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ABSTRACT 

Analytic modelling has proven to be cost-effective in 

the performance evaluation of computer systems. So far, 

queueing theory has been employed as the main tool. This 

thesis extends the scope of analytic modelling by using 

optimization techniques along with queuing theory in 

solving the decision-making problems of performance 

evaluation. Two d!fferent problems have been attempted in 

this thesis. 

First, a queueing network model is developed to find 

the optimal capacities and speeds of the memory levels in a 

memory hierarchy system operating in a multiprogrammed 

environment. Optimality is defined with respect to mean 

system response time under a fixed cost constraint. It is 

assumed that the number of levels in the hierarchy as well 

as the capacity of the lowest level are known. The effect 

of storage management strategy and program behaviour are 

characterised by the miss ratio function which, together 

with the device technology cost function, is assumed to be 

represented by power functions. It is shown that the 

solution obtained is globally optimal. 
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Next, two adaptive schemes, SELF and MULTI-SELF, are 

developed to control the flow of jobs in a multiprogrammed 

computer system. They periodically determine the number of 

jobs from each class that should be activated to minimize 

the mean system residence time without saturating the 

system. The computation is based on the estimated system 

workload in the next interval. An exponential smoothing 

technique is used to reduce the error in estimating the 

values of the model parameters. The service provided to 

each class (specifically, the mean response time) may be 

adjusted by changing the weight associated with the job 

class. From our simulation results, the schemes appear to 

be both stable and robust. Performance improvement over 

some of the existing schemes (50%, L=S and the Knee 

criteria) is significant under some workloads. The 

overhead involved in its implementation is acceptable and 

the error due to some of the assumptions in the formulation 

and solution of the model are discussed. 
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CHAPTER 

INTRODUCTION AND PROBLEM DEFINITION 

1.1 The I mpo r tance of Performance Evaluation 

Performance criteria are major consideration in the 

design of computer systems. Therefore, knowledge about 

program characteristics, system load and optimal design 

theory are important aids to the prevalent intuitive and ad 

hoc methods. The increasing demand for computer resources 

has made computer system designers, data processing and 

corporate managers, system analysts, programmers as well as 

the user community at large more concerned about system 

efficiency and utilization. Despite continual reduction in 

the cost of hardware, inefficient resource utilization 
. 

represents unnecessary wastage. Moreover, there is an 

increasing interdependency among users. Whether in a large 

centralized system or in a distributed computing 

environment where resources are shared, poor performance- of 



one component affects many users. 

There are different measures of 

response time, throughput rate 

utilizations. Optimization of one 

performance 

and various 

measure 

2 

such as 

resource 

does not 

necessarily optimize other measures. 

important to select a proper measure or 

measures to be consistent with the 

particular study. 

Therefore it 

a combination 

objectives of 

is 

of 

a 

Once the system is in production, structural problems, 

particularly those related to the computer architecture are 

often difficult to remove. A significant change in the 

system structure may be required to remove bottlenecks in 

the system. Therefore it is desirable to study a model of 

the system before it is configured. This also allows the 

designers to study different models of the system and 

select the best suited for the specific application. 

1.2 Approaches to Computer System Modelling 

The study of computer system modelling and performance 

analysis employs three different methods viz., measurement, 

simulation and analytic techniques. Direct measurement 

techniques are not always applicable, particularly to 

design problems because they require the system to be in 

existence. Also production systems may not be available 
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for experimentation. Moreover, it may not be practical to 

implement certain control mechanisms if the system was not 

initially designed to facilitate extensions or 

modifications. 

Simulation techniques are the most popular, since they 

are able to represent the characteristics of the modelled 

system more closely than is possible with currently 

available analytic techniques. However simulation models 

are expensive to build, validate and use. 

Although analytic models are more cost-effective for 

evaluating and predicting computer system performance, they 

are harder to formulate and to solve in general. Recent 

advances have made analytic models increasingly capable of 

representing more closely the characteristics of the 

modelled system. 

1.3 Analytic Mode ll ing 

Queu~ing theory has been the major tool used in 

analytic modelling of computer systems. A queueing network 

is a network of service centres. Each centre has one or 

more queues associated with it. Customers wait in queues 

for their turn to be served by the server. At each service 

centre the distribution of the service times for each class 

of customers and the scheduling algorithm are known and 
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fixed. After being served at a centre the customer moves 

to other service centres or exits from the system according 

to a fixed set of transition probabilities which may or may 

not be class and/or workload dependent. 

A queueing network is said to be open if job arrivals 

are independent of job departures and the number of jobs 

present in the system. In a closed queueing network, the 

number of jobs remain constant. Whenever a job leaves the 

system, a statistically identical job is-injected into the 

system to replace it. A computer system can be considered 

as a network of queues with various processing devices as 

the service centres. 

The analysis of a queueing network can be classifed 

as: 

{i) exact analysis using classical queueing theory, 

{ii) approximate techniques, 

(iii) operational analysis. 

As discussed below, none of the three approaches is 

superior to the others under all circumstances. 

Exact solutions were first given by Jackson [Jack63]. 
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He showed that in a queueing network composed of 

exponential service centres, the equations governing the 

equilibrium distribution of the system states exhibit a 

product form. This means the probability that the queueing 

network is in a particular state is equal to the product of 

the probabilities that each individual service centre is in 

its corresponding state divided by a normalizing constant. 

Gorden and Newell [GoNe67 ) simplified the product form 

solution for closed queueing networks by developing a 

separation of variables solution technique. Buzen [Buze73] 

introduced the widely used central server model and 

provided efficient algorithms for computing the normalizing 

constants, the equilibrium distribution of system states, 

throughput rates and queue length distributions. Most of 

the work in queueing theory assumed identical jobs until 

Basket et al. [BCMP75] extended these results to cover 

multiple classes of jobs, different queueing disciplines 

and non-exponential service distributions. 

Approximate techniques give either an approximate 

solution to the original network or an exact solution of an 

approximate model. Norton's theorem as defined by Chandy 

et al. [ChHW75b] (analogous to Norton's theorem in 

electrical engineering) plays a major role in the 

development of approximate techniques. The model involves 

replacing a subnetwork that has a single input stream and a 

single output stream with a single composite service 
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centre. The resulting queueing network is repeatedly 

simplified until it permits analysis by global balance 

techniques. It is shown that, if the original system has 

the local balance property, then the reduced model is exact 

in the sense that the queue length distribution at the 

service centres (not the system) are identical in the 

original and the reduced network. Good references for 

approximate techniques can be found in Chandy 

et al. [ChHW75b] and Courtois [Cour77]. 

Operational analysis was first introduced by Buzen 

[Buze76] and a good survey can be found in [DeBu78]. With 

this approach, one can obtain most of the results of 

stochastic analysis without making the assumptions (often 

unrealistic) required by queueing theory. The main 

drawback of this technique is that it is not suitable for 

performance prediction and does not lend itself to the 

study of transient system behaviour. 

Although queueing theory is an essential tool for 

computer system performance modelling, it does not solve 

the problems of decision-making. For example, it can 

provide the values of various syst~m performance measures 

for a combination of system parameters but it does not 

provide a best combination of system parameters that will 

optimize certain performance measures. Recently, some work 

has been done to apply optimization techniques along with 
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queueing theory to solve such problems ([ChSiB0a], 

[ChSiB0b], [HiMT79], [TrWaB0], [TrWSB0]). In this thesis, 

optimization techniques are used along with time series 

analysis and queueing theory in solving the decision-making 

problems of large computer systems. The techniques 

developed have been applied to the two problems of (a) the 

design of a memory hierarchy, and (b) the job flow control 

in a multiprogrammed system. 

1.4 Thesis Overview 

The thesis consists of five more chapters. In 

chapter 2, the problem of memory hierarchy design in a 

multiprogrammed system is studied. First a queueing 

network model of a multiprogrammed memory hierarchy system 

is developed. An expression for its response time is then 

computed in terms of the capacities and speeds of various 

levels of memory. The optimal capacities and speeds are 

then obtained by minimizing the response time subject to a 

fixed cost constraint. A modified version of geometric 

programming is used to solve the minimization problem. A 

closed form solution is derived and shown to be globally 

optimal. 

Chapter 3 describes and compares the relative merits 

of various existing load control mechanisms. An expression 

for the estimate of the saturation point is then derived 
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using operational analysis. An optimal selection of batch 

and terminal jobs that should be maintained in the system 

is also computed. This chapter also describes how time 

series analysis can be used in the estimation of the system 

parameters required for computing the saturation point 

estimate. One of the main assumptions of the control 

scheme developed in this chapter is that all the batch and 

terminal jobs are statistically identical in their resource 

demands. 

Chapter 4 relaxes the identical job assumption of the 

model developed in chapter 3. The scheme developed here 

can handle any practical number of multiple classes of 

jobs. Jobs within a class are statistically identical but 

jobs in different classes can be different. In the extreme 

case, each job can belong to a different class. 

Chapter 5 describes a simulator for a central server 

model. The two schemes described in chapters 3 and 4 were 

simulated and their performance compared to some of the 

existing schemes. The assumptions made throughout the 

development of the two control schemes and the errors 

introduced by them are discussed. 

Chapter 6 summarizes the thesis and suggests further 

research directions. 
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CHAPTER 2 

MEMORY HIERARCHY DESIGN 

2.1 Introduction and Review 

A major criterion of computer system design is the 

efficiency of its memory resource utilization. Although 

the cost of memory is decreasing, the demand for computer 

resources is increasing even more rapidly, and in some 

applications the problems are getting larger. Therefore, 

it is important t6 have an optimal design for the memory 

system. The memory system is generally a combination of a 

variety of technologies with different cost-performance 

characteristics. Such an assembly of interconnected 

devices is generally called a memory hierarchy. Management 

of the memory hierarchy requires determining where to store 

specific information, how to retrieve it and finally when 

to move it from one level to another. The objective is to 

maintain the more frequently used data in the fastest (and 

therefore most expensive) device in order to minimize the 
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retrieval time. It is also necessary to recognize when the 

data are no longer needed so that they can be moved to a 

slower (and cheaper} device. The design problem considered 

in this chapter is to find the optimal sizes and speeds of 

different memory devices given a fixed cost constraint. In 

the past, this problem was treated using heuristic 

approaches rather than quantitative methods. Recently, 

quantitative methods have been developed which yield a 

better understanding of memory hierarchy configuration 

evaluation. 

The optimization of a memory hierarchy is recognized 

as an important research area [Triv78] and has been 

approached from several directions. Various solutions, 

optimal under certain constraints, have been obtained. 

Ramamoorthy and Chandy [RaCh70] have considered the 

problem of finding the type and size of each level of 

memory under certain assumptions. Their method involves 

solving a linear programming problem with the average 

access time of an information block in a program as the 

objective function and a given hierarchy cost as the 

constraint. The results are then extended to a general 

case of multiprogramming. The approach presupposes the 

knowledge of frequency of access for each information 

block. A drawback of the model is that it uses average 

access time as the objective function while ignoring the 
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delays due to queues formed in front of the lower levels of 

memory. 

MacDonald and Sigworth [MaSi75] have dealt with 

various combinations of optimization criteria such as fixed 

cost constraint, fixed and variable page size etc. They 

too assume knowledge of the storage address sequence and 

have used its statistical properties extensively in their 

work. The objective function to be minimized is again the 

average access time, or a function of it (ignoring the 

queueing delays), which implies that even with available 

program reference strings the scheme cannot be applied to 

multiprogramming. 

Chow [Chow74] has very nicely applied 

programming to obtain not only the optimal size 

geometric 

and speed 

of each memory level, but also the optimal number of levels 

of hierarchy for a given cost constraint. The unit of 

information transfer is a fixed-size page and the page size 

is the same for all levels. The effect of the page 

replacement algorithms, the program behaviour (and hence 

the workload) and the page size are captured by a hit-ratio 

function. A hit-ratio function is defined as the 

probability of successfully retrieving the needed 

information from a particular level of memory. 

Furthermore, the hit-ratio function and device technology 

cost function are taken as a power function of the capacity 
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and access time respectively of each level of memory 

hierarchy. Chow's analysis ignores queueing delays and 

hence is also restricted to a uniprogramming system. 

Welch [Welc78] gives a very simple and straightforward 

analysis of a memory hierarchy for speed-cost trade-off 

with the assumption that the size and access probability of 

each level of memory are known and fixed. Rege [Rege76] 

uses a very simple two-server queueing network model to 

analyze the cost-performance trade-off by using different 

sizes and speeds at different memory levels. There is no 

optimization study in either case. 

Foster and Browne [FoBr76] are among the first to 

explicitly account for queueing at devices in the memory 

hierarchy to study a related but different problem - that 

of file assignment in the hierarchy. Traiger and Mattson 

[TrMa71] consider the design problem of a storage hierarchy 

using a central server model. But their model is 

restricted to three levels. In a later study, Lin and 

Mattson [LiMa72] extend the technique to four levels. 

Because of the exhaustive nature of the search for the 

optimal solution, the technique seems to be impractical 

when the number of levels in the hierarchy increases beyond 

four. Gecsei and Lukes [GeLu74] reduced the complexity of 

the model to some extent but in doing so they had to 

approximate each stage of the network as an open-loop queue 
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with random arrival. 

Trivedi, Wagner and Sigmon [TrWSBO] have used a closed 

queueing network model to find optimal CPU speed, device 

capacities and allocation of a set of files across the 

secondary storage devices by maximizing the throughput 

rate. In another work, Trivedi and Wagner [TrWa79] have 

obtained the speeds of various secondary devices for a 

given set of transition probabilities in a closed queueing 

network. 

Most previous work in optimization of memory 

hierarchies used the mean memory access time as the 

objective function for minimization. With a few exceptions 

(e.g.,[RaCh70], [TrWa79] and [TrWSBO]-- the latter two were 

done in parallel with this work [ChTr79]), they dealt only 

with the uniprogrammed environment where only one process 

is active at any time and the processor is idle when a 

request is made to any memory level. It is not clear that 

in a multiprogrammed environment, minimizing the average 

memory access time is meaningful since a process may be 

blocked while it is referencing information in a certain 

level of memory. The following analysis combines 

performance evaluation techniques and optimization methods 

to extend the analysis of Chow [Chow74] to cover 

multiprogrammed systems. 

the objective function. 

Mean response time is chosen as 

With the number of memory levels 
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fixed and the capacity of the lowest level known, an 

expression for response time is obtained in terms of the 

capacity and speed of each level of memory. The optimal 

expression of memory sizes and speeds are then obtained 

using the Lagrangian function 

constraint. 

under a fixed cost 

Notice that in the uniprogramming environment, 

Average response time= c 1 * Average access time of 

the memory hierarchy+ c 2 

where c 1 = average number of accesses to the 

memory hierarchy per interaction, 

and c 2 = mean CPU time demand of the process per 

interaction. 

The parameters c 1 and c 2 are constants for a given 

process. Hence the average response time and the average 

memory hierarchy· access time are equivalent objective 

functions in the uniprogrammed environment. 

