be shown to be equivalent ~o

Min (C1 5,/N, + C252/N2)

subject to N1 + N2 s N*

0 S N 1 S 5 1

0 S N2 S 52

For the time being we shall not

(3.20)

consider the

constraints O s N1 s 5 1 and Os N2 s 52 (i.e., we assume

that there are enough jobs waiting in the interactive and

batch control queues).

We shall use the Lagrange multiplier method to solve

the problem (3.20) (without extra constraints). The

Lagrangian equation of the problem is:

72

L(N,~) = C1S1/N1 + C2S2/N2

+ ~(N 1 /N* + N2 /N* - 1) (3.21)

The optimal values of N1 and N2 from (3.21) are:

(3.32)

and

(3.23)

Let us look at the problem (3.20) geometrically with

the constraints Os N1 ss, and Os N2 s S 2 active. Figure

3.9 is a diagram of the problem (3.20) showing the feasible

region and the objective function for its various values.

N2

l

Figure 3.8 Active Constraints

73

From the above graph, in the absence of the

constraints Os N1 s s, and Os N2 s S2 , N1* and N2 * are

the optimal values.

Case ill

--> N1

Figure 3.9 Inactive Constraint

Clearly the optimal values for N1 is

N,' = S 1

and N2 ' = N* - N,', which gives maximum value of

the objective function satisfying the constraints.

74

Case (ii)

As in Case(i) it can be seen that an optimum value for

and N1 ' = N* - N2 ', which gives maximum value of

the objective function satisfying the constraints.

Case (iii) N1 * > S 1

It can be easily seen that N2 ' = S2 and N1 ' = S 1 will give

the optimal solution in tnis case.

The final control policy, which we shall call SELF

(standing for Saturation Estimation and Load-control with - -
[eed-back), works as follows. The values N1 * and N2 * are

computed from the equations (3.22} and (3.23} or from one

of the three cases as described above. During the

observation period, whenever an interactive job leaves the

subsystem, an interactive job will be injected into the

subsystem provided the interactive control queue is

non-empty. When a new interactive job arrives, it enters

the subsystem immediately provided (i) there is no waiting

interactive job, and (ii) the number of interactive jobs in

the subsystem is less than N~*· Otherwise, it waits in the

interactive control queue.

75

The batch control works in a similar fashion.

In the implementation of SELF the values of the

parameters are estimated on the basis of their past values.

In order to reduce the error in the estimation, we use a

special technique from time-series analysis [Kend76],

called exponential smoothing. This technique can be

described as follows. Let Pi be the expected value of the

parameter for the time interval [i, i+1]. Let Xi be the

observea value of the parameter at the time t. Pi can be

expressed as

(3.25)

where the exponential weight factor I is a constant between

zero ana one. Similarly

=>

oc
Pi.1 = (1-,) t ,j Xi-j-1

j=O

Pi (3.26)

Now, let the error maae at time (i-1) in predicting x; be

E; , then,

Ei = Xi - P;.,. (3.27)

76

Substituting in equation (3.26)

Pi = Xi - ' E1

(3.28)

The remaining problem is to find a proper value of,.

If the error ti is sufficiently small, equation (3.28)

will be satisfied for almost any value of,, so that we can

use the value of, from the previous int~rval. If Ei is

large, we recompute a value for, by minimizing the sum of

squares of the errors given by:

- "O DO

I: { X . - (l - ,) I: , "X j .• l'· 1 } 2 •

j=i J ka:O
(3.29)

In practice, the summation in equation(3.29) does not

have to involve many terms (say K) before ,~ (0<,~1)

approaches zero. Moreover, , need not be very accurate,

and standard techniques exist for its efficient

computation.

From (3.28), it can be seen that not all previous

values of X are needed to compute the expected value of X

for the next interval. The future value can be computed

from the previous predicted values and the present error.

However, several immediate past values of X may be needed

in the computation of,. The effect of, on the expected

77

error is discussed in Chapter 5.

So far we have assumed that all the jobs are

statistically identical in their characteristics. In the

next chapter we shall relax this condition and develop a

control scheme that makes an optimal selection by taking

into consideration the job characteristics along with their

external priorities.

78

CHAPTER 4

MULTICLASS CONTROL

4.1 Introduction

In a typical general purpose computer system there

exist various classes of jobs as far as their resource

demand characteristics are concerned. In such an

environment the natural approach for an analyst is to use a

multiclass model of the system that would treat the

different classes of jobs differently ([Rode79], [Bard79],

[ReLaBO]). The jobs within a class, however, are supposed

to have identical resource demands. In this analysis, it

is assumed that the jobs do not change class during their

stay in the system. The number of job classes considered

is finite. Moreover, it is assumed that when a job arrives

at the system it is possible to classify it into one of the

job classes. An example of a primitive method of job

classification is to compute the job class based on card

parameters for batch jobs (e.g., CPU time limit, user-given

79

job . priority, user IDs etc.) and on the command type for

terminal jobs (e.g., edit, compile, copy, etc.,). However,

it is not assumed that the resource demands of a job in a

particular class are known. The resource demands of

various classes of jobs are continuously being measured,

thereby preserving the dynamic nature of the control.

4.2 Multiclass Saturation Estimation

In a non-paging system with jobs that are identical in

their resource demands, the branching frequencies, from one

service centre to another, are independent of the number of

jobs present in the system. They depend mainly on the job

characteristics. On the other hand, in a multiclass

environment, the branching frequencies are not only

dependent upon the total number of jobs but also on the

number of jobs present in each class (specifically, the

ratio of the number of jobs in each class).

Thus load control in such a system consists of two

mutually dependent problems as follows:

(a) compute an optimal ratio corresponding to the

number of jobs that should be selected from each

class,

(b) compute the saturation point of the system for

80

the ratio obtained in (a).

The optimality in (a) is subject to a constraint

defined by {b) and the saturation point obtained in (b)

must satisfy the ratio obtained in {a). Thus the two

problems {a) and {b) are dependent upon each other and we

must seek a simultaneous solution. In a number of studies,

a solution of one of the problems has been obtained for a

fixed solution of the other problem. For example,

Schonbach [SchoBO] solves the problem (a) for the case in

which system saturation is already defined and fixed.

In the rest of this section we first derive the

saturation load for a multiclass system and then describe

the multiclass control procedure. The following notations

are used:

K

M

s (j)

N

n{i,j,N)

A (j) .

total number of job classes,

total number of service centres,

number of class j jobs in the subsystem

the system state vector(s 1 , s 2 , ••• , s~),

number of class j jobs at

centre i for a given system state N,

total number of jobs at centre i

for a given system state~,

throughput rate of class j jobs

w(i,j)

R (j)

d(i,j)

S(j)

" 1

q(i,j)

g i (N)

C (j)

: mean time a class j job spends at

service centre i during its stay in the

system (including queue wait and

service times),

. .

mean time spent in the multiprogramming

subsystem by class J jobs,

mean total service demand of class j

jobs at service centre i ,

mean total number of class j jobs in

the system,

mean service rate of service centre i,

normalized frequency of requests for

centre i by class j jobs (i.e., the

ratio of class j jobs joining centre

i after being serviced by the CPU to

the total number of class j job

completions at the CPU),

normalized frequency of requests for

centre i (i.e., the ratio of jobs

joining centre i after being serviced

by the CPU to the total number of

completions at the CPU),

weight for class j jobs.

It can be easily shown that g;(~; is given by:

81

Clearly M

K
= I

j=1

I qi(!i) =
i=1

M

n(1,j,N) g{i,j,N) / n,{N). - - -

K
I q(i,j,!) = 1 and

i=l
I n(l ,j,N) = n,(!)

j=1 -

82

(4. ,)

There are several methods to compute n(i,j,!) for a

given system state vector N ([Buze73],[ReKo76],[ReLa80]).

The drawback in most of these methods is that the overhead

involved is quite high. Since the aim here is to develop

an adaptive scheme, it is desirable to minimize the amount

of computation involved. Reiser and Lavenberg's [ReLaBO]

mean value analysis for example, can be used to compute

n(i,j,N). The method assumes that the service time of each

service centre is load-independent and has only one server.

