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Abstract 

Two models of Random Access Machines suitable for sorting integers 

are presented. Our main results show that i) a RAM with addition, sub

traction, multiplication, and integer division can sort n integers in 

the range [0,2cn] in O(n loge+ n) steps; ii) a RAM with addition, 

subtraction, and left and right shifts can sort any n integers in 

linear time; iii) a RAM with addition, subtraction, and left and right 

shifts can sort n integers in the range [O,nc] in O(n loge+ n) 

steps, where all intermediate results are bounded in value by the 

largest input. 





1. Introduction 

The general problem of sorting is one of the most fundamental land well 

studied) problems in computer science. For the most general formulation of 

the problem it is natural to restrict one's attention to comparison-based 

algorithms. In this setting, it is well-known that O(n log n) operations 

(comparisons) are necessary and sufficient to sort an arbitrary n-tuple. It 

is also well-known that if an n-tuple consists entirely of integers in the 

range [O,n-1] (or, in fact, any range of size O(n)), then it can be sorted 

in O(n) operations by a RAM. This can be done by exploiting the capability 

of indirect addressing. In this context the question arises whether the 

capability of arithmetic operations will help to speed up sorting processes 

even if the integers to be sorted are very large compared ton. A first answer 

to this question can be given by generalizing the above cited linear time 

algorithm. Applying a multi-pass bucket-sort one gets an O(n m) upper bound 

for sorting an n-tuple of integers in the range [0,nm-1] [1]. It is natural 

to ask what is the largest range of integers for which a sorting algorithm can 

be constructed that runs asymptotically faster than the conventional O(n log n) 

comparison-based algorithms. We will describe some sorting algorithms for two 

models of RAM's. which extend the range of integers over which comparison based 

sorting can be improved. 
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2. Model s of computation 

We consider two variants of the RAM-model which is described in [l] 

5 pp. Inputs to our RAMs are n-tuples (x1, ... ,xn) E Nn which are written 

on an input tape. The output, which is some permutation of the input n-tuple, 

is written onto an output tape. Both of our models include conventional 

branching instructions and the ability to indirectly address arbitrarily many 

registers. Our two RAMs are distinguished according to their ability to 

execute specific integer operations. A machine of type RAM; (i = 1 ,2) is able 

to carry out integer operations from the set Oi only: 

o1 = {+,.:.,x,L/J} 

o2 = {+,.:.,Shift L,Shift R} 

Let c(a) denote the content of register a. The shift instruction Shift R (a} 

(respectively, Shift L(a)) assigns to the accumulator (i.e. register 0) the 

value Lc(0)/2c(a} J (respectively, c(0)2c(a}), that is, its previous content 

is shifted right (respectively left) by c(a) bits. 11
.:.

11 denotes the monus 

operation, i.e. x.:.y = max{O,x-y}. 

At a first glance the operation set o2 appears to be weaker than the set 

o1, since shifts involve very restricted types of integer multiplication and 

division. In fact, this is the case provided the size of the operands and 

results does not become too large. However, if shifts are used in a completely 

unrestricted fashion, then they introduce t~e power of exponentiation and hence 

operation set o2 becomes more directly comparable with the set {+,.:.,x,L/J,2x}. 
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We can make the above comparisons more precise by introducing two 

schemes for charging for operations on our different models. First, it is 

worth pointing out that traditionally sorting has been studied on unit charged 

(i.e. unit cost criterion) models of computation. Certainly, this assumption 

underlies the basic results cited in the preceding section. To be consistent, 

then, it makes sense to assign a unit cost to the reading, printing, or other 

manipulation of integers comparable in size to the largest input I (a not 

unreasonable choice when the size of I is comparable to the word size of real 

machines). If this unit charging policy is extended to the manipulation of 

integers of all sizes we have what we call the uniform charging scheme. On 

the other hand, we can account, at least in part, for the higher cost of 

multiprecision operations by charging in proportion to log1(x) for the mani

pulation of an integer x. We call this a logarithmic charging scheme. While 

logarithmic charging is clearly the more realistic policy, it is one of the 

objectives of this paper to shed light on the inherent uniform complexity of 

sorting (and, in particular, to complement established lower bounds using 

this measure [8]). 