2.2 System Description, Assumptions and Notation 

The memory hierarchy consists of N levels, 

M 1 1 M2' ... ' MN, where N is known and fixed. Generally, 

the higher the level (i.e., the smaller the index) the 

smaller is the capacity, the faster its speed and the more 

expensive is its unit cost. It is assumed that information 

f. 
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present in any level is also present in all subsequent 

lower levels. This assumption may not be true for all 

levels (particularly for lower levels of memory}. In the 

case of a uniprogramming system, whenever the needed 

information is not found in the highest level M 1 , a request 

is made to each of the lower levels successively until it 

is found in a level Mi; i = 2, ••. , N. The processor is 

held waiting all the time until the information is 

retrieved from M;. As i increases, the time required to 

fetch the information goes up. When i exce~ds a certain 

value, it becomes uneconomical to keep the processor idle 

while the information is being retrieved from Mi, 

particularly when there are other processes waiting for the 

processor. Thus, in the case of multiprogramming, we have 

two types of memory - A and B. While the processor waits 

for access to type A memory, it does not do so for access 

to type B memory, but releases the current process and 

takes the next process ready to run, if one exists. It is 

therefore possible for several requests to queue up at a 

type B memory level but there is at most one request at any 

one time for a type A memory level. The model of such a 

system is shown in Figure 2.1 where n, and n 2 are the 

number of type A and type B memory levels respectively. 

X j , i = 1 , 2 , • . • , N ( N = n , + n 2 } i s the Ca pa C i t y Of 

memory level M; in the hierarchy. n 1 , n 2 and x 111 are 

assumed to be given. 
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FIGURE 2.1 STORAGE HIERARCHY IN A MULTIPROGRAMMED SYSTEM 
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Following Chow's [Chow74] terminology, we define the 

following: 

y;, i = 1, 2, ••. , N is the mean transfer 

time of a unit of information from level Mi 

to Mi., (this does not include the queue 

wait time for type B memory levels) and y 1 

is simply the mean access time of the 

fastest memory. 

H(x) is the probability of finding the 

required information in a memory level with , 

capacity x. 

The hit-ratio function Pi is therefore given by the 

difference in probability of finding the information in Mi 

but not finding it in Mi.,. 

i . e • , Pi = H(xi) - H(xj. 1 ), 

l = 1, 2, ••• , N; H(x 0 ) = 0. ( 2. , ) 

The miss ratio F(x) is simply 1 H(x) and is assumed to be 

a power function of capacity x, a positive constant K1 and 

a, defined as: 
-a 

F(x) = K 1 x ( 2 • 2 ) 

The technology cost function (i.e., unit cost of a storage 

level with transfer time y to the next higher level) is 

assumed to take the form: 



where i and K2 are positive constants. 
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( 2. 3) 

Without loss of 

generality, we take K1 = K2 = 1, i.e., equations (2.2) and 

(2.3) become 

and 

-1/a 

-a 
F(x) = X 

-b(y) = y. 

(2.2') 

(2.3') 

This means K1 is the unit for storage capacity and K 2 

is the unit for cost. Empirical data have shown that 

equations (2.2) and (2.3) are good approximations for the 

hit-ratio function and technology cost function 

respectively (see [Chow74], · [Mats71],[Rege76], [Welc78]). 

Mattson's [Mats71] empirical hit-ratio data , for example, 

can be approximated by a power function Rege's data 

[Rege76] support a i = 0.5 in (2.3) if system costs rather 

than component costs are used. However, as stated in 

[Welc78], because of ambiguities due to 1) system costs 

versus component costs, 2) rapid change in technology, and 

3) approximations needed to estimate the average access 

times on non-random access devices such as discs, tapes 

etc., i (in (2.3' )) may take on widely different values 

(the range of 0.2 to 0.6 has been used in [LiMa72]) 

depending on the particular application being analyzed. 

Similarly, due to different program behaviour and storage 

management strategies, the values of a in (2.2') will vary 

from application to application. 



19 

£•1 Queueing Model 

w 

The queueing model of the system described in the 

previous section is shown in Figure 2.2. 

p 
0 

FIGURE 2.2: QUEUEING NETWORK MODEL "A" OF SYSTEM 

p 
1 
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The arrival pattern of requests is assumed to follow a 

Poisson distribution with mean arrival rate 

q 1 , q 2 , ••• , Qn,are the probabilities of referencing memory 

levels M 1 , M2, ..• , M~1 respectively and p 1 , 

the probabilities of referencing 

p 2 , ••• , 

memory 

p Tl are 
2-

1 eve ls 

Mn,. 1, 1 ••• , Mn,. n1,. respectively. The probability of exit 
J 

(i.e., termination of task or completion of a request} is 

Po• 

Define 

n, 
Q = r q; I 

i = 1 

n2 
p = r Pi, 

i=O 

then clearly, P+Q= 1. 

For· type A memory, the mean effective hierarchy access 

time Ti to level M;(i ~ n 1 } is the sum of the mean 

individual transfer time between two consecutive levels 

from Mi up to M 1 



i.e., 
i 

Ti = I Yj• 
j=l 
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In the case of type B memory the mean transfer times 

y;'s are taken as the inverse of the service rates of the 

memory levels. Furthermore, it is assumed that the service 

rates are exponentially distributed with mean 1 /y i , 

The mean effective hierarchy 

access time of type B memory levels are not so easily 

obtained because of possible queueing of requests at these 

levels. Furthermore, since a process may be blocked while 

accessing these levels, it is more reasonable to use mean 

response time (or mean request completion time) as the 

criterion of optimization. To do so, we first transform 

the model in Figure 2.2 td the model in Figure 2.3. 



C 
---------------- ----0 

w I ---.--..,.....-,- I 
p 

C C 
---- ----n ---- ----n-1 
I I l. I I 1 

I .1 
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-~ EXIT 
p' 

0 
p 

1 
C 

---- ----, 
I I 

FIGURE 2.3: QUEUEING NETWORK MODEL "B" OF SYSTEM 
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Here Pi' = p;/P and the mean service time of centre Co 

is 

,, = P.K 

n , 
with 1/K = r q;/,,; 

i=1 

and ,, 1 = 1 /T i i = 1 , 2 , • • • , n 1 ( 2. 4) 

Taking~+~,, ~,, ~2 , ••• , ~n~to be the arrival rates 

of centres C0 , C,, .•. , Cn
1

, respectively, and assuming the 

service disciplines of the centres do not depend on the 

future service time requirements or on the future path of a 

job through the network, we now compute the response time 

of the network in model B. 

Assuming that the interarrival-time distribution and 

all service time distributions are exponential, the model 

can be analyzed following Jackson~s [Jack63] approach of 

considering each service centre as an M/M/1 queueing model. 

Using Little's Law, the mean response time of the 

network is given by 

R = 1[.~ 2

mean number of jobs in centre i] 
~ 1=1 

n2 
= r 

-~-i=1 



where 

p 1 = (mean job arrival rate of service centre c; / 

mean service rate of centre C1) 

Now the mean job arrival rate for service centre c; 

= [ Col + Col 1 i = 0 

Col; i = 1 , 2, ... , n2 
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and the mean service rate of service centre C 1 

= [ •' i 

--Y 1 + j i 

Hence 
R = [ ('->+w, ),,' 

c.i -, -_-( ... w_+_w ......... , .... ) ...,/,_,,-, 

= 0 

= 1, 2, 

n 1 +n 2 

+ r 
i=n 1 +1 

... , n2 

( 2 . 5 ) 

From Figure 2.3, job arrival rate for service centre C1 is 

given by 

i = 1, 2, ••• , n 2 

which, after some algebraic manipulation, can be shbwn to 

be equivalent to 

n2 
w; = (c.i + c.i,) r Pi' 

i=1 

n2 
= c.i r p; . 

Po j=i 
(2.6) 



From equation (2.1), for type B memory, we have 

n2 
I: [ H ( X j + 1'1~ - H ( X i + "•· 1 ) ] 

j=i 

(takingH(x,-i) = 1) 

= - H(x;.,,_ 1 ) 

' 

= Xi + ,,,-1 

Substituting 1n (2.6), we get 

-o 
c.ii = I' Xi+1'1-1 

' 
where 

=> 

Also n 1 l 

(c.i+c.i,)/.,' = Col I: 
Po i=1 

q; I: yJ· . 
j=1 

Substituting 

and 

g; = H(x;) - H(x; . 1 ) 

F(x;) = 1 - H(x;) = x;, 

we have, n 1 -o 
(c.i+c.i,)/~• = ., I: x;., y;. 

i=l 

Substituting (2.7) and (2.8) into (2.5) we obtain 

[ 

.~

1 

x~~, Yi 
R = 1 1=1 - --- --- -Po n, -o 

1-r .,x;.,y; 
i=1 

where x 0 = 1. 

n 1 +n 2 
+ I: 
i=n 1 +1 
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( 2 • 7 ) 

( 2 . 8 ) 

(2.9) 

Notice that the degree of multiprogramming is not 

explicitly represented in the model. It is generally 
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recognized that, for a given size of the main memory, the 

degree of multiprogramming affects the performance of the 

system. Some systems try to maintain the degree of 

multiprogramming at a fixed level. However, except for 

some simple systems where fixed partition memory management 

is used, the resident sets of active processes change 

drastically with time and even the average size differs 

from application to application. The influence of the 

degree of multiprogramming on performance is largely due to 

its effect on the miss ratio function. In fact, in a 

paging system using a fixed allocation strategy, the mean 

CPU time interval between consecutive page faults e was 

found to be proportional to a power function of the size of 

the resident set m [BeKu69] 

If main memory is shared equally by the active 

processes then there is a direct relationship between the 

values of parameter o of the miss-ratio function and R. 

The system designer is not as much interested in the 

absolute values of the degree of multiprogramming as in its 

effect on system performance (which in this model is 

represented by the value of o in (2.2)). 
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2. 4 ·. Formulation of the Optimization Problem 

Since the technology cost per unit of information is 

given by 

-b(y} = y 

the system cost with storage sizes x 1 , x 2, , ••• , x N for 

levels M,, M2 , ••• , M,._. with average transfer time y 1 , 

y 2 , ••• , y,..respectively, is given by 

N -, 
s = r xi Yi 

i= 1 
(2.10) 

Given N, xN, and that the memory system cost is not to 

exceed S 0 , the optimization problem becomes: 

Min 

n 1 -o 
r xi., Yi 

i = 1 
n 1 +n 2 

+ r 
n, -o i=n, 

1- r ,, xi.1 Yi 
i=1 

N - , 
s.t. r xi Yi s So, 

i=1 

X 0 = 1; Xi> O; Yi> 0 

- 0 

X j. 1 y j 

i = 1, 2, ••• ,N ( 2 . 1 1 ) 

The problem (2.11) will have a solution only in the region 

where 

and 

n 1 -o 
r ,, x;., y; < 1 

i = 1 

-a 
"x;., Yi< 1 i = n 1 + 1, ••• , n 1 + n 2 

This restriction meets one of the assumptions made while 

calculating the equilibrium state probability, i.e., the 
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traffic intensity 1 has to be strictly less than one 

[Ferr78]. 

Now by multiplying the objective function by 11Po (a 

constant) and adding 1 + n2 to it, the problem (2.11) 

reduces to 

n 1 +n 2 
Min + r 

n, -o i=n 1 -o 
1-r ,, Xi . 1 Yi 1 - ,, Xi . 1 Yi 

i=1 

N -, 
s. t. r X i Yi ~ (2.12) 

~ i=1 

The natural constraints xi > 0 and Yi > 0 can be 

ignored in the calculation by looking at a solution only in 

the positive region of x and y. 

Introducing new variables r 0 and r;'s such that 

and 

n 1 -o 
- r,, x;., Yi 

i=1 

-a 
r;. 1 ::!;; 1 - ,, Xi. 1 y;: 

The problem (2.12) is equivalent to 

n2 
Min r 0 1 + r r'f 1 

i=1 

i = n 1 + 1 , ••• , n 1 +n 2 

Traffic intensity is defined as the ratio of the arrival rate 
to the service rate at a service centre. 
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n, -o 
s.t. ro s r ,, X 1 . 1 Yi 

i=1 

-a 
r i . , s - ,, Xi. 1 y;: i = n, + 1 , n 1 +n 2 •• ■ , 

N --and r Xi Yi < 1 • (2.13) 
So i= 1 

Seemingly the above problem (2.9) falls under the 

framework of the standard Geometric Programming. However, 

it does not satisfy one of the conditions required, i.e., 

the number of variables minus the number of constraints 

equals one. The difference here is n, + 2. Therefore we .. 
expect an n, + 1 parametric solution. Now when we write 

th~ Lagrangian equations for this problem, we find that 

exactly n, + 1 equations can be derived from the rest of 

the equations. Therefore in theory we should be able to 

eliminate the above n, + 1 parameters. However, in doing 

so, the orthogonality equations thus obtained become 

non-linear and we are forced to solve a system of 

non-linear equations. Thus the very advantage of using 

Geometric Programming is lost. We shall therefore turn to 

the Lagrangian multiplier method supplemented with a 

technique similar (but not exactly equal) to Geometric 

Programming. This is why detailed derivation of the 

results are given rather than simply stating the results. 

Before solving the problem (2.13) we shall first show 

that any solution to this problem is globally optimal. 
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· Let (X 0 ,Y 0 ) be any stationary point of the problem 

and R(X,Y) = P Po R(X,Y) + n 2 + 1 

i . e. , ~ R(X, Y) = 0 and ~R(X 1Y) = 0, 
°b Xi by; 

cxo,yo) (XO,yO) 

i = 1 , 2 , ... , N 

where R is as defined in (2.5). We shall show that (x 0 ,Y 0 ) 

is a global minimum of R(X,Y). 

The following two theorems [Hadl72] are used in the 

pr-oof: 

Theorem 1. The sum of convex functions is convex. 

Theorem 2. If g is a monotonically nondecreasing 

convex function defined on the convex subset S 1 c; R 1 and if 

f is a convex function defined on the convex subset S., ~ R;l 

then the composite function g(f) is a convex function on 

s 1 • 

We now transform the original function R(X,Y) to 

R'(U,V) using the transformation x; = e-tl;and y; = e-v.- and 

obtain 



N 
R' (U,V) = r 

i=n,+1 
-, 

1 -

+ 
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n, - ou; _ 1 +v; 
- r " e 

i=1 

Since each of the terms e-U,and e-~i are convex in their 

respective variables, it is easy to show, by repeated 

application of Theorems 1 and 2 that the function R'(U,V) 

is convex. It now remains to be shown that the point 

(U 0 ,v0 ) in R' (U,V), which corresponds to the stationary 

point (X 0 ,Y 0 ) in R(X,Y), is also a stationary point of 

R' (U,V) and hence a global optimal point since R' (U,V) is 

convex. 