According to their study the mean waiting time, the mean

throughput rate and the mean queue sizes for each class j

at service centre i are recursively given by:

w(i,j) = d(i,j) {1 + n;(N-e(j)))

M
= s(j) / I w{i,j)

i=1

n(i,j) = ~(j) w{i,j)

(4 . 2)

{ 4. 3)

{ 4 • 4)

83

where e(j) is the jth unit vector. Starting with the

initial condition n(i,j,N) = 0 and using equations (4.2),

(4.3) and (4.4) one can then obtain n(i,j,~). Their

arguments are based on the intuition that upon arrival at a

service centre, a job "sees" the system with itself removed

(i.e., one job less in the system). Little's Law is then

applied to the entire system and to each individual service

centre. This algorithm requires 2KM - R additions and

2KM + R multiplications/divisions per recursive step.

There are a total of s 1 .s 2 ••• s~ such steps. In a system

with a moderately large number · of classes and a large

number of jobs such a scheme might not be economically

feasible. Reiser and Lavenberg have extended their scheme

and have reduced it to the problem of solving a set of

non-linear equations.

For each centrer they introduced a correction term

E(i,j,r,N) such that

n (i , j ., ~ -e (r)) = n (i , j , ~) - E (i , j , r , ~) (4. 5)

with the assumption that

E(i,j,r,N) = 0 for 1 :¢ r

i.e., only the class with the customer removed is affected.

84

They also assumed that ,(i,j,i,N) is given by

(4.6)

where n;'(sj) is the mean number of class j jobs at the

service centre i with Sj class j customers.

parameters of the system are

di' (i,j) = d(i,j) n;(!) / n(i,j,!)

The modified

(4 . 7)

Using (4.5), the recursive equations (4.2), (4.3) and (4.5)

can be reduced to the set of non-linear equations

R
w(i,j) = d(i,j) (, + n ; - r E (r , j , i)) (4.8)

r=1

M
A (j) = s (j) I r w(i,j) (4.9)

i=1

n(i,j) = A(j) w(i,j) (4.10)

The equations (4.8), (4.9) and (4.10) along with (4.6)

can be solved simultaneously to obtain n(i,j,!). The

number of operations required by this procedure is

proportional to M. l!I, which is considerably less than the

original algorithm. In the implementation of the

multiclass control we use this extended version of their

scheme.

85

Once the n(i,j,~))'s are known for a given None can

compute g;(N) from equation (4.1). Following the same

arguments used in the case of a single class system, it can

be shown that the saturation vector N* of the system is

given by the relation

(4.11)

K
where IN*I = r s(j)*, q,*(~)=1 and i* is the device with

- j= 1

the highest utilization in the observation period.

Notice that N* is no more a single number as in the

case of a single class. Rather it is a vector and equation

(4.11) alone is not sufficient to uniquely determine~•.

This is why we need a second criterion for load control.

4.3 Multiclass Optimal Selection

The following different objectives are considered for

optimal selection.

(a) Compute the ratio that maximizes the system

throughput rate.

(b) Compute the ratio that takes into consideration

job priorities (i.e., some weights are associated

86

with each class of jobs) and minimizes a weighted

function of their waiting time.

Schonbach [SchoB0] solved the problem using (a). One

obvious problem with this approach (i.e., without

considering the job priorities) is that it may give

relatively higher priority to small jobs. In some cases

large jobs may have to wait indefinitely. Furthermore, it

usually leads to a dynamic programming problem which in

turn requires high overhead.

criterion (b).

Therefore, we shall use

For criterion (b) the optimization problem becomes

K
Min z _ Min { r c; w; }

i=1

K
subject tor s(i) s I N*I

i=1

where Wj is the waiting time for class j jobs in the

system.

Wj = R(j) + (S(j)-s(j)) / (s(j)/R(j)), j=1,2, ••• ,K.

Following arguments similar to the one in Chapter 3 it

can be shown that the solution of the problem is given by:

s(i)* = IN*I iC(i)S(i)R(i)
K
r ✓c (j) s < j } R c j >

j=1

i = 1, 2, ... , K. (4.12)

87

· Furthermore, it can be shown that _only (K-1) out of

the K relationships in (4.12) are linearly independent. In

order for the system not to be saturated, the s(i)'s must

satisfy (4.11). Therefore, there are K unknowns (the

s(i)'s) in R non-linear independent equations. A unique

solution therefore exists.
M

Note that R(j) = r w(i,j) whose value is obtained in in the
i~

computation of q;(~) in equation (4.1).

The multiclass control procedure, which we shall call

MULTI-SELF, can be summarized as follows:

Step 1.

Step 2.

Step 3.

During the observation period T, collect the

values of the parameters required for the

computations (i.e., the branching frequencies to

different service centres for different classes

of jobs: the average service rates of different

centres and the mean number of jobs in the system

for each class).

From the measured parameter values compute their

expected values for the next interval using

exponential smoothing.

Solve the system of non-linear equations (4.8)

through (4.12) simultaneously.

Step 4.

88

For each class i, maintain the number of jobs in

the subsystem to be s(i)* (if possible} during

the next observation period.

The next chapter describes a simulation study of the

performance of the two control schemes SELF and MULTI-SELF.

Their performances are compared to that of other existing

schemes.

•

89

CHAPTER 5

SIMULATION RESULTS AND ERROR ANALYSIS

5.1 Introduction

Throughout the development of the control schemes SELF

and MULTI-SELF presented in the last two chapters, a number

of assumptions have been made. These assumptions may not

be satisfied in practice. It is therefore desirable to

determine the accuracy of these models and to compare their

performance to those of some of the previous models.

Because of the lack of resources it was not possible

to implement the proposed schemes on a real system.

Instead, a general purpose event-driven simulator for a

central server model was developed. The schemes were then

implemented on this simulator to control the flow of jobs

through the simulated system. The workload that drives the

simulator does not make the same assumptions that were made

in the development of SELF and MULTI-SELF. For example,

90

the jobs are not identical, and their characteristics may

change from time to time. Also it may not be possible to

maintain the computed degree of multiprogramming during

every observation interval and the job flow balance might

not be satisfied during every observation interval, etc.

The simulator is quite flexible. It can be run with any

practical number of different classes of jobs and can

handle any practical number of I/0 devices. Also, it can

use various distributions to generate the service times of

different service centres.

•
The major components of the simulator are described in

the next section. Results comparing the performance of the

two schemes with some of the existing ones are also

presented. A summary of the various assumptions made and

their effects on the performance of the two schemes is

given in the last section.

5.2 Description of the Simulator

The simulator is written in PL/1 and is implemented on

an Amdhal 470 V/8 running under MTS. There are several

components of the simulator. They will be examined after a

discussion of the flow of jobs through the simulated

system.

A sequence of job-processing step is described below.

91

Each of them corresponds to an event within the model. The

simulated model is the same as that depicted earlier in

Figure 3.7.

(1) Upon arrival, a job enters the control unit and

joins the queue corresponding to its class. If the control

queue corresponding

control policy allows

subsystem, the job

to its class is empty and the current

more jobs of this class in the

moves to the CPU queue immediately.

Otherwise, it waits for its ,turn in the control queue.

(2) A job may join the CPU queue from one of the

several service centres or from the control queue.

Depending on where it came from and the conditions under

which a job enters the CPU queue the following activities

will happen.

(a) If it enters from the control unit, it is assigned a

full CPU quantum. Its next I/0 time and type are

generated. The time indicates the amount of CPU

service required between two successive I/0

operations. The type indicates whether the job will

leave the system or join one of the I/0 units. In the

latter case it also indicates which of the I/0 units

it will join.

(b) If it enters after completion of its time quantum, it

92

is assigned a new full time quantum.

(c) If it enters after completion of an I/0 request, its

next I/0 time and type are generated as in (a).

(d) If it enters after completion of a page fault, its

remaining time quantum, the next I/0 time and type

will be used.

Depending upon the system to be simulated, jobs may enter

the head or the tail of the CPU queue. In MTS, for

example, a job joins the head of the CPU queue after a page

fault or an I/0 competion. It joins the tail of the queue

on the first arrival or if its time quantum has expired.

(3) Departure from the CPU occurs on completion of one

of the following events:

(a) the CPU time quantum expires; in this case, the

remaining time for the next I/0 event is computed, and

the job is moved back to the CPU queue,

(b) an I/0 request is made; in this case, the remaining

CPU quantum time is computed and the job is moved to

the requested I/0 unit,

(c) a page fault occurs; in this case, the remaining CPU

93

quantum and I/0 time for the currently running job are

computed, the job is moved to the paging device and

the next page fault time is generated.

(4) Upon arrival to the paging device, the job waits

in the paging queue if the device is busy. Before the

paging device starts processing the job, its service time

is generated. Upon completion of the page service the job

rejoins the CPU queue.

(5) Upon arrival at an I/0 unit, the job waits in the

I/0 queue if the device is busy. Before the I/0 device

starts processing the job, its service time is generated.