Let Si(n,R) {respectively, s1(n,R)), i = 1 ,2, denote the time required, 

assuming uniform (respectively, logarithmic) charging, by a RAM. to sort an 
' , 

arbitrary set of n integers drawn from the range [0,R-1]. lSince Si(n,R) and 

s1(n,R) are both n(n), it should be clear that the specific range [0,R-1] is 

irrelevant and that Si(n,R) and Si(n,R) denote equally well the complexity of 

sorting any n integers x1, ... ,xn where max{x1, ... ,xn}-min{x1, ... ,xn} < R.) 

In the next section we develop a RAM1-algorithm that, assuming uniform 

charging, significantly extends the range of integers over which conventional 



- 4 -

sorting algorithms can be asymptotically improved. While the algorithm fully 

exploits uniform charging, using integers significantly larger than the inputs, 

the result is interesting from a theoretical point of view, since it suggests 

that the lower bound arguments of Paul and Simon [8] for sorting on RAM's 

without integer-division cannot be generalized in a straightforward way. In 

section 4, we describe an improved radix sorting algorithm that can be performed 

on both RAM models. Since this algorithm uses integers of the size of the 

largest input only, its uniform and logarithmic complexities are equivalent. 

The algorithm employs a technique of systematic range reduction which also can 

be used to improve the result of section 3. In section 5 we present an integer 

sorting algorithm for RAM2
1 s that runs in linear time under the uniform charging 

scheme. Once again this result has more theoretical than practical importance 

since the algorithm uses extremely large integers. The concluding section 6 

comprises a discussion of related work. In particular, we give some comments 

on the n(n log n) lower bound due to Paul and Simon [8] for RAM's with addition, 

subtraction, and multiplication, and we discuss the question of whether integer

division can help to speed up sorting. For understanding this section it is 

useful to be familiar with the proof of Paul and Simon. 
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3. Fast sorting using multiplication and integer-division 

As we observed in section l, bucket-sorting techniques yield an O(nm) 

upper bound for sorting an n-tuple of integers in the range [0,nm-1]. Since 

this algorithm can be implemented on both of our models without introducing 

integers larger than the maximum input, we have 

If we are interested in sorting with uniform charging this bound can be 

strengthened significantly. 

In order to get a faster sorting algorithm we will consider first the 

following algorithm which has the disadvantage of working correctly only for 

"spread out" inputs. This will be made precise in the succeeding Lemma. 

Algorithm l. 

Step l : 

Step 2: 

Step 3: 

Step 4: 

4a: 

4b: 

4c: 

Read input 

Compute Pn 

Compute qn 

x1 , ..• ,xn 
n 

= I: i Xi 
i =l 
n 

= I: X. 
; =l l 

For i = n, ... , 1 do 

x , . ) + x . + ( x . + l .:. x . ) (=max ( x . , x . + l ) ) 
n,1 Ji Ji Ji Ji J; 

Output xn(i) 
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4d: ,r \ i} + {~ i if X,r ( i) = X j i 

Ji+l if xir(i) = xji+I 

4e: pi-l + pi ! ir(i)xir(i) 

qi-1 +qi! xir(i)" 

Lemma l 

(i) Algorithm l has uniform time complexity O(n). 

\ii) Algorithm 1 sorts an input (x1, ... ,xn) correctly if: 

Xi 1 
";,j(l<i,j<n) x. t (n_,,n-l). 

T;j - J 

Proof: The validity of the first statement is obvious. To prove part lii) 

first note that 

l 

i 
I: irlj)x (') 

j=l ,r J 

i 
I: X I • ) 

j=l ir,J 

= 

S . 1 h ,nee x,. l) < - 1 x (") we ave 
ir,1- - n- ,r, 

and 

i - , 
I: (irlj)-ir(i)x (J') 

+ j=l ,r 

i 
I: X ( • ) 

j=l ir J 

for i > j 

i-1 i-1 i-2 l 
I: tlir(j)-,r(i)l)-l)x (') ~ (n-2) I: x (') ~ (n-2)x (· l) I: . 

