
UPPER BOUNDS FOR SORTING INTEGERS
ON RANDOM ACCESS MACHINES

by

David Kirkpatrick*
Stefan Reisch**

Technical Report 81-12***

September, 1981

* Department of Computer Science, University of British Columbia,
Vancouver, B.C., Canada

** Fakultat fur Mathematik, Universitat Bielefeld, Federal Republic
of Germany

*** This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada, grant A3583.

.,

Abstract

Two models of Random Access Machines suitable for sorting integers

are presented. Our main results show that i) a RAM with addition, sub­

traction, multiplication, and integer division can sort n integers in

the range [0,2cn] in O(n loge+ n) steps; ii) a RAM with addition,

subtraction, and left and right shifts can sort any n integers in

linear time; iii) a RAM with addition, subtraction, and left and right

shifts can sort n integers in the range [O,nc] in O(n loge+ n)

steps, where all intermediate results are bounded in value by the

largest input.

1. Introduction

The general problem of sorting is one of the most fundamental land well

studied) problems in computer science. For the most general formulation of

the problem it is natural to restrict one's attention to comparison-based

algorithms. In this setting, it is well-known that O(n log n) operations

(comparisons) are necessary and sufficient to sort an arbitrary n-tuple. It

is also well-known that if an n-tuple consists entirely of integers in the

range [O,n-1] (or, in fact, any range of size O(n)), then it can be sorted

in O(n) operations by a RAM. This can be done by exploiting the capability

of indirect addressing. In this context the question arises whether the

capability of arithmetic operations will help to speed up sorting processes

even if the integers to be sorted are very large compared ton. A first answer

to this question can be given by generalizing the above cited linear time

algorithm. Applying a multi-pass bucket-sort one gets an O(n m) upper bound

for sorting an n-tuple of integers in the range [0,nm-1] [1]. It is natural

to ask what is the largest range of integers for which a sorting algorithm can

be constructed that runs asymptotically faster than the conventional O(n log n)

comparison-based algorithms. We will describe some sorting algorithms for two

models of RAM's. which extend the range of integers over which comparison based

sorting can be improved.

- 2 -

2. Model s of computation

We consider two variants of the RAM-model which is described in [l]

5 pp. Inputs to our RAMs are n-tuples (x1, ... ,xn) E Nn which are written

on an input tape. The output, which is some permutation of the input n-tuple,

is written onto an output tape. Both of our models include conventional

branching instructions and the ability to indirectly address arbitrarily many

registers. Our two RAMs are distinguished according to their ability to

execute specific integer operations. A machine of type RAM; (i = 1 ,2) is able

to carry out integer operations from the set Oi only:

o1 = {+,.:.,x,L/J}

o2 = {+,.:.,Shift L,Shift R}

Let c(a) denote the content of register a. The shift instruction Shift R (a}

(respectively, Shift L(a)) assigns to the accumulator (i.e. register 0) the

value Lc(0)/2c(a} J (respectively, c(0)2c(a}), that is, its previous content

is shifted right (respectively left) by c(a) bits. 11
.:.

11 denotes the monus

operation, i.e. x.:.y = max{O,x-y}.

At a first glance the operation set o2 appears to be weaker than the set

o1, since shifts involve very restricted types of integer multiplication and

division. In fact, this is the case provided the size of the operands and

results does not become too large. However, if shifts are used in a completely

unrestricted fashion, then they introduce t~e power of exponentiation and hence

operation set o2 becomes more directly comparable with the set {+,.:.,x,L/J,2x}.

- 3 -

We can make the above comparisons more precise by introducing two

schemes for charging for operations on our different models. First, it is

worth pointing out that traditionally sorting has been studied on unit charged

(i.e. unit cost criterion) models of computation. Certainly, this assumption

underlies the basic results cited in the preceding section. To be consistent,

then, it makes sense to assign a unit cost to the reading, printing, or other

manipulation of integers comparable in size to the largest input I (a not

unreasonable choice when the size of I is comparable to the word size of real

machines). If this unit charging policy is extended to the manipulation of

integers of all sizes we have what we call the uniform charging scheme. On

the other hand, we can account, at least in part, for the higher cost of

multiprecision operations by charging in proportion to log1(x) for the mani­

pulation of an integer x. We call this a logarithmic charging scheme. While

logarithmic charging is clearly the more realistic policy, it is one of the

objectives of this paper to shed light on the inherent uniform complexity of

sorting (and, in particular, to complement established lower bounds using

this measure [8]).