After completion of the I/0 service the job rejoins the CPU

queue.

(6) Upon completion of all the CPU and I/0 demands,

the job's statistical data are collected. The control

procedure is then activated to check if another job can be

injected into the subsystem.

The simulated system is initialized with the system

and job parameters. The system parameters then generate a

basic data stucture for the modelled system. Some of the

system parameters are: the number of job classes, the

number of I/0 units, the control criterion, the memory

94

size, the life-time function parameters, etc. The job

parameters for each job class are the exit probability, the

I/0 rates etc.

When a job is admitted into the subsystem, a job

descriptor is created for it. The job descriptor

identifies the job and its class. Data associated with the

job's activity throughout its life span in the subsystem

are collected and stored in the job descriptor.

The queues at the various service centres are

maintained as a linked list with head and tail pointers.

Each node of the list is a pointer to a job descriptor

indicating the presence of the job at that particular

position in the queue.

A separate procedure dynamically creates the I/0 units

at the beginning of a session. Upon each I/0 request,

another procedure links this request to the proper I/0

unit. The request is then serviced.

The simulator can be run under different control

schemes viz., 50%, L=S, Knee, SELF, MULTI-SELF and NO

CONTROL. An event is scheduled every T units of time to

collect data and activate the required control procedure.

The control procedure then computes the number of jobs in

each class that should be maintained in the next T units of

95

time. During the observation period the mean number of

jobs in the subsystem is not allowed to exceed the computed

control number.

Page faults are generated using the system life-time

function as defined in [BeKu69] i.e.,

L = 2b (5. 1)
1 + (c/p) 2

where band care constants and pis the average number of

pages allocated to each job. Each time a page fault

occurs, the next page fault time is computed based on

equation (5.1) and the number of jobs currently in the

subsystem. A page fault is implemented as a system

activity rather than a job activity. Therefore whenever

the page fault time is reached, whichever job is present at

the CPU at that time will experience the page fault.

In order to create exactly the same workload for

various experiments with different control schemes, a

pseudo-random number generator is used. Given the same

initial seed, the same sequence of random numbers will be

generated each time. To compare various control schemes,

the simulator is run using the same random-number stream.

Under various control schemes different job activities can

take place in different order. Therefore, a common

random-number stream can not be used for different jobs.

96

In order to resolve this problem, we use the fact that the

order of job arrivals is independent of the control scheme.

Thus each job is assigned a seed as soon as it arrives at

the system. This seed is used to generate a pseudo

random-number sequence for various job-related activities

(such as, next I/0 time and type, I/0 service time etc.).

Furthermore, because paging is a system activity and

depends on the size of main memory, the number of jobs in

the system etc., the page-fault time and page service time

use independent random-number streams.

The simulator was validated in two different ways.

(a) Selective dumps of all activities over several

prespecified periods of time were taken and hand traced.

Because there is a fairly large number of activities even

in a small interval of time it was not possible to go over

all the activities of one session. Therefore, (b) Little's

Law was used to compute the global mean behaviour of the

system as well as of the individual service centres: these

were then verified ag~inst the observed ones. The observed

values were within 0.05% of the computed values.

5.3 Simulation Results

In order to. study the feasibility and behaviour of

SELF and MULTI-SELF we first compare the performance of

SELF with some other schemes, specifically the 50%, the

r
!

97

L=S, and the Knee criteria. Then SELF is compared with

MULTI-SELF. The workload corresponding to the results in

Table 5.1 through Table 5.13 are given in Table A.1 through

Table A.9 in Appendix A. The system parameter values were

selected to be similar to those of the IBM 370/168 system

used by the UBC computing centre a few years ago. The

workload parameter values were based on measured workloads

on the 370/168 with perturbations introduced to test the

stability of SELF and MULTI-SELF.

Because simulation runs are expensive, the runs were

made as short as possible. The runs of 120 simulated

seconds were made. During this period, approximately 200

jobs were processed. It is found that the mean response

time stabilizes around 120 seconds. Table 5.1 shows a

typical set of mean response times observed between 75 and

180 seconds at an interval length of 3 seconds.

SIMULATED
TIME (SEC.) TERMINAL BATCH

75 0.3112 0.3744
90 0.3484 , 0.4420

105 0.3482 0.4632
120 0.3489 0.4627
135 0.3380 0.4630
150 0.3389 0.4630
165 0.3337 0.4396
180 0.3403 0.4448

Table 5. 1 Mean Response Time

98

The performance of the 50% criterion and the L=S

criterion depends upon certain parameter values which are

functions of the system load. For example, in the L=S

criterion, we must find a constant P and use L=pS. The

value of P depends upon the job characteristics. From

Table 5.2 we obtain 0.6 as the best value of P for the

workload under consideration.

TERMINAL

BATCH

SYSTEM

Table 5.2

0.2 0.50 0.60 0.75

9.2093 1.4124 1.7085 1.7247

13.7833 4.1951 3.4939 4.4230

10.3977 2.3303 2.3109 2.6465

Mean Response Time (in ~-l For various

values of~ in L=S criterion

Although the job characteristics change dynamically in

the workloads that we shall be analysing, the value of, is

a constant in the L=S criterion. Therefore for every

workload we first obtain a best value of P and then use it.

Several simulation runs were made which show the

superiority of SELF over 50% and L=S. Some of the results

obtained are presented in Tables 5.3 through 5.5.

99

SELF 50% %IMP\ L=S %IMP
RESP. RESP. OVER RESP. OVER
TIME TIME 50% TIME L=S

(SEC) (SEC) (SEC)

TERMINAL 0.5409 0.5531 2.20 0.5444 0.64

BATCH 0.8901 0.9600 7.28 0.9574 7.08

SYSTEM 0.6552 0.6785 3.43 0.6724 2.55

Table 2·1 Resp. Time and %lmpr. for Workload in Table A.3

SEi..F 50% %IMP1; L=S %IMP
RESP. RESP. OVER RESP. OVER
TIME TIME 50% TIME L=S
(SEC) (SEC) (SEC)

TERMINAL 0.6111 0.8262 26.03 0.8404 27.28

BATCH 1.5418 2.2729 32.16 2.0050 23.15

SYSTEM 0.9531 1. 3 58 6 29.84 1.2684 24.86

Table 2•! Resp. Time and ' %Impr. for Worklopd in Table A.4

1 % impr. = (50%Resp. time - SELF Resp. time) * 100
50% Resp. Time

100

SELF 50% %IMP. L=S %IMP.
RESP. RESP. OVER RESP. OVER
TIME TIME 50% TIME L=S
(SEC) (SEC) (SEC)

TERMINAL 1 • 9096 2.7638 30.90 2.6061 26.73

BATCH 3.8750 4.9179 21 • 21 4.4218 12.37

SYSTEM 2.5218 3.4243 26.36 3.1707 20.47

Table 2·2 Resp. Time and %Impr. for Workload in Table A.5

~ ~· t/l

0
II

w VI .J
Vl

!
~

al
I

I

'
I

(I) Ill

<l>
I

9
" =_ ~ -·--- .,_ - ~,..

'' ,,

e:_·a~:•.; ._._. ,. :' ~.,. .-
. . . e. __ :

0 -

0
~ -
f

..
::

!II
0 ..

,.
ti'

"" '
l""
DII

tA

.,,
r-

,,.
~

~

r
lA

\0\

4
0

.,J

,... :;.
,;) " "1

V
~ ., I.I

j "5

' -1"" Q
~ 1/1
()

-°ci
"d Y' - f ,
~ oJ

~ ...
({) ;,

cJl

f
d
(IJ

j'.'.

:~

~ ~~
1,1,J 0 ,,
(/\ lfJ ..J

I I

i
1
j

I I

a,a
I

i ~
I

G) Ill
r: I.I

" ~
u

I $ ~
I' "

0 cl!
I I

~ , . .J ~

J ~
? r ~ $

"' 0 ,,,
' ~ i

~ .,
•, f -,;p _.,

~ ,.. cJ) •

i
~
11 .,
~

i

1/1
I"'

, ,

<f .. • - . ~ ~-- c.J .. V>
" v

r :,

lJ,.

~

.. -

103

The parameters for the workload corresponding to these

results are given in Appendix A. In order to demonstrate

the dynamic adaptability of SELF over the other schemes, an

artificial variation in the workload is introduced.