Case 

c> R' (U,V) 
~ u; 

i = n,+1, n,+2, ••. , N 

-csu;+v; +, 
= (-11)(-cs) e 

-ou;+v;., 
( 1 - " e ) 2 

= (-,.,)(-a)x; Yi., 
-a 

(1 - "x; y;.,) 2 

= 'c)R(X,Y) 
~Xi 

cxo,yo) 

= 0 

(XO,yO) 
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Case 2. i = 1 , 2, ••• , n , 

~ R' (U 1V) = -" 
-au;+v; .. , 

~ (e ) 
C) u; -ou;+v; .. , <)Uj 

( 1 - r ; " e ) :z 

= 'c)R(X,Y) 
c} X j 

(xo,yo) 

= 0 (following same arguments as in Case 1) 

Similarly c,R' (U 1 V) = 0 

However, (u 0 ,v0 ) is the global minimum of R' (U,V), and 

the transformation between (X,Y) and (U,V) is unique. 

Therefore (X 0 ,Y 0 ) is the global minimum of R(X,Y). 

Using similar arguments it can be shown that the 

constraint problem (2.9) has a global minimum. 

Trivedi and Sigmon [TrSiBO] have independently shown 

[ChTr79] that this design problem in general has a global 

optimal solution although their objective function was 

different and they used a closed queueing network model. 
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2.5 Solution of the Optimization Problem 

n 1 -a n2 
F(R,X,Y,A) = r 0 1 + r rf 1 + 

i=l 
A0 (r 0 + r xi., Yi - 1) 

i=l 

n,+n 2 -a 
+ r Ai.,(ri. 1 +µxi. 1 Yi - 1) 

i=n,+1 

N -1 
+ A'( 1 I: Xi Yi - 1) 

So i=l 
(2.14) 

Differentiating with respect to R, X, Y and A respectively 

and equating to zero, we obtain, 

li_ = (-1) r 0 1 + Aoro = 0 
bro 

bF = (-1) r; 1 + Airi = O; i = 1, 2, •.• , n 2 

?>r i 

-a -, 
(-a)µAoXi Yi+ A' Xi.1 Yi.1 = 0; 

So 
i = 1, 2, ... , 

-a -, 
(-a)µAi.1 x; Yi + A1 x;., Yi. 1 = 0; 

So 
i = n 1+1, ••• , n,+n 2 

--a --~ = µAoXi., Yi + (-1)A' Xi Yi = 0; 
"by i So 

i = 1 , 2, ... , n , 
-a --µAi . 1 Xi. 1 Yi + <-,>~ x; Yi = O; 

So 
i = n 1 + 1, ... , n 1+n 2 

n 1 -a 
~F = r 0 + r µ xi.1 Yi - 1 = 0 
bAo i=l 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

( 2. 20) 

(2.21) 
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-a 
= ri., + P xi., y; - 1 = 0 

(2.22) 

N --r xi Yi -
5o° i=l 

= 0 (2.23) 

n, -a n 1+n 2 -a 
Define fO : >..o r p X; . 1 Yi + r >.. i . , p X; . 1 y; {2.24) 

i=1 i=n 1 +1 

60 = rc1 {2.25) 

6i = r;, i = 1 , • • • I n2 {2.26) 

-a 
6 1 ; = >..o p Xi. 1 Yi I fO 

i = 1 I 2 , • ■ • , n, (2.27) 
-a 

>..;. 1 p X i . 1 Yi I f0 

i = n 1 + 1 , ... , n 1 +n 2 (2.28) 

620= >..o ro (2.29) 

62 i = >.. i r i i = 1 I 2, ... , n2 {2.30) 

--6 3; = A. ' 
SofO 

x; Yi i = , , 2, . . . ' n 1+n 2 {2.31) 

Now clearly, 

n 1 +n 2 
r 61; 

i=1 
= {normality) {2.32) 

{2.15) => { -1 ) 60 + 620 = 0 (2.33) 

(2.16) => ( - 1 ) 6; + 62i = 0 i = 1 , 2, . . . , n2 (2.34) 

(2.17) and (2.18) => (-a) 6 1 i + 6 3 i . 1 = 0 

i=2, . . . ' n 1 +n 2 (2.35) 
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(2.19) and (2.20) => 6,i + <-,> 63i = 0 

i=l, 2, ••• , n 1 +n 2 (2.36) 

Solving (2.32), (2.35), and (2.36) simultaneously, we 

obtain 

N-i 
6,i = (o,) ai -1 

N 
(a,) -

i = 1, 2, ••• , n, + n 2 (2.37) 

Now in order to obtain optimal values for x;'s and y;'s we 

first obtain values for £ 0 and ~;•s. 

Raising (2.27) and (2.28) to the power 6 11 and (2.31) 

to the power 6 31 for i = 1, 2, ... , n 1 + n 2 respectively, 

and then multiplying we obtain: 

n 1+n 2 
I: 61 i n2 bi 

( f O ) 1 = 
an, 

~o n ~ i C (2.38) 

n, 
where an, = I: 6 1 i 

i=1 

bi = 6 1 ; ♦ 1 , 

C 

i=1 

i = 

X ,. 

1, 2, 

n 1 +n 2 
n 

i=1 

. . . , n2 



From (2.21), (2.25), (2,27), (2.29), and (2.33) 

Ao = ( 2 f O a 111 + v' 4 f 0 an, + 1 ) / 2 

and from (2.22), (2.26), (2,28), (2.30), and (2.34) 

Ai = (2 £ 0 b; + 1 + v 4 t 0 bi + 1) / 2 

Substituting (2.39) and (2.40) in (2.38) 

a ,, 
2 f O a "', + 1 + v 4 f O a n, + 1 ) ' 

n 2 .---,,--,,..,.....-,---- b ; 
n (2 £ 0 bi + 1 + ✓ 4 f 0 b; + 1 > / 2 

i = 1 

36 

(2.39) 

{2.4,0) 

(2.41) 

Substituting the values of £ 0 in (2.39) and (2.40) we 

obtain values for the >-.i's • • 
From (2.28), (2.31), (2.25) and (2.36) 

-- --x; Yi= (o-) x;., y;., 

(2.42) 

-o -o 
Xi., Yi = (o,> x; Yi., 

l = 1, 2, ••• , n,-1 

-o -o 
>--o X t\-1 • Y11 1 = Co,) >-. 1 X ti, Y tit 1 

-o -o 
>-. ; . , X 1 . 1 Yi = ( o,) Ai . , + , Xi Yi ♦ 1 

i = n 1 + 1 , ... , n 1 +n 2 -1 (2.43) 

From (2.42) and (2.43) 

GI -(,+1) 
(.!..i__) Co,) i = 1, 2, ••• , n 1 -1 

X 1 • 1 
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). ; • 1 

(2.44) 

Taking log 

a Z i . 1 = K + (1+a) z ; - z ; + 1 

i = 1 , 2, . . . , n,-1 

a Z 1. 1 = K + (1+a) z; - Z i + 1 + h;. 1 

i = n , , • • • I n 1 +n 2 -1 (2.45) 

where z; = log x;; a= aJ; 

Adding (2.45) for i = 1, 2, ... , n 1 +n 2 -1 

N-1 N-1 N- 1 
I a z;., = K(N-1) + (1+a) I 

N-1 
z i - I 

i=1 
z;. 1 + I h;. 1 

i=1 i=1 i=n 1 (2.46) 

Simplifying (2.46) 

a z O = k ( N-1 ) + z 1 + a z ,.._ 1 - z"' + L (2.47} 

N-1 n 2 -1 
where L = I hi.n,= I hi= J(log >.. 0 - log >..nl_ 

i=n 1 i=O 

. 
Also multiplying (2.45) by (1/a 1 ) and then adding for i = 
1, 2, ••• , N-1 

N N- 1 i N 
=> a Zo = K I a + a z 1 + a z 1 • 1 - a z 1 + M (2.48) 

l-=-o 
N n 2 -1 n,+i n 2-1 n2-i 

where M = a I hi I a = I hi a 
i=O i=O 
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From (2.47) and (2.48) (taking z 0 = 0) 

N N-1 i 
0 = K [ ( N- 1 ) - I a 

i=l 
] + (1-a )z1 - (1-a)zN + (L-M) 

=> z 1 = [-1- - _B__ 7 K + 1 -a z 1 + L-M 
1 -a ~ T=a'-4 ~ 

Again from (2.44) it can be shown that 

z; = l - ( 1-a 1 ) N K + 1-a 1 z N 

[ 1 - a ( 1 - a ) ( 1 -a "') J ~ 
+ 1-a 1 

1-a [ L-M tJ 
1-a 

i = 1 , 

Similarly it can be shown that 

Z i = l -
[ ,-a 

+ 1 -a 1 

1-a 
L-M 
[~ 

i-n, . . 
+ r h. a 1 -J 

. 0 J J= 

i = n 1 , ••• , N-1; 

(2.49) 

(2.50a) 

(2.50b) 

Hence all z;'s can be computed using (2.50a) and (2.50b). 

From (2.37) 

1/1 
=> Yi = (Xi/So 6 1 i ) i = 1, 2, ••• , n; (2.51) 

Hence knowing all x;'s all y;'s can be computed from 

(2.51). 

If we substitute µ = 0 in the expression for the 

steady state residence time (2.9) of a multiprogrammed 

system, we obtain the expression for the uniprogrammed 

system. Intuitively also, the number of jobs in the system 
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is reduced as the arrival rate in an open network 

decreases. As a result, the interaction among the jobs 

also goes down. In the limiting case, as the arrival rate 

tends to zero, the mean response time coincides with that 

of the uniprogrammed case. Now letting ~ = 0 in (2.50a) 

and (2.50b) we obtain, 
. 

log xi = [ i 
1-a 

(1-a 1 )N 
( 1 - a ) ( 1 - a 'R) J 

K 

+ 1 -a 1 1 og x "'; 
~ 

i = 1, 2, ••• , N. 

This is the same result obtained by Chow [Chow74]. 

The following example illustrates how the optimal solution 

for a multiprogrammed environment approaches the ones for a 

uniprogrammed environment as~ tends to zero. 

Example 

For the case N = 4, n, = n 2 = 2, and a=, ~ 1, the 

expression for optimal x;'s are 

)._ 0 · S 

[ T,] 

[ ~ ~] 2 

)._ 2 · S [ T,] 

Taking x 4 = 10 8 and S0 = 4 * 10 10 , (the actual units 

depend upon the normalization factors used in equations 

(2.2) and (2.3)) the values of x 1's are given in Table 1 

for different values of~- The values of the speeds of the 
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memory hierarchy are obtained by dividing the values of x 

in Table 1 by 10 10 • Thus for~= 0, the speeds for M 1 , M2 , 

M3 , and M• are 10ns, ,~s, 1oo~s and 10ms, respectively. 

~ X 1 X2 X3 

100 100.08 10031 1003905 
1000 100.77 1 031 3 1039305 

10000 107.24 13224 1418069 

0 100.00 10000 1000000 

Table 2. 1 

Ootimal Storage Sizes for N=4, x~=10 8 , Sc=4*10 10
, •o=6=1 

The values of x's for~= 0 are the ones obtained by 

Chow for a uniprogrammed system. 

From the data gathered from an Amdhal 470 v/6 model II 

running the Michigan Terminal System, we estimate that 

w ~ 5 request/sec. in a moderately heavy load and Po, 

which differs widely from process to process, is in the 

range of 1/1000 to 1/10,000. Hence ~(=wp 0 } = 10,000 is not 

unreasonable. From Rege's empirical data [Rege76], o is 

roughly equal to 1 and the storage unit K1 is about 200 

bytes. Thus the optimal solution for~= 10,000 (Table 1} 

is x 1 ~ 21K bytes, x 2 ~ 2.6M bytes, x 3 ~ 280 M bytes and 

x. ~ 20 B bytes. If the unit of cost is 0.00055¢ 2 , S0 will 

be approximately $200,000. 
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Because of the closed form results we are able to make 

the following important observations. From equations 

(2.50a) and (2.50b) we find that the optimal sizes of the 

various levels of memory are independent of the given 

system cost constraint 5 0 • An intuitive explanation lies 

in the often cited observation that about 10% of the memory 

is accessed 90% of the time [Welc78]. Thus, after a 

certain point, the miss-ratio will decrease only marginally 

with an increase in memory size. Thus one can conclude 

that once each level in the hierarchy has the optimal size 

given by (2.50a) and (2.50b), any additional money should 

be invested in acquiring faster memory rather than more 

memory. On the other hand, the optimal sizes of memory 

hierarchy is rather sensitive to the miss-ratio parameter 

o. The smaller the value of o in (2.2) (and hence the 

smaller the values of a, K, and Min (2.50a) and (2.S0b)) 

the larger the values of the x;'s. 

Furthermore, we observe that there is a considerable 

difference between uniprogrammed and multiprogrammed 

results when ~ is large (i.e., when arrival rate of 

requests is large and/or the exit probability of a process 

is small which implies a large number of active process 

competing for limited system resources simultaneously). 

2 The cost unit is 
assuming , = 1. 
available data, it is 
to Chow's [Chow74]. 

obtained by using 1979 DEC prices .and 
Although J = 1 gives a poor fit of the 

used so that the results can be compared 
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Finally, Chow [Chow74] reported that in a 

uniprogrammed system, the ratios of the capacities as well 

as the speeds of adjacent levels of memory for the optimal 

configuration are constant if a,= 1. This constancy in 

the ratio of capacities was also emperically observed (see 

reference 11 in [Chow74]). Equations (2.50a) and (2.50b) 

show that in a multiprogrammed environment this is true for 

the first n 1 levels and for the next n 2 levels separately. 

The results presented in this chapter are not intended 

to be used directly by the designers and evaluators in the 
• final configuration. This is because memory may not be 

available with the capacity/speed characteristics computed. 

Also some of the assumptions used in the formulation and 

the solution of the problem may not be satisfied in 

practice. However, they are useful as guidelines and as an 

configuration in an iterative design technique (see for 

example, chapter 8 of [Ferr78]). 



43 

CHAPTER 3 

ADAPTIVE LOAD CONTROL 

3.1 Introduction and Review 

One of the principle ideas behind multiprogramming is 

to make more effective use of the system resources, many of 

which can be simultaneously utilized. However, in order to 

avoid excessive interactions among the competing jobs, 

which will result in general degradation of system 

performance, the number and composition of jobs in a 

multiprogramming set should be carefully controlled. The 

policy that controls the flow of jobs in a multiprogramming 

system is called load control policy. Therefore, in order 

to p~ovide an acceptable level of service, most 

multiprogramming computer systems employ some form of load 

control policy. 

Load 

maintaining 

queues and 

control policies are typically built around 

two sets of queues, often called the eligible 

the multiprogramming queues. Jobs in the 
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eligible queues must wait until the control policy decides 

(depending upon the system state or some other criteria) to 

move them to the multiprogramming queues. Only jobs in the 

multiprogramming queues are allowed to actively share the 

system's resources. 

In a large computer installation or a distributed 

computing environment, generally a large number of jobs 

with different characteristics and resource demands are 

executing at the same time. The number of jobs competing 

for limited system resources changes from time to time. 

Their resource demands also change with time. For such a 

system , a static control policy (one which is insensitive 

to job characteristics and job-mix) cannot be expected to 

give good performance at all times. 