Let Si(n,R) {respectively, s1(n,R)), i = 1 ,2, denote the time required,

assuming uniform (respectively, logarithmic) charging, by a RAM. to sort an
' ,

arbitrary set of n integers drawn from the range [0,R-1]. lSince Si(n,R) and

s1(n,R) are both n(n), it should be clear that the specific range [0,R-1] is

irrelevant and that Si(n,R) and Si(n,R) denote equally well the complexity of

sorting any n integers x1, ... ,xn where max{x1, ... ,xn}-min{x1, ... ,xn} < R.)

In the next section we develop a RAM1-algorithm that, assuming uniform

charging, significantly extends the range of integers over which conventional

- 4 -

sorting algorithms can be asymptotically improved. While the algorithm fully

exploits uniform charging, using integers significantly larger than the inputs,

the result is interesting from a theoretical point of view, since it suggests

that the lower bound arguments of Paul and Simon [8] for sorting on RAM's

without integer-division cannot be generalized in a straightforward way. In

section 4, we describe an improved radix sorting algorithm that can be performed

on both RAM models. Since this algorithm uses integers of the size of the

largest input only, its uniform and logarithmic complexities are equivalent.

The algorithm employs a technique of systematic range reduction which also can

be used to improve the result of section 3. In section 5 we present an integer

sorting algorithm for RAM2
1 s that runs in linear time under the uniform charging

scheme. Once again this result has more theoretical than practical importance

since the algorithm uses extremely large integers. The concluding section 6

comprises a discussion of related work. In particular, we give some comments

on the n(n log n) lower bound due to Paul and Simon [8] for RAM's with addition,

subtraction, and multiplication, and we discuss the question of whether integer­

division can help to speed up sorting. For understanding this section it is

useful to be familiar with the proof of Paul and Simon.

- 5 -

3. Fast sorting using multiplication and integer-division

As we observed in section l, bucket-sorting techniques yield an O(nm)

upper bound for sorting an n-tuple of integers in the range [0,nm-1]. Since

this algorithm can be implemented on both of our models without introducing

integers larger than the maximum input, we have

If we are interested in sorting with uniform charging this bound can be

strengthened significantly.

In order to get a faster sorting algorithm we will consider first the

following algorithm which has the disadvantage of working correctly only for

"spread out" inputs. This will be made precise in the succeeding Lemma.

Algorithm l.

Step l :

Step 2:

Step 3:

Step 4:

4a:

4b:

4c:

Read input

Compute Pn

Compute qn

x1 , ..• ,xn
n

= I: i Xi
i =l
n

= I: X.
; =l l

For i = n, ... , 1 do

x , .) + x . + (x . + l .:. x .) (=max (x . , x . + l))
n,1 Ji Ji Ji Ji J;

Output xn(i)

- 6 -

4d: ,r \ i} + {~ i if X,r (i) = X j i

Ji+l if xir(i) = xji+I

4e: pi-l + pi ! ir(i)xir(i)

qi-1 +qi! xir(i)"

Lemma l

(i) Algorithm l has uniform time complexity O(n).

\ii) Algorithm 1 sorts an input (x1, ... ,xn) correctly if:

Xi 1
";,j(l<i,j<n) x. t (n_,,n-l).

T;j - J

Proof: The validity of the first statement is obvious. To prove part lii)

first note that

l

i
I: irlj)x (')

j=l ,r J

i
I: X I •)

j=l ir,J

=

S . 1 h ,nee x,. l) < - 1 x (") we ave
ir,1- - n- ,r,

and

i - ,
I: (irlj)-ir(i)x (J')

+ j=l ,r

i
I: X (•)

j=l ir J

for i > j

i-1 i-1 i-2 l
I: tlir(j)-,r(i)l)-l)x (') ~ (n-2) I: x (') ~ (n-2)x (· l) I: .

j=l ,r J j=l ,r J ir l- j=O(n-l)J

< 1 :~ xir(i-1) = (n-l)xir(i-1) ~ xir(i)"
n-1

I
I·
I:

l

f{

I
1·

- 7 -

i-1 i
Thus I r (1r(j)-1r(i))xir(J·) I < t x (·)

j=l j=l ,r J

which implies

D

The requirement (ii) of Lemma 1 means that each input-integer is (n-1)-times

larger than any smaller input-integer. This very restrictive requirement

trivially can be weakened if integers x1 , ... ,x~ are sorted instead of input

Lemma 2:
x. d d+ l

N satisfy f i (d+l ,-d-) for i ; j. Then for
J

y. 1
-

1 1 (- n-1) for i ~ J·. y. J!. n- 1 ' r
J

Proof: Suppose yi > Yj• Then,

d+l dflog nl > 2rlog nl
> (-a-) > n-·1. D

Hence it will be useful to have a fast algorithm computing the function
n . 2c 2c

h: (Nn x N)-+ N with h((x1, ... ,xn),c) = (x 1 , ... ,xn). We now proceed to

the description of such an algorithm whose existence is interesting in its own

right.