Figures 5.1 and 5.2 represent graphs of the mean number of

jobs vs simulation time and correspond to the workload of

Table 5.3 and 5.4 respectively. The workload corresponding

to Figure 5.1 has a smaller variation compared to the

workload of Figure 5.2. The relative improvement of SELF

over 50% and L=S in Table 5.4 is also greater as compared

to the one in Table 5.3. Thus it is apparent that the

larger the workload variation, the more superior is the

performance of SELF relative to the other two schemes.

This demonstrates the robustness and adaptive nature of

SELF under varying workload. Under light workload all the

schemes give approximately the same results as no control

is required (see for example Table 5.3).

Although the Knee criterion is better than the 50% and

the L=S criteria, it is expensive to implement in practice.

However, since the workload of the simulator is

distribution-driven and the life-time function approximated

by equation (5.1), it is possible to simulate the Knee

criterion without excessive overhead. The Knee criterion

requires each job to run at the knee of its life-time

function, i.e., at the point where the curve of the

life-time of a process vs its memory allocated has maximum

104

slope. It can be shown that, if the life-time function is

simulated using equation (5.1), then this maximum slope is

attained when p = 2c, which is independent of the parameter

b. Therefore, if equation (5.1) is used to simulate the

life-time, by suitably choosing the values of band cone

can create a worst case workload for the Knee criterion

without significantly affecting the performance of the

other criteria. After selecting a combination of

parameters to favour the Knee criterion, the results shown

in Table 5.6 were.obtained.

SELF 50% %IMP. L=S %IMP. KNEE
RESP. RESP. OVER

'
RESP. OVER RESP.

TIME TIME 50% TIME L=S TIME
(SEC) (SEC) (SEC) (SEC)

TERMINAL 2.2405 3.2066 43.11 3.1424 40.25 2.8461

BATCH 4.2405 5.0555 18.29 4.6618 9.94 4.3399

SYSTEM 2.8448 3.7727 32.62 3.6112 26.94 3.3070

Table 5.6 Resp. Time and %Impr. of SELF, 50%, L=S and Knee

We observe that the knee criterion is better than the 50%

and L=S criteria but not as good as SELF under the workload

considered.

SELF allows one to adjust the quality of service given

to the terminal and batch jobs. By choosing proper weights

%IMP.
OVER
KNEE

27.02

2.34

16.24

105

the analyst can reduce the mean response time of the

terminal jobs to almost the lower limit (i,e., when only

terminal jobs are present in the subsystem), at the expense

of the mean batch response time. Tables 5.7 and 5.8 show

the mean response times of terminal and batch jobs for

different values of the weight factors for two different

workloads corresponding to those in Tables A.7 and A.8

respectively.

C1/C2=1 2 3 4 5

TERMINAL 10.6451 7.4705 5.4945 4.8306 4.5491

BATCH 20.1333 22.7354 22.6035 23.4670 24.8099

SYSTEM . 14.2816 13.0492 11.6829 11.4475 11.5916

Table 5.7 ~ Resp. Time (in sec) Using SELF With Diff.
Weight Ratios Under Heavy Workload

C1/C2=1 2 3 4 5

TERMINAL 2.3774 2.2405 2.0437 1. 9000 1.7773

BATCH 3.8004 4.2405 4.1070 4.3152 4.4305

SYSTEM 2.8128 2.8448 2.6620 2.6286 2.5777

Table 5.8 ~ Resp. Time (in sec) Using SELF With Diff.
Weight Ratios Under Light Workload

20

2.9849

27.6247

11.4095

20

1 . 777 0

5. 1705

2.7853

106

The results in Tables 5.7 and 5.8 show the effect of

changing the weights under heavy and light loads

respectively.

The overhead involved in the implementation of SELF

consist of two different components.

(a) The overhead due to collecting the data during

the observation intervals.

(b) The overhead due to the computation of the

control number.

Overhead (a) depends upon the system configuration

(e.g., the number of 1/0 units etc.,) and job

characteristics (e.g., total CPU demand, number of 1/0

requests etc.). The overhead in (b) only depends upon the

system configuration. The overhead (a) for the system and

the workload considered in the above examples is estimated

to be approximately 0.125% of CPU time on an Amdhal 470 V/8

system. The percentage is computed as follows:

% CPU Time= Computation Time * 100
Interval Length

The overhead in (b) is estimated to be approximately 0.04%

of CPU time. Therefore, the total overhead for SELF is

approximately 0.165%. This level of overhead is certainly

acceptable.

107

We now compare SELF with MULTI-SELF. In the previous

examples only two classes of jobs were considered. We use

multi-class control to handle four different classes of

jobs in our next examples. This small number is chosen in

order to keep the simulation costs reasonable. MULTI-SELF

can theoretically handle any number of classes. The jobs

in the first two classes are short jobs with high

priorities and can be considered as terminal jobs. The

jobs in the other two classes are longer jobs with low

priorities and can be considered as batch jobs.

The mean response times of the four different classes

of jobs under SELF and MULTI-SELF are shown in Table 5.9.

CLASS

1

2

3

4

Table 5.9

SELF MULTI %IMP
RESP. SELF OVER

WEIGHT TIME RESP. SELF
{SEC) TIME

{SEC)

2.5 0.4329 0.3000 30.70

2.0 0.4483 0.3191 28.82

,. 5 2.0155 1. 9418 3.66

,. 0 4.4868 4.2737 4.75

Mean Response Times of Jobs Under

SELF and MULTI-SELF With Static Beta

108

It may be observed that there is a considerable

improvement in the response times of short jobs with high

priorities, whereas only marginal improvement is observed

for longer jobs with low priorities. This improvement is

achieved at the expense of additional overhead. The total

overhead of MULTI-SELF for this configuration of the system

and for the selected workload is approximately 4.32% of the

total CPU time. The corresponding overhead for SELF is

approximately 0.165%.

In the implementation of SELF and MULTI-SELF in the

• above example, the values of , (in equation (3.25)) are

computed only once for each parameter and then these

constant values are used throughout the experiment. One

can improve the performance of these schemes by dynamically

computing the values of, at each interval using equation

(3.29), thus reducing the error in the estimation of the

values of the workload parameters.

CLASS

1

2

3

4

Table 5.10

SELF MULTI %IMP
RESP. SELF OVER

WEIGHT TIME RESP. SELF
(SEC) TIME

(SEC)

2.5 0.3564 0.2875 23.96

2.0 0.3057 0.2998 1. 92

1 . 5 1.8350 1.8029 1 . 7 4

1 . 0 4.1917 4.1322 1 . 41

Mean Response Times of Jobs Under

SELF and MULTI-SELF With Dynamic Beta

109

Table 5.10 shows the mean response times of the four

classes of jobs with dynamic computation of ,. It is

observed that MULTI-SELF exhibits an improvement in the

response time over SELF. It is not as much as in the case

of Table 5.9. Furthermore, by dynamically recomputing the

values of I in SELF an improvement is observed over SELF

with static 1 (see Table 5.11). In the case of MULTI-SELF

only marginal improvement is achieved when I is dynamically

recomputed (see Table 5.12).

STATIC DYM.
CLASS WEIGHT BETA BETA

RESP. RESP.
TIME TIME
(SEC) (SEC)

1 2.5 0.4329 0.3564

2 2.0 0.4483 0.3057

3 1 . 5 2.0155 1.8350

4 1.0 4.4868 4.1917

Table~-.!..!. Mean Response Times of Jobs Under

SELF with Static and Dynamic Beta

STATIC DYM.
CLASS WEIGHT BETA BETA

RESP. RESP.
TIME TIME
(SEC) (SEC)

1 2.5 0.3000 0.2875

2 2.0 0.3191 0.2998

3 1.5 1. 941 8 1.8029

4 ,. 0 4.2737 4.1322

Table ~.g Mean Response Times of Jobs Under

1 1 0

%IMP.
OVER

STATIC
BETA

21 . 44

46.64

09.83

07.04

%IMP.
OVER

STATIC
BETA

4. 1 7

6.05

7. 1 5

3. 3 1

MULTI-SELF Resp. With Static and Dynamic Beta

The overhead involved in the case of SELF with dynamic

computation of the values of - is approximately 12.40% of

1 1 1

CPU time, where as in the case of MULTI-SELF it is

approximately 45.69%. Therefore we can conclude that it is

not worthwhile to dynamically compute the values of J, at

least in the case of MULTI-SELF. It seems better to

implement MULTI-SELF with a constant value of J rather than

SELF with dynamic values of J.

The above observations were made on the basis of a few

examples. This is due to the high cost of simulation.

However, the workload was carefully selected to reflect the

worst case for these schemes. It is expected that the

performance of these schemes will vary with different

workloads but their order of magnitude will not differ

significantly.