There are various load control mechanisms available 

which are optimal under various conditions. The optimality 

of a control mechanism is always relative to the objective 

function selected (i.e., the performance measure) and a set 

of constraints. A control mechanism that is optimal with 

respect to one performance measure may not be optimal with 

respect to others. Furthermore, a control mechanism may or 

may not be realizable because of the underlying 

assumptions. The one that is unrealizable cannot be 

implemented in practice but can be used as a standard for 

comparison. 
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A natural load control mechanism, particularly for 

paging systems, is accomplished by controlling the degree 

of multiprogramming. Previous work directed towards this 

end is primarily represented by the development of the 

working set policy 1 ([Denn68b],[Denn70],[Denn71],[RoDu73]). 

More recently, efforts to optimize the system work capacity 

lie mainly in keeping some measure related to program 

behaviour (usually paging behaviour) within some 

predetermined bounds ([DKLP76],[DeKh76],[LePo76],[GrDe77]). 

The 50% criterion [LePo76] ,for example, aims at maintaining 

the utilization of the paging device to around 0.5. The 

L=S criterion [DeKh76) proposes to keep the system lifetime 

approximately equal to that of the page swap time. The 

Knee criterion ([DKLP76],[GrDe77]) suggests that the mean 

resident set of each process should be maintained at the 

value associated with the primary knee 2 of its life-time 

function, where life time is defined to be the mean virtual 

time between two successive page faults [DKLP76). Though 

the most robust of the three, the Knee criterion also 

involves considerable amount of overhead. 

The above mentioned criteria are not based on 

According to this policy, the number of jobs allowed in the 
multiprogramming queue is limited such that the sum of their 
working sets can be accomodated in main memory. The working set 
W(t,T) of a process at any time t, with window size T, is the 
set of distinct pages referenced by the process during the most 
recent time interval of length T. 
2 The point where the curve of the system life time vs number 
of active jobs has maximum slope. 
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mathematical models and are not proven optimal. There are 

conditions under which they may perform poorly. If the 

system is execution bound, the 50% criterion does not work 

well. If the system is both execution and l/0 bound, the 

L=S criterion does not give good results. These criteria 

mainly aim at increasing the throughput rate by loading the 

system up to the point when the measured indicator suggests 

that further increase in system load may cause "thrashing" 

[Denn68a]. The methods are applicable only to paging 

systems. Furthermore, for interactive systems and combined 

batch-interactive systems, one is interested not only in 

maximizing the system throughput rate but also in 

guaranteeing good response times to the interactive jobs 

(possibly at the expense of the batch jobs). 

Landwehr [Land76] studied a combined batch-interactive 

system and proposed a scheme to activate batch jobs 

depending on the terminal load. The emphasis of the study, 

however, was on model formulation and its validation. 

There was no attempt to prevent the system from saturation 

or to optimize performance. 

Hine et al. [HiMT79] studied the problem from a 

slightly different viewpoint. Their goal was to control 

the main memory allocation for each class of job in order 

to provide different response time to each class while 

maximizing the CPU- utilization. They employed a 
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mathematical model but optimization was achieved by an 

exhaustive search technique. A heuristic extension of the 

method was also given which provided good but not optimal 

results. Moreover, their model assumes that the 

distribution of service time for various service centres 

and the values of various system parameters are known. 

In the following example we explain, using a simple 

queueing network model, how some of the schemes discussed 

above, which employ static criteria for saturation 

estimation, may not produce satisfactory results under 

various load conditions. 

Example 3.1 

Consider a simple closed queueing network model. In 

order to reduce the complexity of the model so that a 

graphical explanation can be given we consider a system 

having only one I/0 unit and a CPU. 
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Figure ~-l Simple Central Server Model 

The response time for such a system with N jobs is 

given by [CoDe73] 

N+l 
R(a,p 1 ,P 2 ,N) = 1 • __ 1_-~<~P-z~/~'~v~1~>-

ap1 N+l 
P2/,p1-(P2/,p1) 

N 

( 3 • 1 ) 

where, Pi and p 2 are the mean service rates of the CPU and 

the I/0 device respectively and a(=1-,> is the probability 

that a job leaves the system after being served by the CPU. 

The equation of the asymptote of R (i.e., as N--> c:::,,o) 

can be shown to be 

R = (1/op 1 ) * N. (3.2) 

As the system load increases the slope of the response 

time vs system load curve also increases. This increase is 

initially small. A system is considered to be saturated 

when the slope becomes significant. The saturation point 
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N* of the system can be approximated by the point of. 

intersection of the asymptote with the horizontal line R(l) 

(see Figure 3.2) and is given by 

R 

l 
I - -; 

I 
I 

I 

N* -->N 

Figure 3.2 Saturation point 

Thus the system is saturated when the condition 

holds. 

( 3. 3) 

(3.4) 
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N* 

l 

o, 02 
-->o 

Figure l•l Under-saturated and Over-saturated Regions 

In order to show pictorially that static schemes at 

times leave the system either underutilized or 

supersaturated, we shall assume that the system parameters 

~, and ~2 are constant. 

Figure 3.3 is a graph of equation (3.3), relating the 

remaining system parameters N* and 0(=1-,). Thus , if the 

operating point of the system lies within the area enclosed 

between the point AOB, the system is not saturated. 

The values of parameters like N* or o are fixed in 

most control schemes. Whenever the values of the observed 

parameters exceeds some predetermined fixed value, normally 

obtained empirically, the system is assumed to be 

saturated. If the control scheme uses (N 1 ,o 1 ) as the 

saturation point then this scheme will leave the system 
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under-utilized because it cannot operate in the unsaturated 

region S 1 U S2 • If the control parameters are (N 2 ,o 2 ) then 

the system is allowed to operate in the saturated region 

S3. 

MTS has five parameters which control the system load. 

If any one of the observed values exceeds some 

precalculated fixed value the system is considered to be 

saturated (for more detail see [Chan79]). If we consider 

this in two dimensions only 

parameters), then the analogy of 

earlier can be applied directly. 

( i • e • , 

Figure 

only 

3.3 

two load 

discussed 

The control algorithm described by Landwehr [Land76] 

is also insensitive to variations in job characteristics 

because the values of the break points bi's (defined in the 

scheme [Land76]) are fixed and do not depend on the 

instantaneous workload characteristics. 

The control scheme described by Hine et al. [HiMT79] 

characterizes jobs only by their page fault rate. The 

scheme does not take into consideration the variation in 

the I/0 requirements of the jobs. Moreover, the use of 

life-time function gives only a global picture of the 

system paging characteristics and not the local behaviour. 

It should now be clear that a control policy which 
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does not base its decision on job characteristics and 

instantataneous system conditions will not perform 

optimally under all circumstances. We need an adaptive 

control policy which is able to dynamically recompute the 

system saturation point as the characteristics of the 

workload change. From among the waiting jobs, several sets 

of job-mix can be selected to attain the calculated 

saturation point. Therefore the scheme should also be able 

to select the one that optimizes some system performance 

measure(s}. Listed below are some recent work in adaptive 

load control policy. 

Badel and Leroudier [BaLe78] have proposed an adaptive 

load control policy by introducing a system "dilatation" 

function. The system "dilatation" function is defined as 

the ratio of the real execution time of N programs running 

one at a time to the real execution time of the N programs 

running simultaneously (i.e., degree of multiprogramming 

equal to N). They observe that the "dilatation" function 

attains its maximum value when certain principles are 

satisfied. The principles are equivalent to L=S and 50% 

criteria. The implementation of their scheme is, in fact, 

implementation of these criteria. We shall see in chapter 

5 that the schemes developed in this thesis are better than 

these criteria. 

Schonbach [SchoBO] describes a macro scheduler for 
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high productivity. It is assumed that the "system balance" 

point is already specified. Here, system balance is a 

state in which various processor utilizations are at some 

prespecified levels. The macro-scheduler then chooses, 

from among the waiting jobs, a job-mix which maintains 

system balance. The scheme does not include external 

priorities and is applicable only to non-paged systems. 

Lo [LoB0] describes a load control policy using 

stochastic control theory. The policy is shown to give 

optimal results. The main weakness of the scheme is that 

its implementation requires the job parameter values to be 

known. It also makes the usual queueing theory 

assumptions, such as exponential interarrival and service 

time distributions which may not be satisfied in practice. 

With the exception of Lo's and Schonbach's schemes, 

most of the control policies mentioned above are not based 

on mathematical models and are not expected to give optimal 

results in all situations. On the other hand, Lo and 

Schonbach make such strong assumptions in their formulation 

that it is impracticable and sometimes impossible to meet 

those assumptions in practice. 

In the next three sections we develop a dynamic load 

control scheme. First, we derive an expression for the 

system saturation point. The expression depends upon 
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parameters that are directly measurable from the system, 

thereby reflecting instantaneous change in the state of the 

system. The control policy computes the optimal number of 

jobs that should be activated from each class so that the 

system is neither under-utilized nor saturated. 

~ I . 
i 
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3.2 System Model 

We here describe a queueing network model of a 

computer system. Figure 3.4 is a diagram of such a network 

which is widely cited in the literature. 

Figure 3.4 General Central Server Model 

The network consists of M service centres -- a CPU, a 

paging device, and (M-2) I/0 units. Each service centre 

consists of a server and an associated queue. · Upon 

arrival, a job waits in the queue if the server is busy. 
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When a job completes its service at the paging device or 

any of the I/0 units, it always rejoins the CPU queue. 

When a job finishes its service at the CPU, it either 

leaves the system or visits one of the other service 

centres. A new job always joins the CPU queue. 

This model assumes that no job overlaps its 

requirement of different devices i.e. , no job is being 

served by more than one service centre at the same time. 

This assumption may not hold in practice. However the 

error introduced is generally not significant [Buze78b]. 

We shall assume, for the time being, that all jobs are 

identical in their resource demand. Specifically, the 

branching frequencies from the CPU to the paging device or 

one of the I/0 devices or out of the system is same for all 

jobs. Also the mean service rates at various centres are 

same for all jobs. We shall relax these assumptions in 

Chapter 4 where we analyze a multi-class model. 

We shall use operational analysis as introduced by 

Denning and Buzen [DeBu78] to study such a system. The 

main reason for using operational analysis rather than 

classical queueing ·theory is that we do not need to 

determine the distribution of the system parameters 

required by classical queueing theory. The values of the 

system parameters can be directly measured from the system 
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or derived from the measured quantites. Moreover, the 

assumptions made to make the mathematics tractable can be 

verified by the analyst. 

3.3 Saturation Estimation 

Most load control mechanisms are based on some system 

saturation definition. Various system saturation 

definitions have been proposed ([Klei68],[Ferr78],[DeBu78]. 

Invariably the system is considered to be saturated at the 

point the response time starts to rise rapidly with an 

increase in some system load index. Under the assumption 

that all jobs are identical in their resource demands, the 

number of active jobs or the degree of multiprogramming can 

be considered to be a measure of system load. A typical 

response time curve against degree of multiprogramming is 

shown in Figure 3.3 which is shown again in Figure 3.5 for 

convenience. 

R 

l 

-I 

I , 

I 
I 

--> N 

Figure 3.5 Satu r ation Point 
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Badel et al. [BaLP75] propose to use the "dilatation" 

function as a measure of system load. Badel and Leroudier 

[BaLe78] later used this function in various definitions of 

saturation critera. For Kleinrock [Klei68], a system is 

considered to be saturated at the intersection of the 

asymptote of the normalized mean response time curve vs the 

number of active terminals and the horizontal line 

corresponding to when there is only one job in the system 

(see Figure 3.5). If the system is not allowed to get 

saturated according to this definition, the mean response 

time of the active jobs does not exceed an acceptable 

level. However, it is implicitly assumed that the program 

population is homogeneous and the system is in a stationary 

state. In the following analysis, the system saturation is 

computed at the end of each small interval (usually a few 

seconds long) during which the stationary assumption is 

more reasonable. One may argue that this may lead to end 

effects (i.e., discontinuity at the initial and terminal 

point of the observation interval). The end-effects, 

however, do not affect the validity of operational laws 

since these laws can be shown to be internally consistent 

and valid for all initial and terminal states so long as 

the operational assumptions are satisfied [Buze78b]. As 

well, since we assume all jobs to have identical resource 

demands, the homogeneity condition is satisfied. We shall 

now find an expression for the system saturation point. 
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Let S 1 , S 2 , ••• , S~be the M service centres as shown 

in Figure 3.4. S 1 is the CPU, S 2 is the paging device and 

S 3 , ••• , S~ are the various I/0 units. 

The following are observed quantities from the system. 

They are mean values within an observation period and, as 

such, are functions of time which is omitted for clarity. 

T observation period 

x; observed number of completions at centre 

s; during T 

Bi the total amount of time during which the 

service centres; is busy during T 

c; observed number of requests for centre 

s; during T 

q; request frequency, the fraction of jobs 

proceeding to service centre Si after 

completing a service request at the 

CPU(= Ci/X,), i¢1. 

We now compute the following operational quantities. 

Mean service rate of servEr Si = ~, = Xi/Bi 



System throughput rate T = (X 1 • q 1 ) / T 

= ( X 1 /B 1 ) ( B 1 /T ) 

Utilization of servers; =Pi= B; / T 
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(3.5) 

= (B 1/X 1)(Xi/X 1 }(X 1 /B 1 )(B 1 /T) 

Using the job flow balance assumption x; = c; i¢1 

(i.e., the number of requests for service at centres; 

during an interval is equal to the number of departures 

from the centre) we obtain: 

p, = p , . (" 1 /"; ) qi; i¢1 ( 3 . 6 ) 

M M 
=> I: p ; = p 1 + I: p 1 (.,,/,,;) q; 

i=l i=2 

If there is one and only one job in the system it can 

· be present at only one service centre. Therefore 

M 
I: pi = 1 

i=1 

Which implies that the CPU utilization with exactly one job 

in the system is given by: 

-1 
(,,,/,,;) q; + ,] ( 3. 7) 

Using Little's Law, the mean response time of the 

system with N jobs is given by: 
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R(N) = N / T 

Using ( 3 • 5 ) 

R(N) = N/(,,,g,p,) 

= N g;/(,,,p;g;) i:it1 ( 3. 8) 

From ( 3 . 7 ) 

[ 
M ,] R ( 1 ) = (1/,,,g,) r (,,,/,,;) g; + ( 3 . 9 ) 

i=1 

The equation of the asymptote (i.e., as N approaches 

infinity) is more difficult to derive. Let us first 

consider the simple case of a non-paging system. The 

asymptote occurs at the point when the utilization of a 

service centre (i* say) reaches unity (i.e., it becomes the 

first bottleneck of the system). 

From Buzen's analysis [Buze71], i* is that service 

centre which has the highest utilization in the interval 

(note that i* may vary from interval to interval as the 

workload characteristics change). If the CPU is the 

bottleneck, the equation of the asymptote is simply: 

(3.10) 

Otherwise, using equation (3.8) and noting that_., as well 

as the ratio (g 1/g 1 ) remains unchanged as N increases, the 

equation of the asymptote is given by: 
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R(N) I: N q;* / (,,;*qd ' i* ¢ 1 (3.11) 

For a paging system the eventual bottleneck as N approachs 

infinity must be the paging device. It need not however, 

be the first device to be saturated. 