- 8 -

An essential tool for the principal construction of our algorithm is

Chinese Remaindering:

Chinese Remainder Theorem

Let {p1, ... ,pn} be a set of positive integers which are pairwise

relatively prime. Let

and

n
p = JI

i =l
p.

1

0 < z. < p
1
.

- 1

Then there exists exactly one z E N satisfying:

{ i)

(; i)

U < z < p; and

'd. (l .) z. - z mod p
1
.•

1 ~l~n 1

An integer z with property(*) for two given n-tuples

can be computed in the following way: For all i(l ~ i

(for 1 < i ~ n) .

(*)

(z1 , •.. ,zn) and (p1 , ... ,pn)

< n) let q. = ...£.. •
- 1 P;

Because of the relative primality of p1 , ... ,pn there exists an ri E N with

1 < r. < p. and q.r. = 1 mod p
1
••

- 1 1 1 l

Then it is easy to see that

n
z = (1:

j=l
q.r.z.) mod p

J J J

- 9 -

has required property(*) since

(for this method to obtain z see [1] p. 294 lemma 8.2).

In order to apply Chinese Remaindering we have to find suitable integers

p1 , ... ,pn' which are mutually prime. The next Lemma shows that this can be

done in a straightforward manner:

Lemma 3: Let P1 E N be arbitrary and 1 et

; =l
pi = l JI pj) + 1 for i = 2, ... ,n, and

j=l

n i-1
p = JI pi ; qi = ...E,_ ri = p.-1 = JI pj. Then

i =1 pi l j=l

li) Pi, ... ,pn are pairwise relatively prime

(ii) qiri = 1 mod pi.

Proof: The validity of proposition (i) is obvious. Furthermore, since

n i -1 n
qi = JI pj = (TI p.)(TI p.)

j=l j=l J j=i+l J

j,i

and p.
J - , mod pi for j > i ' it fol lows that

i - l
qi - l TI p j) mod pi

j=l

-
_, mod P;

- 10 -

Proposition lii) now follows immediately. D

The following algorithm computes the function

Algorithm 2

Step l:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Read input x1 , ... ,xn

Compute x = max (x1 , •.• ,xn)
l<i<n

3a:

3b: r1 + l

For i = l , ... , n do

4b: p. + r. + l
l l

n
Compute p = n p.

i = 1 l

For i = 1, ... ,n do

q.+__p_
l P;

Do 7a:
n

U1
+ I: q;f ;X;

i =l

7b: u + u' mod u'
p (= u• - l - p J p)

2c
Compute w: = u

'

i
I
I· ,.
' 1.: .•

- 11 -

Step 9: For i = l, ... ,n do

9a: yi + w mod p. (, = w - l-w J p.) pi ,

9b: Write output yi.

In a first stage, including steps 1-6 the algorithm constructs integers

p1 , ... ,pn which are pairwise relatively prime and sufficiently large. In step 7

these integers are used to encode input integers x1 , ... ,x into an integer u.
n C

Step 8 computes the 2c-th power of u and by step 9 we get numbers yi = x~

The preceeding considerations and the fact that for x,y,p E N,

xy = (x mod p)(y mod p)mod p show the correctness of algorithm 2.

It is easy to see that steps l ,2,3,4,5,6,7 and 9 require O(n) steps.

Performing steps 3 and 8 by continued squaring requires time O(c). Hence, we

have established the following:

Theorem 1. There is a RAM1-algorithm computing the function

with uniform time complexity O(n + c).

From theorem 1 and Lemma 1 we can deduce our first main result.

Theorem 2. There is an algorithm with uniform time-complexity O(n + c) sorting

n natural numbers x1 , ... ,xn correctly, if the following condition is satisfied:

v . . (1 < ;, , , J

X. l
j _< n) (x. > x.) ?-

1
> l + -

1 J xj - 2c (**)

- 12 -

Proof: Concatenate a modified version of algorithm 2 with algorithm 1. The

algorithm runs in three stages:

1. First compute integers, y1 , ... ,yn employing algorithm 2:

2.