j=l ,r J j=l ,r J ir l- j=O(n-l)J 

< 1 :~ xir(i-1) = (n-l)xir(i-1) ~ xir(i)" 
n-1 

I 
I· 
I: 

l 

f{ 

I 
1· 



- 7 -

i-1 i 
Thus I r (1r(j)-1r(i))xir(J·) I < t x ( ·) 

j=l j=l ,r J 

which implies 

D 

The requirement (ii) of Lemma 1 means that each input-integer is (n-1)-times 

larger than any smaller input-integer. This very restrictive requirement 

trivially can be weakened if integers x1 , ... ,x~ are sorted instead of input 

Lemma 2: 
x. d d+ l 

N satisfy f i (d+l ,-d-) for i ; j. Then for 
J 

y. 1 
-

1 1 (- n-1) for i ~ J·. y. J!. n- 1 ' r 
J 

Proof: Suppose yi > Yj• Then, 

d+l dflog nl > 2rlog nl 
> (-a-) > n-·1. D 

Hence it will be useful to have a fast algorithm computing the function 
n . 2c 2c 

h: ( Nn x N)-+ N with h((x1, ... ,xn),c) = (x 1 , ... ,xn ). We now proceed to 

the description of such an algorithm whose existence is interesting in its own 

right. 
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An essential tool for the principal construction of our algorithm is 

Chinese Remaindering: 

Chinese Remainder Theorem 

Let {p1, ... ,pn} be a set of positive integers which are pairwise 

relatively prime. Let 

and 

n 
p = JI 

i =l 
p. 

1 

0 < z. < p
1
. 

- 1 

Then there exists exactly one z E N satisfying: 

{ i ) 

(; i) 

U < z < p; and 

'd. ( l . ) z. - z mod p
1 
.• 

1 ~l~n 1 

An integer z with property(*) for two given n-tuples 

can be computed in the following way: For all i(l ~ i 

( for 1 < i ~ n) . 

(*) 

(z1 , •.. ,zn) and (p1 , ... ,pn) 

< n) let q. = ...£.. • 
- 1 P; 

Because of the relative primality of p1 , ... ,pn there exists an ri E N with 

1 < r. < p. and q.r. = 1 mod p
1 
•• 

- 1 1 1 l 

Then it is easy to see that 

n 
z = ( 1: 

j=l 
q.r.z.) mod p 

J J J 
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has required property(*) since 

(for this method to obtain z see [1] p. 294 lemma 8.2). 

In order to apply Chinese Remaindering we have to find suitable integers 

p1 , ... ,pn' which are mutually prime. The next Lemma shows that this can be 

done in a straightforward manner: 

Lemma 3: Let P1 E N be arbitrary and 1 et 

; =l 
pi = l JI pj) + 1 for i = 2, ... ,n, and 

j=l 

n i-1 
p = JI pi ; qi = ...E,_ ri = p.-1 = JI pj. Then 

i =1 pi l j=l 

li) Pi, ... ,pn are pairwise relatively prime 

(ii) qiri = 1 mod pi. 

Proof: The validity of proposition (i) is obvious. Furthermore, since 

n i -1 n 
qi = JI pj = ( TI p.)( TI p.) 

j=l j=l J j=i+l J 

j,i 

and p. 
J - , mod pi for j > i ' it fol lows that 

i - l 
qi - l TI p j) mod pi 

j=l 

-
_, mod P; 
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Proposition lii) now follows immediately. D 

The following algorithm computes the function 

Algorithm 2 

Step l: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Read input x1 , ... ,xn 

Compute x = max (x1 , •.• ,xn) 
l<i<n 

3a: 

3b: r1 + l 

For i = l , ... , n do 

4b: p. + r. + l 
l l 

n 
Compute p = n p. 

i = 1 l 

For i = 1, ... ,n do 

q.+__p_ 
l P; 

Do 7a: 
n 

U1 
+ I: q;f ;X; 

i =l 

7b: u + u' mod u' 
p (= u• - l - p J p) 

2c 
Compute w: = u 

' 

i 
I 
I· ,. 
' 1.: .• 
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Step 9: For i = l, ... ,n do 

9a: yi + w mod p. ( , = w - l-w J p.) pi , 

9b: Write output yi. 

In a first stage, including steps 1-6 the algorithm constructs integers 

p1 , ... ,pn which are pairwise relatively prime and sufficiently large. In step 7 

these integers are used to encode input integers x1 , ... ,x into an integer u. 
n C 

Step 8 computes the 2c-th power of u and by step 9 we get numbers yi = x~ 

The preceeding considerations and the fact that for x,y,p E N, 

xy = (x mod p)(y mod p)mod p show the correctness of algorithm 2. 