5.4 Error analysis

In this section w~ outline some of the most important

assumptions made in order to make the models mathematically

tractable and the control schemes practically feasible. We

'also analyse the error introduced because of these

assumptions.

Assumption 1. Identical jobs

SELF assumes that all the jobs are identical in their

resource demands, whereas MULTI-SELF assumes that the jobs

1 1 2

within each class are identical. In an actual system, job

characteristics may vary widely. The synthetic workload

selected to drive the simulator does not make this

assumption. Not only different jobs have different

characteristics, but also their characteristics change from

time to time. The extent of the improvement obtained by

classifying jobs into four classes can be seen in Table

5.9. Schonbach [SchoBO] suggested a way of reducing this

error by creating· an independent class for each job. This

may solve the problem to a certain extent but the overhead

involved will also increase considerably.

Assumption 2. Estimation of Parameters

Both the schemes estimate the values of parameters on

the basis of their past values. In order to reduce the

error in the estimation we have used the simplest method of

exponential smoothing. This error can be further reduced

by dynamically computing the values of - in the exponential

smoothing. Although dynamic computation of , does not

require more than a maximum of 10 previous values (i.e., an

insignificant storage requirement) the computation overhead

in quite high. Moreover, it is observed that the

improvement achieved by using dynamic, is marginal in the

case of MULTI-SELF. A compromise is to recompute the value

of J after large intervals of time. Table 5.13 shows the

percentage error involved in the prediction of one of the

1 1 3

system parameter without smoothing, with static smoothing

and with dynamic smoothing.

% ERROR RESP. TIME %IMP.
(SEC)

NO SMOOTHING 50.5 6.2271 --
STATIC 1 2. 6 4.4868 38.78

SMOOTHING

DYNAMIC 04.4 4.1917 48.55
SMOOTHING

Table 5.13 %Error and~- in Resp. Time under

Static, Dynamic and No Smoothing

The improvements in both cases are significant over no

smoothing. But there is not much improvement of dynamic

smoothing with respect to static smoothing.

Assumption 3. Constant Degree of Multiprogramming

The two schemes require the degree of multiprogramming

to be maintained at the computed level. This condition may

not be satisfied during every observation interval. For

example, during certain intervals there could be very light

load (i.e., very few jobs) at the beginning followed by a

sudden burst of jobs. Under such circumstances, the number

of jobs in the system will be initially below the computed

1 1 4

number and then, because of the control, it will never

exceed the control number. As a result, the mean number of

jobs in the subsystem after the time interval will be less

than the control number. This problem can be solved to a

certain extent by comparing the control number with the

mean number of current jobs in the system rather than with

the actual number of current jobs in the system. An

improvement of approximately 12% in response time was

observed when this modification was made.

Assumotion 4. Job Flo~ Balance
..

Operational analysis requires the job flow to be

balanced at every service centre in the system. It is

found that in the simulated system this is satisfied almost

95% of the time. Whenever it is not satisfied (i.e., the

number of arrivals at a centre during an interval is not

equal to the number of departures) the error 2 is never more

than 2%.

There are a few other factors that effect the validity

of the results. The observation interval and the CPU time

quantum length are set to 3.0 and 0.010 simulated seconds

respectively. These are the values used by the Michigan

Terminal System at UBC. However, there are standard

2 %Error= lno. arrival - no. departure
no. Departure

* 100

1 1 5

techniques to compute the value of the observation interval

(see [BoJe76]).

1 1 6

CHAPTER 6

CONCLUSIONS AND EXTENSIONS

This thesis has demonstrated the versatility of using

optimization techniques along with queueing theory to solve

some of the decision-making problems in computer system

performance evaluation. The emphasis has been to obtain

solutions on the basis of mathematical modelling. Closed

form solutions were obtained wherever possible to reduce

the computational overhead and to attempt a theoretical

explanation of empirical findings.

The first problem considered was to obtain an optimal

design for the memory hierarchy of a multiprogramming

system. To our knowledge, this is the first work that

considers explicit queueing at some of the memory levels.

A model for estimating the optimal capacities and speeds of

the memory hierarchy has been developed. It was assumed

that the technology cost function and the hit-ratio

function can be represented by power functions.

appears to be a rough but reasonable approximation.

1 1 7

This

The

quantities to be optimized (mean response time in this

case) are expressed as a function of the desired parameters

through the use of queueing models. Optimization

techniques are then applied to derive the optimal values

for the design parameters. Using the assumptions stated in

Chapter 1, the design problem is shown to have a global

optimal solution. It was observed that there is a

considerable difference between the optimal design of

uniprogrammed and multiprogrammed systems. Therefore, the

results obtained for a uniprogrammed system cannot be

adequately used in the multiprogrammed case. The empirical

observation that there is a constant ratio between the

optimal sizes of different levels of memory was

mathematically verified. It was also inferred that once a

system has achieved the optimal memory size, any extra

budget should be used in the acquisition of faster rather

than more memory.

The technique presented here can be extended and

applied to several other related problems. A natural

extension is to include the CPU cost and speed in the

design problem. One can also attempt to find the optimal

amount of information (e.g., page size) that should be

moved from one level to another, upon each request. A

similar problem has been attempted by Trivedi

1 1 8

et al. [TrWSBO]. By considering a closed queueing network

model and by maximizing the throughput rate they find the

optimal CPU speed, device capacities and allocation of

files among various secondary devices. Most of the

previous work in optimal system design assumes identical

jobs. This strong assumption needs to be relaxed.

The second problem considered was to control the flow

of jobs through a system. Two control schemes, SELF and

MULTI-SELF, were developed. Unlike most other work, the

schemes are based on mathematical modelling and thus their

optimality can be proven. Furthermore, by the use of

operational analysis, the assumptions used in the model

formulation are minimized and all the required parameters

are observable.

Basically, these schemes consist of two steps. In the

first step, the saturation point of the multiprogramming

subsystem is estimated. Next, the optimal ratio of the

number of jobs from each class that should be maintained in

the multiprogramming subsystem is computed. The objective

in this optimization problem is to minimize a weighted sum

of the waiting times of jobs in the system without

saturating the system.

In the development of SELF it was assumed that all the

jobs have identical resource demands. However, the scheme

, , 9

is . adaptive and is capable of modifying itself when the

workload varies. If there is a sudden burst of jobs during

an observation interval and the subsystem 9ets saturated,

then during the subsequent observation intervals, more jobs

are prevented from entering the subsystem until the system

comes out of saturation. On the other hand, if the

calculated saturation point is smaller than the actual

saturation point, more jobs are allowed to begin execution

in the subsequent interval.

The identical job assumption of SELF is relaxed by

using mean-value analysis of multi-class systems. The

multi-class scheme MULTI-SELF can handle any practical

number of different classes of jobs. Although an

improvement was observed over SELF when using MULTI-SELF,

the overhead involved in the implementation of MULTI-SELF

are also higher than that of SELF. In the development of

MULTI-SELF it was assumed that once a job arrives at the

system

belongs.

it is possible to determine the class to which it

It is also assumed that the jobs . do not change

their class during their stay in the system. An extension

to this work would be to relax these assumptions.

In order to compare the performance of SELF and

MULTI-SELF with some of the major control schemes a general

purpose simulator of a central server model was developed

and different control schemes were implemented on it. The

120

workload that drives the simulator did not make most of the

assumptions required for the development of SELF and

MULTI-SELF. It was found that the two schemes perform

better than the existing ones over a variety of workloads.

The superiority of the two schemes over the other schemes

increases as the variation in the workload increases. This

shows that the two schemes are more adaptable to changes in

the workload. Furthermore, to improve the accuracy, an

exponential smoothing technique is used in the estimation

of system and job parameters required by the two schemes.

Finally, we would like to implement these schemes on an

actual system and verify their performance using real

workloads.

[ArGa73]

[BaLe78]

[BGLP75]

[Baer74]

[Bard79]

[BCMP75]

[BeKu69]

1 2 1

REFERENCES

Arora, S. R. and A. Gallo, "Optimization of Static
Loading and Sizing of Multilevel Memory System".
JACM, Vol. 20, No. 2, April 1973, (307-319).

Bedel, M., and J. Leroudier, "Adaptive
Multiprogramming Systems Can Exist". in Performance
of Computer Installations, D. Ferrari (ed.),
North-Holland Publ. Co., 1978 (115-135).

Badel, M., E. Gelenebe, J. Leroudier, and D.
Potier, "Adaptive Optimization of a Time-Sharing
System's Performance". Proc. IEEE, Vol. 63, No. 6,
June 1975(958-965) .