~ecause oft**) then we have

i - 1 Compute z. = 2 y ..
l J

C
(x~ 1nrlog nl ,

Obviously the zi(l ~ i ~ n) have the same order as the xi(l < i ~ n) and
zi 1

i 'f j => z-: ' (2' 2).
J

Z
rlog nl r1og nl 3. Compute 1 , ... ,zn and sort these integers z1, ... ,zn by algorithm

l .

Stage l requires O(c + log n) steps, and stage 2 and stage 3 can be carried out

in O(n) steps. Hence the whole sorting algorithm has a running time of O(n + c)

steps.

Theorem 2 has one important corollary:

Corollary 1: Natural numbers x1 , ... ,xn satisfying xi< 2cn (for i = 1 , ... ,n)

can be sorted within O(cn) computation steps by a RAM1, i.e. s1(n,2cn) ~ O(cn).

- 13 -

en J Proof: If x1 , ... ,xn €. [0,2 - 1 are input integers we have

x. x.-x. l l
x. > X. = _l = 1 + l J > 1 + - > 1 + -

1 J x j x j x j 2c n

Therefore x1 , ... ,xn can be sorted in time O(n + en) = O(cn).

- 14 -

4. An improvement of radix-sort

In this section we will present a sorting algorithm which is applicable

to both models of RAM's. The basic result of this section is a technique of

systematic range reduction that is of interest in its own right.

Lemma 4: i = l ,2.

Before proving this Lemma we will show two important consequences. The first

one is an improvement of corollary l.

Corollary 2: s1(n,2cn) ~ O(n log c + n).

Proof: For simplicity assume that c = 2t for some t EN. By induction on t,

Lemma 4 can be generalized to

Combining this with corollary l, we have

Corollary 2 now follows immediately. □

The second corollary of lemma 4 describes a new radix-sorting method

that increases the range over which conventional sorting algorithms can be

improved, for both of our RAM models, even assuming logarithmic charging.

- 15 -

m-1) (Corollary 3: s1{n,n .::_ 0 n log m + n)

Proof: The result follows from lemma 4 by induction on m, exploiting the

trivial bound s1(n,n) = O(n). D

Proof of Lemma 4: Suppose we are given n integers in the range [0,2k-l], for

some k £ N. We will prove the result for RAM2
1 s only; the proof for RAM1

1 s

involves a straightforward simulation of SHIFTing using ordinary multiplication

and integer division {which entails an additive overhead of at most O(log kJ).

Furthermore, we assume that k is known in advance; its computation would

require at most O(log k} steps on either model.

Imagine that we have a RAM2 with 2[k/ 2] + O(n) registers each with a

capacity of k bits (necessary and sufficient to represent numbers in the range

[0,2k-l]. Thus we can refer, without confusion to the 11 first 11 i bits of a

specific register. {Of course these bits can be accessed by appropriate

SHIFTing).

The algorithm starts with 2Lk/ 2J empty buckets. Input integers are

assigned, in succession, to bu~kets; the bucket number is given by the integer's

first Lk/2J bits (that is, its first half). An integer is represented within

its bucket by its second rk/21 bits (which together with the bucket number

uniquely identify the original integer). Obviously, when k is large most

buckets will remain empty, however, each bucket must have the capacity for

a 11 n integers.

Suppose that some b buckets, we will refer to them as B1 ,B2, ... ,Bb,

are assigned one or more integers. (We call these "active" buckets). Let ij

be the index of Bj and let nj be the number of elements assigned to Bj. The

- 16 -

bucketing procedure builds a list structure of size 2lk/2J + O(n) (see Figure 1)

containing:

i) a list Bucket [i], for O < i < 2lk/2J of the elements assigned to bucket

number i ; and

ii) a list Active-buckets of b active bucket records, each of which gives

the bucket number and size (number of elements) of one active bucket.

Since the buckets are assumed to be initialized, it should be clear that the

bucketing stage can be completed in constant time per element, that is O(n)

steps in total.

The algorithm next sorts the list Active-buckets by size, that is, we

can assume that n1 ~ n2 ~ ... ~ nb. This can be done using a conventional

bucket sort since b < n and n. _< n, for all i. Thus the original problem has
- l

been reduced to the following:

i) sort the list Active-buckets on the bucket numbers (i 1 ,i 2, ... ,ib);

ii) sort the list of elements associated with each active bucket; and

iii) combine the sorted bucket lists in the order specified by the sorted

Active-bucket list to give the final sorted list.