It is easy to see that steps l ,2,3,4,5,6,7 and 9 require O(n) steps. 

Performing steps 3 and 8 by continued squaring requires time O(c). Hence, we 

have established the following: 

Theorem 1. There is a RAM1-algorithm computing the function 

with uniform time complexity O(n + c). 

From theorem 1 and Lemma 1 we can deduce our first main result. 

Theorem 2. There is an algorithm with uniform time-complexity O(n + c) sorting 

n natural numbers x1 , ... ,xn correctly, if the following condition is satisfied: 

v . . (1 < ;, , , J 

X. l 
j _< n) (x. > x.) ..... ?-

1 
> l + -

1 J xj - 2c (**) 
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Proof: Concatenate a modified version of algorithm 2 with algorithm 1. The 

algorithm runs in three stages: 

1. First compute integers, y1 , ... ,yn employing algorithm 2: 

2. 

~ecause oft**) then we have 

i - 1 Compute z. = 2 y .. 
l J 

C 
(x~ 1nrlog nl , 

Obviously the zi(l ~ i ~ n) have the same order as the xi(l < i ~ n) and 
zi 1 

i 'f j => z-: ' ( 2' 2). 
J 

Z
rlog nl r1og nl 3. Compute 1 , ... ,zn and sort these integers z1, ... ,zn by algorithm 

l . 

Stage l requires O(c + log n) steps, and stage 2 and stage 3 can be carried out 

in O(n) steps. Hence the whole sorting algorithm has a running time of O(n + c) 

steps. 

Theorem 2 has one important corollary: 

Corollary 1: Natural numbers x1 , ... ,xn satisfying xi< 2cn (for i = 1 , ... ,n) 

can be sorted within O(cn) computation steps by a RAM1, i.e. s1(n,2cn) ~ O(cn). 
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en J Proof: If x1 , ... ,xn €. [0,2 - 1 are input integers we have 

x. x.-x. l l 
x. > X. = _l = 1 + l J > 1 + - > 1 + -

1 J x j x j x j 2c n 

Therefore x1 , ... ,xn can be sorted in time O(n + en) = O(cn). 
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4. An improvement of radix-sort 

In this section we will present a sorting algorithm which is applicable 

to both models of RAM's. The basic result of this section is a technique of 

systematic range reduction that is of interest in its own right. 

Lemma 4: i = l ,2. 

Before proving this Lemma we will show two important consequences. The first 

one is an improvement of corollary l. 

Corollary 2: s1(n,2cn) ~ O(n log c + n). 

Proof: For simplicity assume that c = 2t for some t EN. By induction on t, 

Lemma 4 can be generalized to 

Combining this with corollary l, we have 

Corollary 2 now follows immediately. □ 

The second corollary of lemma 4 describes a new radix-sorting method 

that increases the range over which conventional sorting algorithms can be 

improved, for both of our RAM models, even assuming logarithmic charging. 



- 15 -

m-1) ( Corollary 3: s1{n,n .::_ 0 n log m + n) 

Proof: The result follows from lemma 4 by induction on m, exploiting the 

trivial bound s1(n,n) = O(n). D 

Proof of Lemma 4: Suppose we are given n integers in the range [0,2k-l], for 

some k £ N. We will prove the result for RAM2
1 s only; the proof for RAM1

1 s 

involves a straightforward simulation of SHIFTing using ordinary multiplication 

and integer division {which entails an additive overhead of at most O(log kJ). 

Furthermore, we assume that k is known in advance; its computation would 

require at most O(log k} steps on either model. 

Imagine that we have a RAM2 with 2[k/ 2] + O(n) registers each with a 

capacity of k bits (necessary and sufficient to represent numbers in the range 

[0,2k-l]. Thus we can refer, without confusion to the 11 first 11 i bits of a 

specific register. {Of course these bits can be accessed by appropriate 

SHIFTing). 

The algorithm starts with 2Lk/ 2J empty buckets. Input integers are 

assigned, in succession, to bu~kets; the bucket number is given by the integer's 

first Lk/2J bits (that is, its first half). An integer is represented within 

its bucket by its second rk/21 bits (which together with the bucket number 

uniquely identify the original integer). Obviously, when k is large most 

buckets will remain empty, however, each bucket must have the capacity for 

a 11 n integers. 