..
Baer, J. L., "On Program Placement in a Directly
Executable Hierarchy of Memories". IEEE Trans.
Computers, Vol. C-23, No. 8, Aug. 1974(838-849).

Bard, Y.,
analysis".
Arato, A.
North-Holland

"Some Extensions to Multiclass Queuing
in Performance of Computer Systems, M.
Butrimenko, and E. Gelenbe (ed.),
Publ. Co., 1979(51-62).

Baskett, F., K. M. Chandy, R. R. Muntz, and F.
G. Palacois, "Open Closed and Mixed Networks of
Queues with Different Classes of Customers". JACM,
Vol. 22, No. 2, April 1975(248-260). ,

Belady, L. A., and C. J. Kuehner,
Sharing in Computer System". Comm.
No. 5, May 1969(282-288).

"Dynamic Space
ACM, Vol. 1 2,

[BeBW72] Bell, T. E., B. W. Boehm, and R. A. Watson,
"Framework and Initial Phase for Computer Performance
Improvement". FJCC, 1972(1141-1154).

[BoJe76]

[BrBC77]

Box, G. E. P., and
Analysis: Forcasting
Francisco, 1976.

G.
and

M. Jenkins, Time-Series
Control. Holden-Day, San

Brown, R. M., J. C. Browne, and K.
"Memory Management and Response Time".
Vol. 20, No. 3, March 1977(154-165).

M. Chandy,
Comm. ACM,

122

[BCBK75] Browne, J. C., K. M. Chandy, R. M. Brown, T. N.
Keller, D. F. Twosley, and C. w. Dissly,
"Hierarchical Techniques for the Development of
Realistic Models of Complex Computer Systems". Proc.
IEEE, Vol. 63, No. 6, June 1975(966-975).

[Buze71] Buzen, J. P., "Analysis of System Bottlenecks Using
a Queuing Network Model". Proc. ACM-SIGOPS Workshop
on System Performance Evaluation, April 1971 (82-103).

[Buze73]

[BuSh74]

[Buze76]

[BuPo77)

Buzen, J. P., "Computational Algorithms for
Queuing Netwirks with Exponential Servers".
ACM, Vol. 16, No. 9, Sep. 1973(527-531).

Closed
Comm.

Buzen, J. P. and A.
Balancing in Memory
Princeton Conf.
1974(335-339).

w. C. Shum, "Optimal Load
Hierarchies". Proc. Eight Ann.
on Information Sci. March

Buzen, J. P., "Operational Analysis: The Key to the
New Generation of Performance Prediction Tool".
Proc. IEEE COMPCON, N.Y., 1976(166-171).

Buzen, J. P., and
Exponential Assumption in

D. Potier, "Accuracy of
Closed Queuing Models".

Proc. Sigmetrics Conf. On Computer Perf.,
1977(53-64).

[Buze78a] Buzen, J. P., "A Queuing Network
Vol. 10,

Model of
No. 3,

MVS".
Computing Surveys,
Sep. 1978(319-331).

[Buze78b] Buzen, J. P., "Operational Analysis: An Alternate to
Stochastic Modeling and Prediction". Proc. Int.
Conf. Perf. Comp. Installation, North-Holland
Publ. Co., 1978(175-194).

[Bu.De80] Buzen, J.
Treatment
Analysis".
1980(6-15).

P., and
of Queue

Computer

P. J. Denning, "Operational
Distributions and Mean-value

Performanc~, Vol.1, no.1, June

[ChHW75a] Chandy. K. M., U. Herzog, and L. Woo,
"Approximate
IBM J. Res.

Analysis of General Queuing Networks".
And Develop. Jan. 1975(43-49).

[ChHW75b] Chandy.
Analysis
Develop.

K. M., U. Herzog, and L.
of Queuing Networks".
Jan. 1975(36-42).

Woo, "Parametric
IBM J. Res. And

[ChHT77] Chandy, K. M., J. H.
Towsley, "Product Form
Networks". JACM,
April 1977(250-263).

123

Howard Jr., and D. F.
and Local Balance in Queuing
Vol. 24, No. 2,

[ChHS77] Chandy, K. M., J. Hogarth, and C. H. Sauer,
"Selecting Capacities in Queuing Network Models of
Computer/Communication Systems". IEEE Trans.
Software Engg., Vol. SE-3, No. 4, July 1977(290-295).

[ChSa78]

[Chan79]

Chandy, K. M., and C. H.
Method for Analysing Queuing
Computing Systems". Computing
No. 3, Sep. 1978(281-317).

Sauer, "Approximate
Network Models of
Surveys, Vol. 10,

Chanson,
Interactive
Sci. , Univ.

S . T . , " Sa tu rat i on Est i mat i on i n
Computer Systems". Dept. of Comp.
of British Columbia, TR 79-7, 1979.

[ChTr79] Private Communication with S. T. Chanson and K. S.
Trivedi, Jan 1979.

[ChSi80a] Chanson, S. T. and P. S. Sinha, "Optimization of
Memory Hierarchies in Multiprogrammed Computer
Systems with Fixed Cost Constraint". IEEE Trans.
Computers July 1980(611-618).

[ChSi80b] Chanson, S. T., and
Control in Combined
System". Proc. Of
October 1980(207-213).

P. S. Sinha, "Optimal Load
Batch-Interactive Computer

16th Conf. Of CPEUG, Florida,

[Chow74] Chow, C.K., "On Optimization of Storage Hierarchies".
IBM J. Res. Develop., Vol. 18, May 1974(194-203).

[Chow76] Chow, C. K., "Determination of Cache's Capacities
and Its Matching Storage Hierarchy". IEEE Trans.
Computers, Vol. C-25, No. 2, Feb. 1976(157-164).

[CoDe73] Coffman, E. G., Jr., and P. J.
System Theory. Prentice-Hall,
N.J.,1973.

Denning, Operat.ing
Englewood Cliffs,

[Cour77] Courtois, P. J., Decomposibility _ Queuing and
Computer System Applications. Academic Press, 1977.

[Denn68a] Denning, P.
Prevention".

J., "Thrashing: Its Causes and
Proc. AFIPS, 33, (FJCC) 1968(915-922).

[Denn68b] Denning, P. J., "The Working Set Model for Program
Behaviour". Comm. ACM, Vol. 15, No. 5,
May 1968(323-333).

124

[Denn70] Denning, P. J., "Virtual Memory". Computing
Surveys, Vol. 2, No. 3, Sept. 1970(153-189).

[Denn71] Denning, p. J., "Third Generation Computer System".

[DeGr75]

Computing Surveys, Vol. 3 No. 4, Dec. 1971(175-216).

Denning, P. J., and G.
"Multiprogramming Memory Management",
Vol. 63, No. 6, June 1975(924-939).

S. Graham,
Proc. IEEE,

[DKLP76] Denning, P. J., K. C. Khan, J. Leroudier, D.
Potier, and R. Suri, "Optimal Multiprogramming".
Acta Informatica, 7, 1976(197-216).

[DeKh76] Denning, P. J., and K. C. Khan, "An L=S Criterion
for Optimal Multiprogramming". Proc. Int'l. Symp.
on Computer Performance Modeling, Measurement and
Evaluation, March 1976(219-229).

[DeBu78]

[DuPZ67]

Denning, P.
Analysis of
Surveys, Vol.

J., and J. P. Buzen, "The Operational
Queuing Network Models". Computing
10, No. 3, Sep. 1978(225-261).

Duffin, R. J., E.
Geometric Programming.
N.Y., 1967.

L. Peterson and C.
John Weley and Sons

Zener,
Inc.,

[Ferr78] Ferrari, D., Computer Systems Performance Evaluation.

[FoBr76]

Prentice-Hall, 1978.

Foster, D., and J. C.
Memory Hierarchies".
Eval. Of Computer
Oct . 1 9 7 6 (1 1 9- 1 2 7) .

Browne, "File Assignment in
Proc. Modelling and Perf.

Systems, North-Holland,

[Grav67] Gaver, D. P., "Probability Models for
JACM, Multiprogramming Computer System".

Vol. 14,No. 3, July 1967(423-438).

[Gece74] Gecsei, J., "Determining Hit
Hierarchies". IBM J. Res.
No. 4, July 1974(316-327).

Ratio for Multilevel
and Dev., Vol. 18,

[GeLu74] Gecsei, J., and T. A. Lukes,
Evaluation of Storage Hierarchies".
Vol. 13, No. 2, 1974(163-1'.78).