Case(i) The paging device is not the first to saturate. 

In this case, as the system is saturated before the 

paging device is fully utilized, the asymptote should be 

computed based on the first device to reach saturation. 

Therefore equation (3.11) is still valid (see Figure 3.6) 

Case(ii) 

R 

I 

R{ 1 )+---=- ----

N* 

1 
I 
I 

I 
I 

-->N 

Figure 3.6 System Bottleneck 

The paging device is first to saturate 

The ratio gj*/q 1 will continue to increase as N 

increases and will approach infinity. A realistic approach 
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consistent with the one used in Case(i) is to use the 

values of q;*/q, corresponding to the point the paging 

device first gets fully utilized. However, this ratio is 

not easy to estimate. The observed values of q;*/q 1 can be 

used if the system is close to saturation (i.e., N* N, 

see below). Otherwise the saturation load will be 

under-estimated. This is not a problem when the system is 

lightly loaded. As can be seen subsequently, when the 

system workload becomes heavy, the control policy will 

adjust itself and the observed ~atio will eventually reach 

the desired value. Thus the saturation load N* i.e., the 

point of intersection of equations (3.9) and (3.10) is 

given by : 

M 
N* = 1 + ~ ( / ') q· '- ,,, ,,, 1 (3.12) 

i=2 

if the CPU is the bottleneck. Otherwise it is given by 

equation (3.13) as the point of intersection of (3.9) and 

(3.11): 

N* = (" i * /" 1 qi*) [ ~ ( " 1 /" i ) qi + 1] 
i=2 

(3.13) 

Thus now we have equations (3.12) and (3.13) as 

estimates of system saturation point under the assumptions 

made earlier. Both equations (3.12) and (3.11) can also be 

derived using classical queueing theory with exponential 

distributions of service times. 
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Most proposed schemes assume a fixed saturation load. 

The Michigan Terminal System for example computes the 

values of five factors at fixed intervals. If one or more 

exceeds the corresponding predetermined static saturation 

value, the system is assumed to be saturated. For the 50% 

criterion, the saturation point corresponds to the load 

beyond which the utilization of the paging device will 

exceed 0.5+c, where c is some positive constant. The L=S 

criterion to a certain extent assumes the system to be 

saturated when the mean system life time is below the page 

swap time, which is fixed for a given paging device. 

Chanson [Chan79] has shown that the saturation load is 

really a function of the characteristics of the current 

workload and cannot be very well represented by some 

constant measure. For the present model, these work load 

characteristics are q; and Pi, i= 1, 2, ••. , M. Any model 

that does not take these into consideration will sometimes 

over-estimate and sometimes under-estimate the system 

saturation load. The fact that on the average the 

over-estimation is equal to the under-estimation provides 

no comfort when the goal is to optimize performance at all 

times. 

Therefore the first criterion for load control is to 

keep the system from saturation. For a multiprogrammed 

paging computer system, the simplest way to accomplish this 
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is to keep the number of active jobs below N*, where N* is 

given by equations (3.12) and (3.13). Since the system 

throughput rate is a non-decreasing function of N before 

the system saturates [Buze71], activating N* jobs whenever 

possible will also maximize the system throughput. 

Three cases have to be considered: 

(i) the system is saturated (i.e., N > N*) 

(ii) the system is under-utilized (i.e., N << N*) 

(iii) the system is close to saturation but not yet 

saturated. 

Only case(iii) is of interest, because if the system 

is under-utilized, it is unnecessary to apply any control 

measure. Each job will be activated as soon as it arrives, 

until the condition for case(iii) is reached. If the 

system load is properly controlled, the system will attain 

saturation infrequently and only for brief periods of time. 

When the system is saturated, one simple control measure is 

not to activate any more ~atch jobs until the system comes 

out of saturation. If the system reaches saturation state 

frequently and remains in this state for extended periods 

of time, then it is highly probable that the hardware is 

inadequate to handle the normal work load and the system 
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should be upgraded. 

In the next section we consider a combined 

batch-interactive system with the assumption that the batch 

and terminal jobs are identical in their resource demands. 

In a typical environment the terminal jobs have relatively 

higher priority than the batch jobs. Therefore, their 

waiting times should be a function of their relative 

priority. Our objective is therefore, to maximize a 

weighted sum of the waiting times , without saturating the 

system. 
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1-! Optimal Selection 

The combined batch-interactive 

consideration is shown in Figure 3.7. 
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Figure 1-1 Load Control Model 
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Upon arrival into the system, batch and interactive 

jobs enter the control unit A and B, respectively, A 

control policy then decides whether to admit any job from 

the control units into the subsystem. Only those jobs 

which are present in the subsystem are allowed to compete 

for system resources. In the previous section we have 

derived the maximu~ number of jobs N* that should be 

allowed in the subsystem. Let: 

N* be the maximum number of jobs that should 

be allowed in the subsystem (obtained in 

the previous section), 

s, be the mean total interactive jobs in the 

system (observed during the previous 

interval), 

S2 be the mean total batch jobs in the 

system (observed during the previous 

interval), 

N, be the number of interactive jobs to be 

maintained in the subsystem during the 

next interval (to be calculated), 



N2 be the number of batch jobs to be 

maintained in the subsystem during the 

next interval (to be calculated), 
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R be the mean response time of the subsystem 

(not required in the final algorithm), 

R1 : be the mean response time of 

interactive jobs in the subsystem, 

R2 be the mean response time of 

batch jobs in the subsystem. 

In order to keep the subsystem from saturation it is 

required that 

N1 + N2 ~ N*. (3.14) 

We want to compute the optimal values for N1 and N2 • 

Using Little's Law, the throughput rate for interactive 

jobs is: 

T, = (N, / R,). (3.15) 

Similarly the throughput rate for batch jobs is: 
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(3.16) 

Under the assumption that the terminal and batch jobs 

are identical in their resource demands, the values R1 and 

R2 will be the same and will not change as long as the 

equality is satisfied in condition (3.14), irrespective of 

the values of N1 and N2 • 

Under the job flow balance assumption [DeBu78] (which 

should be verified) interactive and batch jobs will be 

entering the subsystem at the rates T 1 and T2 respectively. 

Therefore, on the average, an interactive job enters the 

system every 1/T, sec. It follows that on the average, the 

waiting time in the control unit for interactive jobs 

(using Little's Law) is given by: 

W1 = (5 1 - N,) / T 1 (3.17) 

Similarly the waiting time in the batch control unit is 

given by: 

(3.18) 

In a real system interactive jobs are normally given 

higher priority compared to batch jobs. Let c, and C2 be 

the weights associated with the interactive and the batch 

jobs ·respectively. Our objective is to minimize a weighted 



sum of the waiting times in the control unit. 

the optimization problem becomes: 

Min z - Min <c,w, + C2W2) 

subject to N, + N2 s N* 

0 s N, s 5 1 

0 s N2 s 52 
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.Therefore 

(3.19) 

Using (3.15), (3.16), (3.17) and (3.18), the above 

problem (3.19) can be shown to be equivalent ~o 

Min ( C1 5,/N, + C252/N2) 

subject to N1 + N2 s N* 

0 S N 1 S 5 1 

0 S N2 S 52 

For the time being we shall not 

(3.20) 

consider the 

constraints O s N1 s 5 1 and Os N2 s 52 (i.e., we assume 

that there are enough jobs waiting in the interactive and 

batch control queues). 

We shall use the Lagrange multiplier method to solve 

the problem (3.20) (without extra constraints). The 

Lagrangian equation of the problem is: 
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L(N,~) = C1S1/N1 + C2S2/N2 

+ ~(N 1 /N* + N2 /N* - 1) (3.21) 

The optimal values of N1 and N2 from (3.21) are: 

(3.32) 

and 

(3.23) 

Let us look at the problem (3.20) geometrically with 

the constraints Os N1 ss, and Os N2 s S 2 active. Figure 

3.9 is a diagram of the problem (3.20) showing the feasible 

region and the objective function for its various values. 

N2 

l 

Figure 3.8 Active Constraints 
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From the above graph, in the absence of the 

constraints Os N1 s s, and Os N2 s S2 , N1* and N2 * are 

the optimal values. 

Case ill 

--> N1 

Figure 3.9 Inactive Constraint 

Clearly the optimal values for N1 is 

N,' = S 1 

and N2 ' = N* - N,', which gives maximum value of 

the objective function satisfying the constraints. 
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Case (ii) 

As in Case(i) it can be seen that an optimum value for 

and N1 ' = N* - N2 ', which gives maximum value of 

the objective function satisfying the constraints. 

Case (iii) N1 * > S 1 

It can be easily seen that N2 ' = S2 and N1 ' = S 1 will give 

the optimal solution in tnis case. 

The final control policy, which we shall call SELF 

(standing for Saturation Estimation and Load-control with - -
[eed-back), works as follows. The values N1 * and N2 * are 

computed from the equations (3.22} and (3.23} or from one 

of the three cases as described above. During the 

observation period, whenever an interactive job leaves the 

subsystem, an interactive job will be injected into the 

subsystem provided the interactive control queue is 

non-empty. When a new interactive job arrives, it enters 

the subsystem immediately provided (i) there is no waiting 

interactive job, and (ii) the number of interactive jobs in 

the subsystem is less than N~*· Otherwise, it waits in the 

interactive control queue. 
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The batch control works in a similar fashion. 

In the implementation of SELF the values of the 

parameters are estimated on the basis of their past values. 

In order to reduce the error in the estimation, we use a 

special technique from time-series analysis [Kend76], 

called exponential smoothing. This technique can be 

described as follows. Let Pi be the expected value of the 

parameter for the time interval [i, i+1]. Let Xi be the 

observea value of the parameter at the time t. Pi can be 

expressed as 

(3.25) 

where the exponential weight factor I is a constant between 

zero ana one. Similarly 

=> 

oc 
Pi.1 = (1-,) t ,j Xi-j-1 

j=O 

Pi (3.26) 

Now, let the error maae at time (i-1) in predicting x; be 

E; , then, 

Ei = Xi - P;.,. (3.27) 
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Substituting in equation (3.26) 

Pi = Xi - ' E1 

(3.28) 

The remaining problem is to find a proper value of,. 

If the error ti is sufficiently small, equation (3.28) 

will be satisfied for almost any value of,, so that we can 

use the value of, from the previous int~rval. If Ei is 

large, we recompute a value for, by minimizing the sum of 

squares of the errors given by: 

- "O DO 

I: { X . - ( l - , ) I: , "X j .• l'· 1 } 2 • 

j=i J ka:O 
(3.29) 

In practice, the summation in equation(3.29) does not 

have to involve many terms (say K) before ,~ (0<,~1) 

approaches zero. Moreover, , need not be very accurate, 

and standard techniques exist for its efficient 

computation. 

From (3.28), it can be seen that not all previous 

values of X are needed to compute the expected value of X 

for the next interval. The future value can be computed 

from the previous predicted values and the present error. 

However, several immediate past values of X may be needed 

in the computation of,. The effect of, on the expected 
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error is discussed in Chapter 5. 

So far we have assumed that all the jobs are 

statistically identical in their characteristics. In the 

next chapter we shall relax this condition and develop a 

control scheme that makes an optimal selection by taking 

into consideration the job characteristics along with their 

external priorities. 
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CHAPTER 4 

MULTICLASS CONTROL 

4.1 Introduction 

In a typical general purpose computer system there 

exist various classes of jobs as far as their resource 

demand characteristics are concerned. In such an 

environment the natural approach for an analyst is to use a 

multiclass model of the system that would treat the 

different classes of jobs differently ([Rode79], [Bard79], 

[ReLaBO]). The jobs within a class, however, are supposed 

to have identical resource demands. In this analysis, it 

is assumed that the jobs do not change class during their 

stay in the system. The number of job classes considered 

is finite. Moreover, it is assumed that when a job arrives 

at the system it is possible to classify it into one of the 

job classes. An example of a primitive method of job 

classification is to compute the job class based on card 

parameters for batch jobs (e.g., CPU time limit, user-given 
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job . priority, user IDs etc.) and on the command type for 

terminal jobs (e.g., edit, compile, copy, etc.,). However, 

it is not assumed that the resource demands of a job in a 

particular class are known. The resource demands of 

various classes of jobs are continuously being measured, 

thereby preserving the dynamic nature of the control. 

4.2 Multiclass Saturation Estimation 

In a non-paging system with jobs that are identical in 

their resource demands, the branching frequencies, from one 

service centre to another, are independent of the number of 

jobs present in the system. They depend mainly on the job 

characteristics. On the other hand, in a multiclass 

environment, the branching frequencies are not only 

dependent upon the total number of jobs but also on the 

number of jobs present in each class (specifically, the 

ratio of the number of jobs in each class). 

Thus load control in such a system consists of two 

mutually dependent problems as follows: 

(a) compute an optimal ratio corresponding to the 

number of jobs that should be selected from each 

class, 

(b) compute the saturation point of the system for 



80 

the ratio obtained in (a). 

The optimality in (a) is subject to a constraint 

defined by {b) and the saturation point obtained in (b) 

must satisfy the ratio obtained in {a). Thus the two 

problems {a) and {b) are dependent upon each other and we 

must seek a simultaneous solution. In a number of studies, 

a solution of one of the problems has been obtained for a 

fixed solution of the other problem. For example, 

Schonbach [SchoBO] solves the problem (a) for the case in 

which system saturation is already defined and fixed. 

In the rest of this section we first derive the 

saturation load for a multiclass system and then describe 

the multiclass control procedure. The following notations 

are used: 

K 

M 

s ( j) 

N 

n{i,j,N) 

A ( j) . 

total number of job classes, 

total number of service centres, 

number of class j jobs in the subsystem 

the system state vector(s 1 , s 2 , ••• , s~), 

number of class j jobs at 

centre i for a given system state N, 

total number of jobs at centre i 

for a given system state~, 

throughput rate of class j jobs 



w(i,j) 

R ( j) 

d(i,j) 

S(j) 

" 1 

q(i,j) 

g i (N) 

C ( j) 

: mean time a class j job spends at 

service centre i during its stay in the 

system (including queue wait and 

service times), 

. . 

mean time spent in the multiprogramming 

subsystem by class J jobs, 

mean total service demand of class j 

jobs at service centre i , 

mean total number of class j jobs in 

the system, 

mean service rate of service centre i, 

normalized frequency of requests for 

centre i by class j jobs (i.e., the 

ratio of class j jobs joining centre 

i after being serviced by the CPU to 

the total number of class j job 

completions at the CPU), 

normalized frequency of requests for 

centre i (i.e., the ratio of jobs 

joining centre i after being serviced 

by the CPU to the total number of 

completions at the CPU), 

weight for class j jobs. 