Suppose that some b buckets, we will refer to them as B1 ,B2, ... ,Bb, 

are assigned one or more integers. (We call these "active" buckets). Let ij 

be the index of Bj and let nj be the number of elements assigned to Bj. The 
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bucketing procedure builds a list structure of size 2lk/2J + O(n) (see Figure 1) 

containing: 

i) a list Bucket [i], for O < i < 2lk/2J of the elements assigned to bucket 

number i ; and 

ii) a list Active-buckets of b active bucket records, each of which gives 

the bucket number and size (number of elements) of one active bucket. 

Since the buckets are assumed to be initialized, it should be clear that the 

bucketing stage can be completed in constant time per element, that is O(n) 

steps in total. 

The algorithm next sorts the list Active-buckets by size, that is, we 

can assume that n1 ~ n2 ~ ... ~ nb. This can be done using a conventional 

bucket sort since b < n and n. _< n, for all i. Thus the original problem has 
- l 

been reduced to the following: 

i) sort the list Active-buckets on the bucket numbers (i 1 ,i 2, ... ,ib); 

ii) sort the list of elements associated with each active bucket; and 

iii) combine the sorted bucket lists in the order specified by the sorted 

Active-bucket list to give the final sorted list. 

Clearly, step iii) can be accomplished in O(n) steps. Note that all of the 

numbers to be sorted in steps i) and ii) lie in the range [0,2rk/ 2l - l]. 

Let r denote the unique integer satisfying 

r r+l 
r n. < b and r nj > b. 

j=l J j=l 

r 
Let no = b - r n. 

j=l J 
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and n* = max{n0,nr}. ·Anew bucket, call it B0, is formed by removing n0 

elements from bucket Br+l. The resulting sequence of buckets B0 , ... ,Bb has the 

properties: 

l. l ~ ni ~ n* for O ~ i ~ r; and 

2. exactly n-b elements lie in the union of buckets Br+l , ... ,Bb. 

The algorithm now, 

(a) sorts bucket lists B0 ,B1 , ... ,Br individually, using any conventional 

{O(n logn)) sorting technique; 

(b) coalesces bucket lists Br+l , ... ,Bb along with the list of active 

bucket numbers into one large list with exactly n elements. (Along 

with each element is recorded the bucket number from which it came); 

(c) sorts the coalesced list; and 

{d) recovers the sorted individual lists from the result of step (c) 

{using the information recorded in step (b)). 

Steps (b) and (d) are easily implemented in O(n) steps. Step (c) is done 

recursively in S(n,2rk/ 21 ) steps. Hence, to complete the proof, it suffices 

to show that step (a) can be done in O(n) steps. As described, step (a) takes 

r 
0( !: n. log n.) 

i=O 1 1 

steps. We can assume that n* > 1 (otherwise step (a) takes no time at all). 

By property (1) and straightforward maximization we have 

r 
!: n. log n. < { b-r) n* 

i=O 1 1 
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But, since ni ~ n* for i > r + l, 

r+l 
n > E n. + {b-r-l)n* 

i=O l 

and hence step (a) requires at most O(n) steps. D 

It should be noted that the analysis of the above algorithm cannot be 

tightened. If k is even then in either of the extreme cases, that is when all 

of the integers are placed in the same bucket, or each is placed in its own 

bucket, the recurrence 

follows. 

Our algorithm found it beneficial to 11 batch 11 together some of its sorting 

subproblems (see step (b)). It is interesting to note that while such batching 

is not advantageous for the general sorting problem, lower bounds like those of 

[BJ suggest that, for integer sorting, this may be the most efficient approach 

to the solution of several (apparently independent) subproblems. 

Careful inspection of the proof of lemma 4 reveals that it can (and 

perhaps should) be stated more precisely as follows: 

Lemma 4': Assuming our RAM's have at least 2rk/ 2l + O(n) registers, each with 

a capacity of k bits, 
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i = 1,2. 

Obviously, the space requirements of the above algorithm will be prohibi

tive in many situations. However, our scheme for range reduction can be 

generalized in a straightforward way to apply to less well endowed RAM's as 

well. Specifically, 

Lemma 5: Assuming our RAM's have at least 2s + O(n) registers (s ~ Lk/2J), 

each with a capacity of k bits, 

i = l ,2. 