"A Model for the
I BM Sys. J.,

[GeMu76] Gelenbe, E., and R. R. Muntz, "Probabilistic Models
of Computer Systems --Part-I (Exact Results)". Acta
Informatica 7, 1976(35-60).

125

[GoNe67] Gorden, w. J., and G. F. Newell, "Closed Queuing
Systems With Exponential Servers". Oper. Res., 15,
1967(254-265).

[GrDe77) Graham, G. S., and P. J. Denning, "On the Relative
Controllability of Memory Policies". Proc. Int'l.
Symp. on Computer Performance Modeling, Measurement
and Evaluation, Aug. 1977(411-428).

[Hadl72] Hadley, G., Nonlinear and Dynamic
Addison-Wesley Pub. Company, 1972.

Program.ming.

[HiMT79]

[Jack63]

Hine, J. H., I. Mitrani, and S.
of Response Time in Multi-class
Allocation". Comm. ACM,
July 1979(415-424).

Tsur, "The Control
Systems by Memory
Vol. 22, No. 7,

Jackson, J. R., "Job
Management Science,
Oct. 1963(131-142).

Shop-like Queuing System".
1 , Vol. 10, No.

[Kend76) Kendall, M., Time-Series. Griffin, London, 1976.

[Klei68] Kleinrock, L., "Certain Analytic Results for
Time-shared Processors". Info. Processing, Proc.
IFIP Congress 1968(838-845).

[Land76] Landwehr, C. E., "An Endogenous Priority Model for
Load Control in a Combined Batch-Interactive Computer
System". Proc. Int' 1. Symp. on Computer
Performance Modeling, Measurement and Evaluation,
March. 1976(282-287).

[Lazo77] Lazowska, E. w., "The Use of Percentiles in Modeling
CPU Service Time Distribution". · in Computer
Performance, K. M. Chandy and M. Reiser {ed.),
Elsevier North-Holland Inc., new York, 1977(53-66).

[LePo76] Leroudier, J., and D. Potier, "Principles of
Optimality for Multiprogramming". Proc. Int'l.
Symp. on Computer Performance Modeling, Measurement
and Evaluation, March 1976(211-218).

[LeSc71] Lewis, P. A.
Cyclic-Queue
Multiprogrammed
1971 (199-220).

w., and G. S.
Model
Computer

of System
systems".

Schedler, "A
Overhead in

J A CM , Vo 1 . 1 8 ,

[LiMa72] Lin, Y. S., and R. L. Mattson, "Cost-Performance
Evaluation of Memory Hierarchies". IEEE Trans.
Magnetics, Vol. MAG-8, No. 3, Sep 1972(390-392).

126

[LiCh77J Lipsky, L., and J. D. Church, "Application of
Queuing Network Model for a Computer System". ACM
Computing Surveys, Vol. 9 No. 3, Sep. 1977(205-222).

[Litt61]

[Lo80]

Little,
L=lW".

J. D. C., "Proof for the Queuing Formula
Operations Research, 9, 3, May 1961 (383-387).

Lo, R., "The Application of Optimal
Control Theory to Adaptive Performance
Computer Systems". ~.Sc. Thesis, Dept.
Sci., Univ. of British Columbia, 1980.

Stochastic
Control of

of Comp.

[MaSi75] MacDonald, J.E., and K.L. Sigworth, "Storage
Hierarcy Optimization Procedure". IBM J. Res.
Develop., Vol 19, March 1975(133-140).

[Matt71] Mattson, R.L.,
IEEE Trans.
1971(814-819).

"Evaluation of Multilevel Memories".
Magnetics, Vol. MAG-7, December

[Pugh71] Pugh, E. w., "Storage Hierarchies: Gaps, Cliffs, and
Trends". IEEE Trans. Magnetics, Vol. MAG-7, No. 4,
Dec. 1971(810-814).

[RaCh70] Ramamoorthy,C.V., and K.M. Chandy, "Optimization of
Memory Hierarchy in Multiprogramming System". JACM,
Vol.17, July 1970(426-445).

[Rege76] Rege, S. L., "Cost, Performance and Size Trade-Off
for Different Levels in Memory Hierarchy". Computer,
Vol. 9, No. 4, April 1976(43-51).

[Reis76] Reiser, M.,
System". IBM
1976(309-327).

"Interactive
Sys. J.,

Modeling of
Vol. 15,

Computer
No. 4,

[ReKo76] Reiser, M., and H. Kobayashi, "On the Convolution
Algorithm for Separable Queuing Networks". Proc.
Int'l. Symp. Comp. Per. Modelling Measurement and
Evaluation, 1976(109-117).

[Reis79] Reiser, M., "Mean Value Analysis of Queuing Network,
A New Look at an Old Problem". in Performance of
Computer System, M. Arato, A. Butrimenko, and ~
Gelenbe (ed.), North-Holland Publ. Co., 1979(63-77).

[ReLa80] Reiser, M.,
Analysis of
JACM, Vol.

and s. S. Lavenberg,
Closed Multiclass Queuing

27, No2, April 1980(313-322).

"Mean-Value
Network".

[Rode79] Rode, J. D., "Multiclass Operational Analysis of
Queuing Network", in Performance of Computer Systems,
M. Arato, A. Butr1menko, andE. Gelenbe (ed.),
North-Holland Publ. Co., 1979(339-352).

[RoDu73]

[Scho80]

[Spos75]

127

Rodriguez-Rosel, J.,
Implementation, and
Dispatcher". Comm.
1973(247-253).

and J. P.
Evaluation

ACM, Vol.

Dupuy, "The Design,
of Working Set

16, No. 4, April

Schonbach, A., "Macro-Scheduler
Productivity". Ph.~. Thesis, Dept.
Univ. of Toronto, 1980.

for
of Comp.

High
Sci. ,

Sposito, V. A., Linear
Iowa: Iowa State Univ.

and Nonlinear Programming.
Press/ames, 1975.

[TrMa71] Traiger, I. L., and R. L. Mattson, "The Evaluation
and Selection of Technologies for Computer Storage
System". AIP Conference Proceedings, No. 5, Part I,
Magnetism and Magnetic Materials, 1971.

[TrSe77] Tripathi, S. K., and K. C. Sevick, "The Influence
of Multiprogramming Limit on Interactive Response
Time in a Virtual Memory System". Proc. Sigmetrics
Conf. On Computer Performance 1977(121-130).

[Triv78] Trivedi,
Systems".

K. S., "Analytic Modeling
Computer, Oct. 1978(38-56).

of Computer

[TrWa80] Trivedi, K. S., and R. A. Wagner, "A Decision
Model for Closed Queuing Networks". IEEE Trans.
Software.Eng. SE-5, 4, July 1979(328-332).

[TrWS80]

[Welc78]

Trivedi, K. S., R. A. Wagner, and T.
"Optimal Selection of CPU Speed, Device
and File Assignments". JACM Vol.27,
1980(457-473).

M. Sigmon,
Capacities,
No.3, July

Welch, T.A., "Memory
Analysis". IEEE Trans.
No. 3, May 1978(408-413).

Hierarchy Configuration
on Computers, Vol. C-27,

[Will 73] Williams, J. G., "Asymetric Memory Hierarchies".
CACM, Vol. 16, No. 4, April 1973(213-222).

•

Aopendix A

SYSTEM JOB
CHARACTERISTICS TERMINAL

ARR. RATE17 SEC.) 3.0
DELTA ARR. RATE*(/SEC) 1. 50
I/0 REQU. RATE(/SEC.) 250
DELT_A I/0 REQU. RATE** 100
EXIT PROBABILITY 0.90
DELTA EXIT PROB.*** 0. 1 0
I/O SERVICE RATE(/SEC) 30
PAGE SERV. RATE(/SEC) 100
QUANTUM LENGTH(SEC) 0.01
B (EQU 5. 1) 0. 0 1
C (EQU 5. 1) 120
MAIN MEMORY (PAGES) 500
OBSERVATION INTERVAL 3
LENGTH (SEC)
DELTA ARR. PERIOD1SEC) 12
DELTA CHARACTERISTIC 3
PERIOD++ (SEC)

TABLE A.1 WORKLOAD FOR TABLE 5.1

SYSTEM 7 JOB
CHARACTERISTICS TERMINAL

ARR. RATE(/SEC.} 5.0
DELTA ARR. RATE*(/SEC) 2.50
I/O REQU. RATE(/SEC.) 250
DELTA I/O REQU. RATE** 100
EXIT PROBABILITY 0.90
DELTA EXIT PROB.*** 0. 1 0
I/O SERVICE RATE(/SEC) 30
PAGE S~RV. RATE(/SEC) 100
QUANTUM LENGTH(SEC) 0.01
B (EQU 5. 1) 0. 0 1
C (EQU 5. 1) 80
MAIN MEMORY (PAGES) 500
OBSERVATION INTERVAL 3
LENGTH (SEC)
DELTA ARR. PERIOD~SEC) 1 2
DELTA CHARACTERISTIC 3
PERIOD++ (SEC)

TABLE A.2 WORKLOAD FOR TABLE 5.2

* Variation in arrival rate.
** Variation in I/O request rate.
*** Variation in exit probability.
+ Period of variation in exit probability.
++ Period of va r ia t ion in job charate ri s t i cs.