It can be easily shown that g;(~; is given by: 

81 



Clearly M 

K 
= I 

j=1 

I qi(!i) = 
i=1 

M 

n(1,j,N) g{i,j,N) / n,{N). - - -

K 
I q(i,j,!) = 1 and 

i=l 
I n(l ,j,N) = n,(!) 

j=1 -
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( 4. , ) 

There are several methods to compute n(i,j,!) for a 

given system state vector N ([Buze73],[ReKo76],[ReLa80]). 

The drawback in most of these methods is that the overhead 

involved is quite high. Since the aim here is to develop 

an adaptive scheme, it is desirable to minimize the amount 

of computation involved. Reiser and Lavenberg's [ReLaBO] 

mean value analysis for example, can be used to compute 

n(i,j,N). The method assumes that the service time of each 

service centre is load-independent and has only one server. 

According to their study the mean waiting time, the mean 

throughput rate and the mean queue sizes for each class j 

at service centre i are recursively given by: 

w(i,j) = d(i,j) {1 + n;(N-e(j))) 

M 
= s(j) / I w{i,j) 

i=1 

n(i,j) = ~(j) w{i,j) 

( 4 . 2 ) 

{ 4. 3) 

{ 4 • 4 ) 
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where e(j) is the jth unit vector. Starting with the 

initial condition n(i,j,N) = 0 and using equations (4.2), 

(4.3) and (4.4) one can then obtain n(i,j,~). Their 

arguments are based on the intuition that upon arrival at a 

service centre, a job "sees" the system with itself removed 

(i.e., one job less in the system). Little's Law is then 

applied to the entire system and to each individual service 

centre. This algorithm requires 2KM - R additions and 

2KM + R multiplications/divisions per recursive step. 

There are a total of s 1 .s 2 ••• s~ such steps. In a system 

with a moderately large number · of classes and a large 

number of jobs such a scheme might not be economically 

feasible. Reiser and Lavenberg have extended their scheme 

and have reduced it to the problem of solving a set of 

non-linear equations. 

For each centrer they introduced a correction term 

E(i,j,r,N) such that 

n ( i , j ., ~ -e ( r ) ) = n ( i , j , ~) - E (i , j , r , ~) ( 4. 5) 

with the assumption that 

E(i,j,r,N) = 0 for 1 :¢ r 

i.e., only the class with the customer removed is affected. 
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They also assumed that ,(i,j,i,N) is given by 

(4.6) 

where n;'(sj) is the mean number of class j jobs at the 

service centre i with Sj class j customers. 

parameters of the system are 

di' (i,j) = d(i,j) n;(!) / n(i,j,!) 

The modified 

( 4 . 7 ) 

Using (4.5), the recursive equations (4.2), (4.3) and (4.5) 

can be reduced to the set of non-linear equations 

R 
w(i,j) = d(i,j) ( , + n ; - r E ( r , j , i ) ) (4.8) 

r=1 

M 
A ( j) = s ( j) I r w(i,j) (4.9) 

i=1 

n(i,j) = A(j) w(i,j) (4.10) 

The equations (4.8), (4.9) and (4.10) along with (4.6) 

can be solved simultaneously to obtain n(i,j,!). The 

number of operations required by this procedure is 

proportional to M. l!I, which is considerably less than the 

original algorithm. In the implementation of the 

multiclass control we use this extended version of their 

scheme. 
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Once the n(i,j,~))'s are known for a given None can 

compute g;(N) from equation (4.1). Following the same 

arguments used in the case of a single class system, it can 

be shown that the saturation vector N* of the system is 

given by the relation 

(4.11) 

K 
where IN*I = r s(j)*, q,*(~)=1 and i* is the device with 

- j= 1 

the highest utilization in the observation period. 

Notice that N* is no more a single number as in the 

case of a single class. Rather it is a vector and equation 

(4.11) alone is not sufficient to uniquely determine~•. 

This is why we need a second criterion for load control. 

4.3 Multiclass Optimal Selection 

The following different objectives are considered for 

optimal selection. 

(a) Compute the ratio that maximizes the system 

throughput rate. 

(b) Compute the ratio that takes into consideration 

job priorities (i.e., some weights are associated 
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with each class of jobs) and minimizes a weighted 

function of their waiting time. 

Schonbach [SchoB0] solved the problem using (a). One 

obvious problem with this approach (i.e., without 

considering the job priorities) is that it may give 

relatively higher priority to small jobs. In some cases 

large jobs may have to wait indefinitely. Furthermore, it 

usually leads to a dynamic programming problem which in 

turn requires high overhead. 

criterion (b). 

Therefore, we shall use 

For criterion (b) the optimization problem becomes 

K 
Min z _ Min { r c; w; } 

i=1 

K 
subject tor s(i) s I N*I 

i=1 

where Wj is the waiting time for class j jobs in the 

system. 

Wj = R(j) + (S(j)-s(j)) / (s(j)/R(j)), j=1,2, ••• ,K. 

Following arguments similar to the one in Chapter 3 it 

can be shown that the solution of the problem is given by: 

s(i)* = IN*I iC(i)S(i)R(i) 
K 
r ✓c ( j ) s < j } R c j > 

j=1 

i = 1, 2, ... , K. (4.12) 
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· Furthermore, it can be shown that _only (K-1) out of 

the K relationships in (4.12) are linearly independent. In 

order for the system not to be saturated, the s(i)'s must 

satisfy (4.11). Therefore, there are K unknowns (the 

s(i)'s) in R non-linear independent equations. A unique 

solution therefore exists. 
M 

Note that R(j) = r w(i,j) whose value is obtained in in the 
i~ 

computation of q;(~) in equation (4.1). 

The multiclass control procedure, which we shall call 

MULTI-SELF, can be summarized as follows: 

Step 1. 

Step 2. 

Step 3. 

During the observation period T, collect the 

values of the parameters required for the 

computations (i.e., the branching frequencies to 

different service centres for different classes 

of jobs: the average service rates of different 

centres and the mean number of jobs in the system 

for each class). 

From the measured parameter values compute their 

expected values for the next interval using 

exponential smoothing. 

Solve the system of non-linear equations (4.8) 

through (4.12) simultaneously. 
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For each class i, maintain the number of jobs in 

the subsystem to be s(i)* (if possible} during 

the next observation period. 

The next chapter describes a simulation study of the 

performance of the two control schemes SELF and MULTI-SELF. 

Their performances are compared to that of other existing 

schemes. 

• 
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CHAPTER 5 

SIMULATION RESULTS AND ERROR ANALYSIS 

5.1 Introduction 

Throughout the development of the control schemes SELF 

and MULTI-SELF presented in the last two chapters, a number 

of assumptions have been made. These assumptions may not 

be satisfied in practice. It is therefore desirable to 

determine the accuracy of these models and to compare their 

performance to those of some of the previous models. 

Because of the lack of resources it was not possible 

to implement the proposed schemes on a real system. 

Instead, a general purpose event-driven simulator for a 

central server model was developed. The schemes were then 

implemented on this simulator to control the flow of jobs 

through the simulated system. The workload that drives the 

simulator does not make the same assumptions that were made 

in the development of SELF and MULTI-SELF. For example, 
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the jobs are not identical, and their characteristics may 

change from time to time. Also it may not be possible to 

maintain the computed degree of multiprogramming during 

every observation interval and the job flow balance might 

not be satisfied during every observation interval, etc. 

The simulator is quite flexible. It can be run with any 

practical number of different classes of jobs and can 

handle any practical number of I/0 devices. Also, it can 

use various distributions to generate the service times of 

different service centres. 

• 
The major components of the simulator are described in 

the next section. Results comparing the performance of the 

two schemes with some of the existing ones are also 

presented. A summary of the various assumptions made and 

their effects on the performance of the two schemes is 

given in the last section. 

5.2 Description of the Simulator 

The simulator is written in PL/1 and is implemented on 

an Amdhal 470 V/8 running under MTS. There are several 

components of the simulator. They will be examined after a 

discussion of the flow of jobs through the simulated 

system. 

A sequence of job-processing step is described below. 



91 

Each of them corresponds to an event within the model. The 

simulated model is the same as that depicted earlier in 

Figure 3.7. 

(1) Upon arrival, a job enters the control unit and 

joins the queue corresponding to its class. If the control 

queue corresponding 

control policy allows 

subsystem, the job 

to its class is empty and the current 

more jobs of this class in the 

moves to the CPU queue immediately. 

Otherwise, it waits for its ,turn in the control queue. 

(2) A job may join the CPU queue from one of the 

several service centres or from the control queue. 

Depending on where it came from and the conditions under 

which a job enters the CPU queue the following activities 

will happen. 

(a) If it enters from the control unit, it is assigned a 

full CPU quantum. Its next I/0 time and type are 

generated. The time indicates the amount of CPU 

service required between two successive I/0 

operations. The type indicates whether the job will 

leave the system or join one of the I/0 units. In the 

latter case it also indicates which of the I/0 units 

it will join. 

(b) If it enters after completion of its time quantum, it 
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is assigned a new full time quantum. 

(c) If it enters after completion of an I/0 request, its 

next I/0 time and type are generated as in (a). 

(d) If it enters after completion of a page fault, its 

remaining time quantum, the next I/0 time and type 

will be used. 

Depending upon the system to be simulated, jobs may enter 

the head or the tail of the CPU queue. In MTS, for 

example, a job joins the head of the CPU queue after a page 

fault or an I/0 competion. It joins the tail of the queue 

on the first arrival or if its time quantum has expired. 

(3) Departure from the CPU occurs on completion of one 

of the following events: 

(a) the CPU time quantum expires; in this case, the 

remaining time for the next I/0 event is computed, and 

the job is moved back to the CPU queue, 

(b) an I/0 request is made; in this case, the remaining 

CPU quantum time is computed and the job is moved to 

the requested I/0 unit, 

(c) a page fault occurs; in this case, the remaining CPU 
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quantum and I/0 time for the currently running job are 

computed, the job is moved to the paging device and 

the next page fault time is generated. 

(4) Upon arrival to the paging device, the job waits 

in the paging queue if the device is busy. Before the 

paging device starts processing the job, its service time 

is generated. Upon completion of the page service the job 

rejoins the CPU queue. 

(5) Upon arrival at an I/0 unit, the job waits in the 

I/0 queue if the device is busy. Before the I/0 device 

starts processing the job, its service time is generated. 

After completion of the I/0 service the job rejoins the CPU 

queue. 

(6) Upon completion of all the CPU and I/0 demands, 

the job's statistical data are collected. The control 

procedure is then activated to check if another job can be 

injected into the subsystem. 

The simulated system is initialized with the system 

and job parameters. The system parameters then generate a 

basic data stucture for the modelled system. Some of the 

system parameters are: the number of job classes, the 

number of I/0 units, the control criterion, the memory 
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size, the life-time function parameters, etc. The job 

parameters for each job class are the exit probability, the 

I/0 rates etc. 

When a job is admitted into the subsystem, a job 

descriptor is created for it. The job descriptor 

identifies the job and its class. Data associated with the 

job's activity throughout its life span in the subsystem 

are collected and stored in the job descriptor. 

The queues at the various service centres are 

maintained as a linked list with head and tail pointers. 

Each node of the list is a pointer to a job descriptor 

indicating the presence of the job at that particular 

position in the queue. 

A separate procedure dynamically creates the I/0 units 

at the beginning of a session. Upon each I/0 request, 

another procedure links this request to the proper I/0 

unit. The request is then serviced. 

The simulator can be run under different control 

schemes viz., 50%, L=S, Knee, SELF, MULTI-SELF and NO 

CONTROL. An event is scheduled every T units of time to 

collect data and activate the required control procedure. 

The control procedure then computes the number of jobs in 

each class that should be maintained in the next T units of 
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time. During the observation period the mean number of 

jobs in the subsystem is not allowed to exceed the computed 

control number. 

Page faults are generated using the system life-time 

function as defined in [BeKu69] i.e., 

L = 2b ( 5. 1 ) 
1 + ( c/p) 2 

where band care constants and pis the average number of 

pages allocated to each job. Each time a page fault 

occurs, the next page fault time is computed based on 

equation (5.1) and the number of jobs currently in the 

subsystem. A page fault is implemented as a system 

activity rather than a job activity. Therefore whenever 

the page fault time is reached, whichever job is present at 

the CPU at that time will experience the page fault. 

In order to create exactly the same workload for 

various experiments with different control schemes, a 

pseudo-random number generator is used. Given the same 

initial seed, the same sequence of random numbers will be 

generated each time. To compare various control schemes, 

the simulator is run using the same random-number stream. 

Under various control schemes different job activities can 

take place in different order. Therefore, a common 

random-number stream can not be used for different jobs. 
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In order to resolve this problem, we use the fact that the 

order of job arrivals is independent of the control scheme. 

Thus each job is assigned a seed as soon as it arrives at 

the system. This seed is used to generate a pseudo 

random-number sequence for various job-related activities 

(such as, next I/0 time and type, I/0 service time etc.). 

Furthermore, because paging is a system activity and 

depends on the size of main memory, the number of jobs in 

the system etc., the page-fault time and page service time 

use independent random-number streams. 

The simulator was validated in two different ways. 

(a) Selective dumps of all activities over several 

prespecified periods of time were taken and hand traced. 

Because there is a fairly large number of activities even 

in a small interval of time it was not possible to go over 

all the activities of one session. Therefore, (b) Little's 

Law was used to compute the global mean behaviour of the 

system as well as of the individual service centres: these 

were then verified ag~inst the observed ones. The observed 

values were within 0.05% of the computed values. 

5.3 Simulation Results 

In order to. study the feasibility and behaviour of 

SELF and MULTI-SELF we first compare the performance of 

SELF with some other schemes, specifically the 50%, the 

r 
! 



97 

L=S, and the Knee criteria. Then SELF is compared with 

MULTI-SELF. The workload corresponding to the results in 

Table 5.1 through Table 5.13 are given in Table A.1 through 

Table A.9 in Appendix A. The system parameter values were 

selected to be similar to those of the IBM 370/168 system 

used by the UBC computing centre a few years ago. The 

workload parameter values were based on measured workloads 

on the 370/168 with perturbations introduced to test the 

stability of SELF and MULTI-SELF. 

Because simulation runs are expensive, the runs were 

made as short as possible. The runs of 120 simulated 

seconds were made. During this period, approximately 200 

jobs were processed. It is found that the mean response 

time stabilizes around 120 seconds. Table 5.1 shows a 

typical set of mean response times observed between 75 and 

180 seconds at an interval length of 3 seconds. 

SIMULATED 
TIME (SEC.) TERMINAL BATCH 

75 0.3112 0.3744 
90 0.3484 , 0.4420 

105 0.3482 0.4632 
120 0.3489 0.4627 
135 0.3380 0.4630 
150 0.3389 0.4630 
165 0.3337 0.4396 
180 0.3403 0.4448 

Table 5. 1 Mean Response Time 
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The performance of the 50% criterion and the L=S 

criterion depends upon certain parameter values which are 

functions of the system load. For example, in the L=S 

criterion, we must find a constant P and use L=pS. The 

value of P depends upon the job characteristics. From 

Table 5.2 we obtain 0.6 as the best value of P for the 

workload under consideration. 