The leads, in turn to the following generalization of corollary 3. 

Theorem 3: Assuming our RAM's have at least 2s + O(n) registers 

(log n < s < L(log R)/2J) each of capacity r1og Rl bits, then 

s1(n,R) = O(nLlog RJ/s + n log(s/1og n)), i = 1,2. 

It is significant that our sorting algorithm has made effective use 

of a great deal more storage than time. It might be suspected that the initia

lization of memory would dominate the running time of our algorithm. While, in 

a sense, we are not obliged to defend our algorithm against this criticism 

(afterall, the standard RAM models [2] assume that memory has been initialized 

to zero, at no cost), it may be worth pointing out in this context what has 



- 20 -

become almost a 11 folklore 11 fact (that may or may not have influenced the original 

RAM specifications) namely: 

Fact tinitialization of RAM's): An uninitialized RAM tregisters start with 

random values) can simulate an initialized RAM (all registers are initialized 

to zero) with only a constant factor of overhead. 

This claim is, in essence, a restatement of problem 2.12 in [l]. The 

proof will, of course, be left to the reader. 
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5. A linear sorting algorithm for Shift-machines 

The results of the preceding section provide the best upper bounds known 

on the complexity of integer sorting assuming logarithmic charging. As we have 

seen in section 3, these bounds can be substantially tightened on a RAM, if we 

consider uniform time complexity instead. It is natural to ask if similar 

improvements hold for the RAM2 model. In this section we show the somewhat 

surprising result that integers from arbitrary ranges can be sorted in linear 

uniform time on a RAM 2 . As before~ exceedingly large integers play an important 

role in the algorithm. In contrast to our earlier algorithms, indirect 

addressing turns out to be unnecessary. 

The following RAM2 algorithm sorts inputs x1 , .•. ,xn in linear time. 

Algorithm 3 

Step l: Read input x1 , ... ,xn. 

Step 2: For i = l , ... , n do 

2n 1• 2Ln/2J ( 1 y. + x. + w •• o.g. 
l l 

n > 4). 

(This is done in order to get mutually different integers of the same order type. 

which satisfy: y. > y. => y. - y. > 2Ln/ 2J. 
l J l J 

Step 3: Compute w + 
n Y· 
E 2 1 

i =l 

{By this one gets an integer, whose binary representation has ,l's exactly in 

the yi-th positions, and the distance between two of these l's is at least 

2L n/2J bits). 
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Step 4: For i = l, ... ,n do 
y· w l 

a. + L-y J2 . 
l 2 i 

(The binary representation of integers ai has l's only in the yj-th position for 

l ~ j ~ n whereat yj ~ yi). 

Step 5: Compute b + ta;. 

{The binary representation of b has the following property: 

In positions Y;,·•-,Y; + 2Ln/ 2J there is a binary representation of the number 

of integers from {y1 , ... ,yn} which are less than or equal to yi {i.e. the rank 

of Y;)). 

Step 6: For i = l , ... ,n do 

Ci +l);j 

di + LL~}2J j . z[n/2J 

k. + C • .:. d. 
l l l 

{At this point ki denotes the rank of xi in {x1, ... ,xn}. That is (k1, ... ,kn) 

is a permutation of (l, ... ,n) and k. < k. => x. < x .. It should be clear that 
l J l - J 

the sorted output could now be produced using indirect addressing. However, 

as the remaining steps of the algorithm show, indirect addressing can be 

avoided). 

Step 7: 

7c: For i = l , ... ,n do 
~ 

2ki2 S
1
. + ::; . + X. 

l l 



- 23 -

(The binary representation of Sn is a concatenation of the integers x1 , •.• ,xn 
- -

with xi represented in bits ki2x, ... ,(ki+l)2x-l). 

Step 8: Ba: r 0 + Sn 

8b: For i = l, ... ,n do 

X z
1
. + r. 1 - r.2 ,_ , 

write output z1 . 