128

BATCH
1.25
1.00

99
20

0.90
0. 1 0

30
100
0 . 0 1
0.01

120
500

3

1 2
3

BATCH
3.00
1. 50
so
20

0.90
0. 1 0

30
100
0.01
0.01

80
500

3

1 2
3

129

SYSTEM/ JOB
CHARACTERISTICS TERMINAL BATCH

ARR. RATE(/SEC.} 3.5 1. 50
DELTA ARR. RATE*(/SEC) 0.50 o.oo
I/0 REQU. RATE(/SEC.) 250 50
DELTA I/0 REQU. RATE** 50 1 0
EXIT PROBABILITY 0.90 0.90
I/0 SERVICE RATE(/SEC) 30 30
PAGE SERV. RATE(/SEC) 100 100
QUANTUM LENGTH(SEC) 0 • 0 1 0. 0 1
B (EQU 5. 1) 0. 0 1 0. 0 1
C (EQU 5.1) 120 120
MAIN MEMORY (PAGES) 500 500
OBSERVATION INTERVAL 3 3
LENGTH (SEC)
DELTA ARR. PERIOD~SEC) 1 2 1 2
DELTA CHARACTERISTIC 3 3
PERIOD++ (SEC)

TABLE A.3 WORKLOAD FOR TABLE 5.3

SYSTEM / JOB
CHARACTERISTICS TERMINAL BATCH

ARR. RATE(/SEC.) 4.5 2.50
DELTA ARR. RATE*(/SEC) 1 • 50 0.50
I/0 REQU. RATE(/SEC.) 250 50
DELTA I/0 REQU. RATE** 50 1 0
EXIT PROBABILITY 0.87 0.87
DELTA EXIT PROB.*** 0.05 0.05
I/0 SERVICE RATE(/SEC) 30 30
PAGE SERV. RATE(/SEC) 100 100
QUANTUM LENGTH(SEC) 0.01 0. 0 1
B (EQU 5. 1) 0.01 0 • 0 1
C (EQU 5.1) 120 120
MAIN MEMORY (PAGES) 500 500
OBSERVATION INTERVAL 3 3
LENGTH (SEC)
DELTA ARR. PERIOIT(SEC) 1 2 1 2
DELTA CHARARATERISTIC 3 3
PERIOD++ (SEC)

TABLE A.4 WORKLOAD FOR TABLE 5.4

130

SYSTEM/ JOB
CHARACTERISTICS TERMINAL BATCH

ARR . RATE(/SEC.) 4.00 2.00
DELTA ARR. RATE*(/SEC} 1. 50 0.50
I/O REQU. RATE(/SEC.} 250 50
DELTA I/O REQU. RATE** 50 1 0
EXIT PROBABILITY 0 •• 87 0.87
DELTA EXIT PROB.*** 0.05 0.05
I/O SERVICE RATE(/SEC} 30 30
PAGE SERV. RATE(/SEC} 100 100
QUANTUM LENGTH(SEC) 0. 0 1 a.a,
B (EQU 5. 1 } a.a, 0.01
C (EQU 5. 1) 120 120
MAIN MEMORY (PAGES} 500 500
OBSERVATION INTERVAL 3 3
LENGTH (SEC) .
DELTA ARR. PERIODtSEC} , 2 , 2
DELTA CHARACTERISTIC 3 3
PERIOD++ (SEC)

TABLE A.5 WORKLOAD FOR TABLE 5.5

SYSTEM/ JOB
CHARACTERISTICS TERMINAL BATCH

ARR. RATE(/SEC.) 5.0 2.5
DELTA ARR. RATE*(/SEC} 2.50 1 • 50
I/O REQU. RATE(/SEC.} 250 50
DELTA I/O REQU. RATE** 100 20
EXIT PROBABILITY 0.90 0. 90
DELTA EXIT PROB.*** 0. 1 0 0. 1 0
I/O SERVICE RATE(/SEC) 30 30
PAGE SERV. RATE(/SEC) 100 100
QUANTUM LENGTH(SEC) 0.01 0. 0 1
B (EQU 5.1) 0. 0 1 0. 0 1
C (EQU 5.1) 120 120
MAIN MEMORY (PAGES} 500 500
OBSERVATION INTERVAL 3 3
LENGTH (SEC}
DELTA ARR. PERIODtSEC) , 2 , 2
DELTA CHARACTERISTIC 3 3
PERIOD++ (SEC)

TABLE A.6 WORKLOAD FOR TABLE 5.6

1 31

SYSTEM/ JOB
CHARACTERISTICS TERMINAL BATCH

ARR. RATE(/SEC.) 5.0 3.50
DELTA ARR. RATE*(/SEC) 2.50 1.50
I/O REQU. RATE(/SEC.) 250 50
DELTA I/O REQU. RATE** 100 20
EXIT PROBABILITY 0.90 0.90
DELTA EXIT PROB.*** 0. 1 0 0. 1 0
I/O SERVICE RATE(/SEC) 30 30
PAGE SERV. RATE(/SEC) 100 100
QUANTUM LENGTH(SEC) 0.01 0. 0 1
B (EQU 5. 1) 0. 0 1 0.01
C (EQU 5. 1) 120 120
MAIN MEMORY (PAGES) 500 500
OBSERVATION INTERVAL 3 3
LENGTH (SEC)
DELTA ARR. PERIOD(SEC) 1 2 1 2
DELTA CHARACTERISTIC 3 3
PERIOD++ (SEC)

TABLE A.7 WORKLOAD FOR TABLE 5.7

SYSTEM/ JOB
CHARACTERISTICS TERMINAL BATCH

ARR. RATE(/SEC.) 5.0 2.50
DELTA ARR. RATE*(/SEC) 2.50 1. 50
I/O REQU. RATE(/SEC.) 250 50
DELTA I/O REQU. RATE** 100 20
EXIT PROBABILITY 0.90 0.90
DELTA EXIT PROB.*** 0. 1 0 0. 1 0
I/O SERVICE RATE(/SEC) 30 30
PAGE SERV. RATE(/SEC) 100 100
QUANTUM LENGTH(SEC) 0.01 0.01
B (EQU 5. 1) 0.01 0. 0 1
C (EQU 5.1) 120 120
MAIN MEMORY (PAGES) 500 500
OBSERVATION INTERVAL 3 3
LENGTH (SEC) +

DELTA ARR. PERIOD(SEC) 12 12
DELTA CHARACTERISTIC 3 3

TABLE A.8 WORKLOAD FOR TABLE 5.8

132

SYSTEM/ JOB
CHARACTERISTICS CLASS 1 CLASS 2 CLASS 3 CLASS 4

ARR. RATE{/SEC.) 2.75 2.25 1. 75 1 • 25
DELTA ARR. RATE*(/SEC) 0.50 0.50 0.50 0.50
I/0 REQU. RATE{/SEC.) 250 200 75 50
DELTA I/0 REQU. RATE** 50 50 1 0 1 0
EXIT PROBABILITY 0.78 0.80 0.90 0.92
DELTA EXIT PROB.*** 0.05 0.05 0.05 0.05
I/0 SERVICE RATE(/SEC) 30 30 30 30
PAGE SERV. RATE(/SEC) 100 100 100 100
QUANTUM LENGTH(SEC) 0. 0 1 0 . 0 1 0.01 0. 0 1
B { EQU 5. 1) 0.01 0.01 0.01 0. 0 1
C (EQU 5. 1) 120 120 120 120
MAIN MEMORY {PAGES) 500 500 500 500
OBSERVATION INTERVAL 3 3 3 3
LENGTH (SEC)
DELTA ARR. PERIOIY(SEC) , 2 1 2 1 2 1 2
DELTA CHARACTERISTIC 3 3 3 3
PERIOD++ (SEC)

TABLE A.9 WORKLOAD FOR TABLE 5.9 AND TABLE 5.12

'·