TERMINAL 

BATCH 

SYSTEM 

Table 5.2 

0.2 0.50 0.60 0.75 

9.2093 1.4124 1.7085 1.7247 

13.7833 4.1951 3.4939 4.4230 

10.3977 2.3303 2.3109 2.6465 

Mean Response Time (in ~-l For various 

values of~ in L=S criterion 

Although the job characteristics change dynamically in 

the workloads that we shall be analysing, the value of, is 

a constant in the L=S criterion. Therefore for every 

workload we first obtain a best value of P and then use it. 

Several simulation runs were made which show the 

superiority of SELF over 50% and L=S. Some of the results 

obtained are presented in Tables 5.3 through 5.5. 



99 

SELF 50% %IMP\ L=S %IMP 
RESP. RESP. OVER RESP. OVER 
TIME TIME 50% TIME L=S 

(SEC) (SEC) (SEC) 

TERMINAL 0.5409 0.5531 2.20 0.5444 0.64 

BATCH 0.8901 0.9600 7.28 0.9574 7.08 

SYSTEM 0.6552 0.6785 3.43 0.6724 2.55 

Table 2·1 Resp. Time and %lmpr. for Workload in Table A.3 

SEi..F 50% %IMP1; L=S %IMP 
RESP. RESP. OVER RESP. OVER 
TIME TIME 50% TIME L=S 
(SEC) (SEC) (SEC) 

TERMINAL 0.6111 0.8262 26.03 0.8404 27.28 

BATCH 1.5418 2.2729 32.16 2.0050 23.15 

SYSTEM 0.9531 1. 3 58 6 29.84 1.2684 24.86 

Table 2•! Resp. Time and ' %Impr. for Worklopd in Table A.4 

1 % impr. = (50%Resp. time - SELF Resp. time) * 100 
50% Resp. Time 
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SELF 50% %IMP. L=S %IMP. 
RESP. RESP. OVER RESP. OVER 
TIME TIME 50% TIME L=S 
(SEC) (SEC) (SEC) 

TERMINAL 1 • 9096 2.7638 30.90 2.6061 26.73 

BATCH 3.8750 4.9179 21 • 21 4.4218 12.37 

SYSTEM 2.5218 3.4243 26.36 3.1707 20.47 

Table 2·2 Resp. Time and %Impr. for Workload in Table A.5 
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The parameters for the workload corresponding to these 

results are given in Appendix A. In order to demonstrate 

the dynamic adaptability of SELF over the other schemes, an 

artificial variation in the workload is introduced. 

Figures 5.1 and 5.2 represent graphs of the mean number of 

jobs vs simulation time and correspond to the workload of 

Table 5.3 and 5.4 respectively. The workload corresponding 

to Figure 5.1 has a smaller variation compared to the 

workload of Figure 5.2. The relative improvement of SELF 

over 50% and L=S in Table 5.4 is also greater as compared 

to the one in Table 5.3. Thus it is apparent that the 

larger the workload variation, the more superior is the 

performance of SELF relative to the other two schemes. 

This demonstrates the robustness and adaptive nature of 

SELF under varying workload. Under light workload all the 

schemes give approximately the same results as no control 

is required (see for example Table 5.3). 

Although the Knee criterion is better than the 50% and 

the L=S criteria, it is expensive to implement in practice. 

However, since the workload of the simulator is 

distribution-driven and the life-time function approximated 

by equation (5.1), it is possible to simulate the Knee 

criterion without excessive overhead. The Knee criterion 

requires each job to run at the knee of its life-time 

function, i.e., at the point where the curve of the 

life-time of a process vs its memory allocated has maximum 
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slope. It can be shown that, if the life-time function is 

simulated using equation (5.1), then this maximum slope is 

attained when p = 2c, which is independent of the parameter 

b. Therefore, if equation (5.1) is used to simulate the 

life-time, by suitably choosing the values of band cone 

can create a worst case workload for the Knee criterion 

without significantly affecting the performance of the 

other criteria. After selecting a combination of 

parameters to favour the Knee criterion, the results shown 

in Table 5.6 were.obtained. 

SELF 50% %IMP. L=S %IMP. KNEE 
RESP. RESP. OVER 

' 
RESP. OVER RESP. 

TIME TIME 50% TIME L=S TIME 
(SEC) (SEC) (SEC) (SEC) 

TERMINAL 2.2405 3.2066 43.11 3.1424 40.25 2.8461 

BATCH 4.2405 5.0555 18.29 4.6618 9.94 4.3399 

SYSTEM 2.8448 3.7727 32.62 3.6112 26.94 3.3070 

Table 5.6 Resp. Time and %Impr. of SELF, 50%, L=S and Knee 

We observe that the knee criterion is better than the 50% 

and L=S criteria but not as good as SELF under the workload 

considered. 

SELF allows one to adjust the quality of service given 

to the terminal and batch jobs. By choosing proper weights 

%IMP. 
OVER 
KNEE 

27.02 

2.34 

16.24 
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the analyst can reduce the mean response time of the 

terminal jobs to almost the lower limit (i,e., when only 

terminal jobs are present in the subsystem), at the expense 

of the mean batch response time. Tables 5.7 and 5.8 show 

the mean response times of terminal and batch jobs for 

different values of the weight factors for two different 

workloads corresponding to those in Tables A.7 and A.8 

respectively. 

C1/C2=1 2 3 4 5 

TERMINAL 10.6451 7.4705 5.4945 4.8306 4.5491 

BATCH 20.1333 22.7354 22.6035 23.4670 24.8099 

SYSTEM . 14.2816 13.0492 11.6829 11.4475 11.5916 

Table 5.7 ~ Resp. Time (in sec) Using SELF With Diff. 
Weight Ratios Under Heavy Workload 

C1/C2=1 2 3 4 5 

TERMINAL 2.3774 2.2405 2.0437 1. 9000 1.7773 

BATCH 3.8004 4.2405 4.1070 4.3152 4.4305 

SYSTEM 2.8128 2.8448 2.6620 2.6286 2.5777 

Table 5.8 ~ Resp. Time ( in sec ) Using SELF With Diff. 
Weight Ratios Under Light Workload 

20 

2.9849 

27.6247 

11.4095 

20 

1 . 777 0 

5. 1705 

2.7853 
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The results in Tables 5.7 and 5.8 show the effect of 

changing the weights under heavy and light loads 

respectively. 

The overhead involved in the implementation of SELF 

consist of two different components. 

(a) The overhead due to collecting the data during 

the observation intervals. 

(b) The overhead due to the computation of the 

control number. 

Overhead (a) depends upon the system configuration 

(e.g., the number of 1/0 units etc.,) and job 

characteristics (e.g., total CPU demand, number of 1/0 

requests etc.). The overhead in (b) only depends upon the 

system configuration. The overhead (a) for the system and 

the workload considered in the above examples is estimated 

to be approximately 0.125% of CPU time on an Amdhal 470 V/8 

system. The percentage is computed as follows: 

% CPU Time= Computation Time * 100 
Interval Length 

The overhead in (b) is estimated to be approximately 0.04% 

of CPU time. Therefore, the total overhead for SELF is 

approximately 0.165%. This level of overhead is certainly 

acceptable. 
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We now compare SELF with MULTI-SELF. In the previous 

examples only two classes of jobs were considered. We use 

multi-class control to handle four different classes of 

jobs in our next examples. This small number is chosen in 

order to keep the simulation costs reasonable. MULTI-SELF 

can theoretically handle any number of classes. The jobs 

in the first two classes are short jobs with high 

priorities and can be considered as terminal jobs. The 

jobs in the other two classes are longer jobs with low 

priorities and can be considered as batch jobs. 

The mean response times of the four different classes 

of jobs under SELF and MULTI-SELF are shown in Table 5.9. 

CLASS 

1 

2 

3 

4 

Table 5.9 

SELF MULTI %IMP 
RESP. SELF OVER 

WEIGHT TIME RESP. SELF 
{SEC) TIME 

{SEC) 

2.5 0.4329 0.3000 30.70 

2.0 0.4483 0.3191 28.82 

,. 5 2.0155 1. 9418 3.66 

,. 0 4.4868 4.2737 4.75 

Mean Response Times of Jobs Under 

SELF and MULTI-SELF With Static Beta 
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It may be observed that there is a considerable 

improvement in the response times of short jobs with high 

priorities, whereas only marginal improvement is observed 

for longer jobs with low priorities. This improvement is 

achieved at the expense of additional overhead. The total 

overhead of MULTI-SELF for this configuration of the system 

and for the selected workload is approximately 4.32% of the 

total CPU time. The corresponding overhead for SELF is 

approximately 0.165%. 

In the implementation of SELF and MULTI-SELF in the 

• above example, the values of , (in equation (3.25)) are 

computed only once for each parameter and then these 

constant values are used throughout the experiment. One 

can improve the performance of these schemes by dynamically 

computing the values of, at each interval using equation 

(3.29), thus reducing the error in the estimation of the 

values of the workload parameters. 



CLASS 

1 

2 

3 

4 

Table 5.10 

SELF MULTI %IMP 
RESP. SELF OVER 

WEIGHT TIME RESP. SELF 
(SEC) TIME 

(SEC) 

2.5 0.3564 0.2875 23.96 

2.0 0.3057 0.2998 1. 92 

1 . 5 1.8350 1.8029 1 . 7 4 

1 . 0 4.1917 4.1322 1 . 41 

Mean Response Times of Jobs Under 

SELF and MULTI-SELF With Dynamic Beta 
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Table 5.10 shows the mean response times of the four 

classes of jobs with dynamic computation of ,. It is 

observed that MULTI-SELF exhibits an improvement in the 

response time over SELF. It is not as much as in the case 

of Table 5.9. Furthermore, by dynamically recomputing the 

values of I in SELF an improvement is observed over SELF 

with static 1 (see Table 5.11). In the case of MULTI-SELF 

only marginal improvement is achieved when I is dynamically 

recomputed (see Table 5.12). 



STATIC DYM. 
CLASS WEIGHT BETA BETA 

RESP. RESP. 
TIME TIME 
(SEC) (SEC) 

1 2.5 0.4329 0.3564 

2 2.0 0.4483 0.3057 

3 1 . 5 2.0155 1.8350 

4 1.0 4.4868 4.1917 

Table~-.!..!. Mean Response Times of Jobs Under 

SELF with Static and Dynamic Beta 

STATIC DYM. 
CLASS WEIGHT BETA BETA 

RESP. RESP. 
TIME TIME 
(SEC) (SEC) 

1 2.5 0.3000 0.2875 

2 2.0 0.3191 0.2998 

3 1.5 1. 941 8 1.8029 

4 ,. 0 4.2737 4.1322 

Table ~.g Mean Response Times of Jobs Under 

1 1 0 

%IMP. 
OVER 

STATIC 
BETA 

21 . 44 

46.64 

09.83 

07.04 

%IMP. 
OVER 

STATIC 
BETA 

4. 1 7 

6.05 

7. 1 5 

3. 3 1 

MULTI-SELF Resp. With Static and Dynamic Beta 

The overhead involved in the case of SELF with dynamic 

computation of the values of - is approximately 12.40% of 
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CPU time, where as in the case of MULTI-SELF it is 

approximately 45.69%. Therefore we can conclude that it is 

not worthwhile to dynamically compute the values of J, at 

least in the case of MULTI-SELF. It seems better to 

implement MULTI-SELF with a constant value of J rather than 

SELF with dynamic values of J. 

The above observations were made on the basis of a few 

examples. This is due to the high cost of simulation. 

However, the workload was carefully selected to reflect the 

worst case for these schemes. It is expected that the 

performance of these schemes will vary with different 

workloads but their order of magnitude will not differ 

significantly. 

5.4 Error analysis 

In this section w~ outline some of the most important 

assumptions made in order to make the models mathematically 

tractable and the control schemes practically feasible. We 

'also analyse the error introduced because of these 

assumptions. 

Assumption 1. Identical jobs 

SELF assumes that all the jobs are identical in their 

resource demands, whereas MULTI-SELF assumes that the jobs 
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within each class are identical. In an actual system, job 

characteristics may vary widely. The synthetic workload 

selected to drive the simulator does not make this 

assumption. Not only different jobs have different 

characteristics, but also their characteristics change from 

time to time. The extent of the improvement obtained by 

classifying jobs into four classes can be seen in Table 

5.9. Schonbach [SchoBO] suggested a way of reducing this 

error by creating· an independent class for each job. This 

may solve the problem to a certain extent but the overhead 

involved will also increase considerably. 

Assumption 2. Estimation of Parameters 

Both the schemes estimate the values of parameters on 

the basis of their past values. In order to reduce the 

error in the estimation we have used the simplest method of 

exponential smoothing. This error can be further reduced 

by dynamically computing the values of - in the exponential 

smoothing. Although dynamic computation of , does not 

require more than a maximum of 10 previous values (i.e., an 

insignificant storage requirement) the computation overhead 

in quite high. Moreover, it is observed that the 

improvement achieved by using dynamic, is marginal in the 

case of MULTI-SELF. A compromise is to recompute the value 

of J after large intervals of time. Table 5.13 shows the 

percentage error involved in the prediction of one of the 
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system parameter without smoothing, with static smoothing 

and with dynamic smoothing. 

% ERROR RESP. TIME %IMP. 
(SEC) 

NO SMOOTHING 50.5 6.2271 --
STATIC 1 2. 6 4.4868 38.78 

SMOOTHING 

DYNAMIC 04.4 4.1917 48.55 
SMOOTHING 

Table 5.13 %Error and~- in Resp. Time under 

Static, Dynamic and No Smoothing 

The improvements in both cases are significant over no 

smoothing. But there is not much improvement of dynamic 

smoothing with respect to static smoothing. 

Assumption 3. Constant Degree of Multiprogramming 

The two schemes require the degree of multiprogramming 

to be maintained at the computed level. This condition may 

not be satisfied during every observation interval. For 

example, during certain intervals there could be very light 

load (i.e., very few jobs) at the beginning followed by a 

sudden burst of jobs. Under such circumstances, the number 

of jobs in the system will be initially below the computed 
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number and then, because of the control, it will never 

exceed the control number. As a result, the mean number of 

jobs in the subsystem after the time interval will be less 

than the control number. This problem can be solved to a 

certain extent by comparing the control number with the 

mean number of current jobs in the system rather than with 

the actual number of current jobs in the system. An 

improvement of approximately 12% in response time was 

observed when this modification was made. 

Assumotion 4. Job Flo~ Balance 
.. 

Operational analysis requires the job flow to be 

balanced at every service centre in the system. It is 

found that in the simulated system this is satisfied almost 

95% of the time. Whenever it is not satisfied (i.e., the 

number of arrivals at a centre during an interval is not 

equal to the number of departures) the error 2 is never more 

than 2%. 