(The output n-tuple (z1 , ... ,zn) is a permutation of (x1 , ... ,xn) satisfying 

z1 < z2 < • . • < z . ) - - - n 

It is clear by inspection that Algorithm 3 runs in linear time assuming 

uniform charging. The correctness of the algorithm can be confirmed using 

the comments following each step. This establishes the following: 

Theorem 4: s2(n,R) = O(n), for all REN. 
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6. Related work 

6.1 Upper bounds 

In addition to the basic results mentioned in the introduction, there 

are a number of recent results that speak directly to the problem of sorting 

integers in restricted ranges. P. van Emde Boas [3J was the first to describe 

an efficient priority queue maintenance algorithm designed specifically to 

deal with integers from a restricted range. In subsequent papers [4,5] van 

Emde Boas' result has been refined to the following: 

Theorem A (van Emde Boas): There is a data structure supporting the full 

repertoire of priority queue operations over the range [l ,R-1] that uses O{R) 

space and O(lg lg R) processing time per element processed. The space must 

be initialized in time O(R) before the structure can be used. 

It follows immediately from Theorem A that Si(n,R) = O{n lg lg R) + O(R), 

the second term being a one time pre-processing {initialization) charge. While 

this bound itself is not competitive with conventional technique (as R increases 

the pre-processing cost dominates), it does point out that the incremental cost 

of sorting n integers in the range [0,R-1] is only O(n lg lg R). 

6.2 Lower bounds 

The upper bounds described above are complemented by lower bounds. For 

machines using real inputs, with addition, substruction, multiplication and 

ordinary division, but no capability of indirect addressing an n(n log n) lower 

bound was proven by Hong Jiawei L6]. A similar lower bound is due to Paul and 

Simon [8] (and independently C. Rackoff [9]). They showed: 
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Theorem B (Paul, Simon, Rackoff): On a RAM with instruction set {+,!,x} and 

capability of indirect addressing the worst case complexity of any program 

that sorts n numbers in a sufficiently large range is at least n(n log n). 

A detailed analysis of the proof given by Paul and Simon shows that 

for each sorting-program using only addition, substruction and multiplication 

there are input integers in the range [O,nn-1] requiring n(n log n) steps for 

correct sorting. 

The main idea of Paul and Simon is to associate to a given program P 

a binary decision tree T. Each node of the tree represents a special state 

of the computation of P. If {i 0, ... ,im} is the set of addresses occuring in 

P, the contents of these registers in each s.tate of computation associated to 

a node v of Tis described by a polynomial P .(x1 , ... ,x ) where (x1 , ... ,xn) V,J n 

is then-tuple of input-integers. Paul and Simon show that there are input 

integers x1 , ... ,xn of each order type, such that different polynomials 

Pv J.(x 1, ... ,x) and P, .,(x., ... ,x) take different values, i.e. x1, ... ,xn , n v ,J 1 n 

will not set P = II (P . - P , . , ) to zero. Because of this T has n! 
vv',jj' v,J v ,J 

leaves and therefore depth at least } ntlog n-2). Essential for the proof 

is the following: 

Lemma A (Paul/Simon): If Risa polynomial in x1 , ... ,xn' deg R = m and n is 

a permutation of (1 , ... ,n), then there is x E Nn of order type n such that 

R(~) ; O and (x1, ... ,xn) E {l, ... ,m+n}n. 

Employing this lemma one can see that there must be input-integers 

x1 , ... ,xn E [0,nn-1] which will cause program P to run at least for 

} n(log n-2) steps. 
1 

1 If we cut off Tat depth 4 n (log n-2) there are only at most 
4 n ( 1 og n-2) + 1 ¼ n 

2 < n nodes remaining in T. 
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l 

Within f n(log n-2) steps only polynomials 
¼ n (log n-2) 

of degree 2 < n4 n 

can be produced. Therefore an appropriate input has to set a polynomial of 

degree 

3 
4n 

< n - l 

to a value different f5om zero. As proven by Lemma A there exist integers 
n . 

(x1, ... ,xn) E {l, ... ,n-zr } fulfilling this requirement. 

As shown by corollary 2 a machine with additional ability of integer

division can sort such an input in time O(n log log n). Therefore sorting 

in restricted ranges is speedable by additional use of integer-division. It 

is an open question whether this holds in general. Furthermore it is still 

unknown whether a RAM1, a machine with addition, substraction, multiplication 

and integer-division, can sort arbitrary n-tuples of integers in linear time. 
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