There are a few other factors that effect the validity 

of the results. The observation interval and the CPU time 

quantum length are set to 3.0 and 0.010 simulated seconds 

respectively. These are the values used by the Michigan 

Terminal System at UBC. However, there are standard 

2 %Error= lno. arrival - no. departure 
no. Departure 

* 100 
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techniques to compute the value of the observation interval 

(see [BoJe76]). 
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CHAPTER 6 

CONCLUSIONS AND EXTENSIONS 

This thesis has demonstrated the versatility of using 

optimization techniques along with queueing theory to solve 

some of the decision-making problems in computer system 

performance evaluation. The emphasis has been to obtain 

solutions on the basis of mathematical modelling. Closed 

form solutions were obtained wherever possible to reduce 

the computational overhead and to attempt a theoretical 

explanation of empirical findings. 

The first problem considered was to obtain an optimal 

design for the memory hierarchy of a multiprogramming 

system. To our knowledge, this is the first work that 

considers explicit queueing at some of the memory levels. 

A model for estimating the optimal capacities and speeds of 

the memory hierarchy has been developed. It was assumed 

that the technology cost function and the hit-ratio 



function can be represented by power functions. 

appears to be a rough but reasonable approximation. 
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This 

The 

quantities to be optimized (mean response time in this 

case) are expressed as a function of the desired parameters 

through the use of queueing models. Optimization 

techniques are then applied to derive the optimal values 

for the design parameters. Using the assumptions stated in 

Chapter 1, the design problem is shown to have a global 

optimal solution. It was observed that there is a 

considerable difference between the optimal design of 

uniprogrammed and multiprogrammed systems. Therefore, the 

results obtained for a uniprogrammed system cannot be 

adequately used in the multiprogrammed case. The empirical 

observation that there is a constant ratio between the 

optimal sizes of different levels of memory was 

mathematically verified. It was also inferred that once a 

system has achieved the optimal memory size, any extra 

budget should be used in the acquisition of faster rather 

than more memory. 

The technique presented here can be extended and 

applied to several other related problems. A natural 

extension is to include the CPU cost and speed in the 

design problem. One can also attempt to find the optimal 

amount of information (e.g., page size) that should be 

moved from one level to another, upon each request. A 

similar problem has been attempted by Trivedi 
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et al. [TrWSBO]. By considering a closed queueing network 

model and by maximizing the throughput rate they find the 

optimal CPU speed, device capacities and allocation of 

files among various secondary devices. Most of the 

previous work in optimal system design assumes identical 

jobs. This strong assumption needs to be relaxed. 

The second problem considered was to control the flow 

of jobs through a system. Two control schemes, SELF and 

MULTI-SELF, were developed. Unlike most other work, the 

schemes are based on mathematical modelling and thus their 

optimality can be proven. Furthermore, by the use of 

operational analysis, the assumptions used in the model 

formulation are minimized and all the required parameters 

are observable. 

Basically, these schemes consist of two steps. In the 

first step, the saturation point of the multiprogramming 

subsystem is estimated. Next, the optimal ratio of the 

number of jobs from each class that should be maintained in 

the multiprogramming subsystem is computed. The objective 

in this optimization problem is to minimize a weighted sum 

of the waiting times of jobs in the system without 

saturating the system. 

In the development of SELF it was assumed that all the 

jobs have identical resource demands. However, the scheme 
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is . adaptive and is capable of modifying itself when the 

workload varies. If there is a sudden burst of jobs during 

an observation interval and the subsystem 9ets saturated, 

then during the subsequent observation intervals, more jobs 

are prevented from entering the subsystem until the system 

comes out of saturation. On the other hand, if the 

calculated saturation point is smaller than the actual 

saturation point, more jobs are allowed to begin execution 

in the subsequent interval. 

The identical job assumption of SELF is relaxed by 

using mean-value analysis of multi-class systems. The 

multi-class scheme MULTI-SELF can handle any practical 

number of different classes of jobs. Although an 

improvement was observed over SELF when using MULTI-SELF, 

the overhead involved in the implementation of MULTI-SELF 

are also higher than that of SELF. In the development of 

MULTI-SELF it was assumed that once a job arrives at the 

system 

belongs. 

it is possible to determine the class to which it 

It is also assumed that the jobs . do not change 

their class during their stay in the system. An extension 

to this work would be to relax these assumptions. 

In order to compare the performance of SELF and 

MULTI-SELF with some of the major control schemes a general 

purpose simulator of a central server model was developed 

and different control schemes were implemented on it. The 
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workload that drives the simulator did not make most of the 

assumptions required for the development of SELF and 

MULTI-SELF. It was found that the two schemes perform 

better than the existing ones over a variety of workloads. 

The superiority of the two schemes over the other schemes 

increases as the variation in the workload increases. This 

shows that the two schemes are more adaptable to changes in 

the workload. Furthermore, to improve the accuracy, an 

exponential smoothing technique is used in the estimation 

of system and job parameters required by the two schemes. 

Finally, we would like to implement these schemes on an 

actual system and verify their performance using real 

workloads. 
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Aopendix A 

SYSTEM JOB 
CHARACTERISTICS TERMINAL 

ARR. RATE17 SEC.) 3.0 
DELTA ARR. RATE*(/SEC) 1. 50 
I/0 REQU. RATE(/SEC.) 250 
DELT_A I/0 REQU. RATE** 100 
EXIT PROBABILITY 0.90 
DELTA EXIT PROB.*** 0. 1 0 
I/O SERVICE RATE(/SEC) 30 
PAGE SERV. RATE(/SEC) 100 
QUANTUM LENGTH(SEC) 0.01 
B ( EQU 5. 1 ) 0. 0 1 
C ( EQU 5. 1 ) 120 
MAIN MEMORY (PAGES) 500 
OBSERVATION INTERVAL 3 
LENGTH (SEC) 
DELTA ARR. PERIOD1SEC) 12 
DELTA CHARACTERISTIC 3 
PERIOD++ (SEC) 

TABLE A.1 WORKLOAD FOR TABLE 5.1 

SYSTEM 7 JOB 
CHARACTERISTICS TERMINAL 

ARR. RATE(/SEC.} 5.0 
DELTA ARR. RATE*(/SEC) 2.50 
I/O REQU. RATE(/SEC.) 250 
DELTA I/O REQU. RATE** 100 
EXIT PROBABILITY 0.90 
DELTA EXIT PROB.*** 0. 1 0 
I/O SERVICE RATE(/SEC) 30 
PAGE S~RV. RATE(/SEC) 100 
QUANTUM LENGTH(SEC) 0.01 
B ( EQU 5. 1 ) 0. 0 1 
C ( EQU 5. 1 ) 80 
MAIN MEMORY (PAGES) 500 
OBSERVATION INTERVAL 3 
LENGTH (SEC) 
DELTA ARR. PERIOD~SEC) 1 2 
DELTA CHARACTERISTIC 3 
PERIOD++ (SEC) 

TABLE A.2 WORKLOAD FOR TABLE 5.2 

* Variation in arrival rate. 
** Variation in I/O request rate. 
*** Variation in exit probability. 
+ Period of variation in exit probability. 
++ Period of va r ia t ion in job charate ri s t i cs. 

128 

BATCH 
1.25 
1.00 

99 
20 

0.90 
0. 1 0 

30 
100 
0 . 0 1 
0.01 

120 
500 

3 

1 2 
3 

BATCH 
3.00 
1. 50 
so 
20 

0.90 
0. 1 0 

30 
100 
0.01 
0.01 

80 
500 

3 

1 2 
3 
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SYSTEM/ JOB 
CHARACTERISTICS TERMINAL BATCH 

ARR. RATE(/SEC.} 3.5 1. 50 
DELTA ARR. RATE*(/SEC) 0.50 o.oo 
I/0 REQU. RATE(/SEC.) 250 50 
DELTA I/0 REQU. RATE** 50 1 0 
EXIT PROBABILITY 0.90 0.90 
I/0 SERVICE RATE(/SEC) 30 30 
PAGE SERV. RATE(/SEC) 100 100 
QUANTUM LENGTH(SEC) 0 • 0 1 0. 0 1 
B ( EQU 5. 1 ) 0. 0 1 0. 0 1 
C (EQU 5.1) 120 120 
MAIN MEMORY (PAGES) 500 500 
OBSERVATION INTERVAL 3 3 
LENGTH (SEC) 
DELTA ARR. PERIOD~SEC) 1 2 1 2 
DELTA CHARACTERISTIC 3 3 
PERIOD++ (SEC) 

TABLE A.3 WORKLOAD FOR TABLE 5.3 

SYSTEM / JOB 
CHARACTERISTICS TERMINAL BATCH 

ARR. RATE(/SEC.) 4.5 2.50 
DELTA ARR. RATE*(/SEC) 1 • 50 0.50 
I/0 REQU. RATE(/SEC.) 250 50 
DELTA I/0 REQU. RATE** 50 1 0 
EXIT PROBABILITY 0.87 0.87 
DELTA EXIT PROB.*** 0.05 0.05 
I/0 SERVICE RATE(/SEC) 30 30 
PAGE SERV. RATE(/SEC) 100 100 
QUANTUM LENGTH(SEC) 0.01 0. 0 1 
B ( EQU 5. 1 ) 0.01 0 • 0 1 
C (EQU 5.1) 120 120 
MAIN MEMORY (PAGES) 500 500 
OBSERVATION INTERVAL 3 3 
LENGTH (SEC) 
DELTA ARR. PERIOIT(SEC) 1 2 1 2 
DELTA CHARARATERISTIC 3 3 
PERIOD++ (SEC) 

TABLE A.4 WORKLOAD FOR TABLE 5.4 
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SYSTEM/ JOB 
CHARACTERISTICS TERMINAL BATCH 

ARR . RATE(/SEC.) 4.00 2.00 
DELTA ARR. RATE*(/SEC} 1. 50 0.50 
I/O REQU. RATE(/SEC.} 250 50 
DELTA I/O REQU. RATE** 50 1 0 
EXIT PROBABILITY 0 •• 87 0.87 
DELTA EXIT PROB.*** 0.05 0.05 
I/O SERVICE RATE(/SEC} 30 30 
PAGE SERV. RATE(/SEC} 100 100 
QUANTUM LENGTH(SEC) 0. 0 1 a.a, 
B ( EQU 5. 1 } a.a, 0.01 
C ( EQU 5. 1 ) 120 120 
MAIN MEMORY (PAGES} 500 500 
OBSERVATION INTERVAL 3 3 
LENGTH (SEC) . 
DELTA ARR. PERIODtSEC} , 2 , 2 
DELTA CHARACTERISTIC 3 3 
PERIOD++ (SEC) 

TABLE A.5 WORKLOAD FOR TABLE 5.5 

SYSTEM/ JOB 
CHARACTERISTICS TERMINAL BATCH 

ARR. RATE(/SEC.) 5.0 2.5 
DELTA ARR. RATE*(/SEC} 2.50 1 • 50 
I/O REQU. RATE(/SEC.} 250 50 
DELTA I/O REQU. RATE** 100 20 
EXIT PROBABILITY 0.90 0. 90 
DELTA EXIT PROB.*** 0. 1 0 0. 1 0 
I/O SERVICE RATE(/SEC) 30 30 
PAGE SERV. RATE(/SEC) 100 100 
QUANTUM LENGTH(SEC) 0.01 0. 0 1 
B (EQU 5.1) 0. 0 1 0. 0 1 
C (EQU 5.1) 120 120 
MAIN MEMORY (PAGES} 500 500 
OBSERVATION INTERVAL 3 3 
LENGTH (SEC} 
DELTA ARR. PERIODtSEC) , 2 , 2 
DELTA CHARACTERISTIC 3 3 
PERIOD++ (SEC) 

TABLE A.6 WORKLOAD FOR TABLE 5.6 



1 31 

SYSTEM/ JOB 
CHARACTERISTICS TERMINAL BATCH 

ARR. RATE(/SEC.) 5.0 3.50 
DELTA ARR. RATE*(/SEC) 2.50 1.50 
I/O REQU. RATE(/SEC.) 250 50 
DELTA I/O REQU. RATE** 100 20 
EXIT PROBABILITY 0.90 0.90 
DELTA EXIT PROB.*** 0. 1 0 0. 1 0 
I/O SERVICE RATE(/SEC) 30 30 
PAGE SERV. RATE(/SEC) 100 100 
QUANTUM LENGTH(SEC) 0.01 0. 0 1 
B ( EQU 5. 1 ) 0. 0 1 0.01 
C ( EQU 5. 1 ) 120 120 
MAIN MEMORY (PAGES) 500 500 
OBSERVATION INTERVAL 3 3 
LENGTH (SEC) 
DELTA ARR. PERIOD(SEC) 1 2 1 2 
DELTA CHARACTERISTIC 3 3 
PERIOD++ (SEC) 

TABLE A.7 WORKLOAD FOR TABLE 5.7 

SYSTEM/ JOB 
CHARACTERISTICS TERMINAL BATCH 

ARR. RATE(/SEC.) 5.0 2.50 
DELTA ARR. RATE*(/SEC) 2.50 1. 50 
I/O REQU. RATE(/SEC.) 250 50 
DELTA I/O REQU. RATE** 100 20 
EXIT PROBABILITY 0.90 0.90 
DELTA EXIT PROB.*** 0. 1 0 0. 1 0 
I/O SERVICE RATE(/SEC) 30 30 
PAGE SERV. RATE(/SEC) 100 100 
QUANTUM LENGTH(SEC) 0.01 0.01 
B ( EQU 5. 1 ) 0.01 0. 0 1 
C (EQU 5.1) 120 120 
MAIN MEMORY (PAGES) 500 500 
OBSERVATION INTERVAL 3 3 
LENGTH (SEC) + 

DELTA ARR. PERIOD(SEC) 12 12 
DELTA CHARACTERISTIC 3 3 

TABLE A.8 WORKLOAD FOR TABLE 5.8 
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SYSTEM/ JOB 
CHARACTERISTICS CLASS 1 CLASS 2 CLASS 3 CLASS 4 

ARR. RATE{/SEC.) 2.75 2.25 1. 75 1 • 25 
DELTA ARR. RATE*(/SEC) 0.50 0.50 0.50 0.50 
I/0 REQU. RATE{/SEC.) 250 200 75 50 
DELTA I/0 REQU. RATE** 50 50 1 0 1 0 
EXIT PROBABILITY 0.78 0.80 0.90 0.92 
DELTA EXIT PROB.*** 0.05 0.05 0.05 0.05 
I/0 SERVICE RATE(/SEC) 30 30 30 30 
PAGE SERV. RATE(/SEC) 100 100 100 100 
QUANTUM LENGTH(SEC) 0. 0 1 0 . 0 1 0.01 0. 0 1 
B { EQU 5. 1 ) 0.01 0.01 0.01 0. 0 1 
C ( EQU 5. 1 ) 120 120 120 120 
MAIN MEMORY {PAGES) 500 500 500 500 
OBSERVATION INTERVAL 3 3 3 3 
LENGTH (SEC) 
DELTA ARR. PERIOIY(SEC) , 2 1 2 1 2 1 2 
DELTA CHARACTERISTIC 3 3 3 3 
PERIOD++ (SEC) 

TABLE A.9 WORKLOAD FOR TABLE 5.9 AND TABLE 5.12 

'· 