Clearly, step iii) can be accomplished in O(n) steps. Note that all of the

numbers to be sorted in steps i) and ii) lie in the range [0,2rk/ 2l - l].

Let r denote the unique integer satisfying

r r+l
r n. < b and r nj > b.

j=l J j=l

r
Let no = b - r n.

j=l J

- 17 -

and n* = max{n0,nr}. ·Anew bucket, call it B0, is formed by removing n0

elements from bucket Br+l. The resulting sequence of buckets B0 , ... ,Bb has the

properties:

l. l ~ ni ~ n* for O ~ i ~ r; and

2. exactly n-b elements lie in the union of buckets Br+l , ... ,Bb.

The algorithm now,

(a) sorts bucket lists B0 ,B1 , ... ,Br individually, using any conventional

{O(n logn)) sorting technique;

(b) coalesces bucket lists Br+l , ... ,Bb along with the list of active

bucket numbers into one large list with exactly n elements. (Along

with each element is recorded the bucket number from which it came);

(c) sorts the coalesced list; and

{d) recovers the sorted individual lists from the result of step (c)

{using the information recorded in step (b)).

Steps (b) and (d) are easily implemented in O(n) steps. Step (c) is done

recursively in S(n,2rk/ 21) steps. Hence, to complete the proof, it suffices

to show that step (a) can be done in O(n) steps. As described, step (a) takes

r
0(!: n. log n.)

i=O 1 1

steps. We can assume that n* > 1 (otherwise step (a) takes no time at all).

By property (1) and straightforward maximization we have

r
!: n. log n. < { b-r) n*

i=O 1 1

- 18 -

But, since ni ~ n* for i > r + l,

r+l
n > E n. + {b-r-l)n*

i=O l

and hence step (a) requires at most O(n) steps. D

It should be noted that the analysis of the above algorithm cannot be

tightened. If k is even then in either of the extreme cases, that is when all

of the integers are placed in the same bucket, or each is placed in its own

bucket, the recurrence

follows.

Our algorithm found it beneficial to 11 batch 11 together some of its sorting

subproblems (see step (b)). It is interesting to note that while such batching

is not advantageous for the general sorting problem, lower bounds like those of

[BJ suggest that, for integer sorting, this may be the most efficient approach

to the solution of several (apparently independent) subproblems.

Careful inspection of the proof of lemma 4 reveals that it can (and

perhaps should) be stated more precisely as follows:

Lemma 4': Assuming our RAM's have at least 2rk/ 2l + O(n) registers, each with

a capacity of k bits,

- 19 -

i = 1,2.

Obviously, the space requirements of the above algorithm will be prohibi­

tive in many situations. However, our scheme for range reduction can be

generalized in a straightforward way to apply to less well endowed RAM's as

well. Specifically,

Lemma 5: Assuming our RAM's have at least 2s + O(n) registers (s ~ Lk/2J),

each with a capacity of k bits,

i = l ,2.

The leads, in turn to the following generalization of corollary 3.

Theorem 3: Assuming our RAM's have at least 2s + O(n) registers

(log n < s < L(log R)/2J) each of capacity r1og Rl bits, then

s1(n,R) = O(nLlog RJ/s + n log(s/1og n)), i = 1,2.

It is significant that our sorting algorithm has made effective use

of a great deal more storage than time. It might be suspected that the initia­

lization of memory would dominate the running time of our algorithm. While, in

a sense, we are not obliged to defend our algorithm against this criticism

(afterall, the standard RAM models [2] assume that memory has been initialized

to zero, at no cost), it may be worth pointing out in this context what has

- 20 -

become almost a 11 folklore 11 fact (that may or may not have influenced the original

RAM specifications) namely:

Fact tinitialization of RAM's): An uninitialized RAM tregisters start with

random values) can simulate an initialized RAM (all registers are initialized

to zero) with only a constant factor of overhead.

This claim is, in essence, a restatement of problem 2.12 in [l]. The

proof will, of course, be left to the reader.

- 21 -

5. A linear sorting algorithm for Shift-machines

The results of the preceding section provide the best upper bounds known

on the complexity of integer sorting assuming logarithmic charging. As we have

seen in section 3, these bounds can be substantially tightened on a RAM, if we

consider uniform time complexity instead. It is natural to ask if similar

improvements hold for the RAM2 model. In this section we show the somewhat

surprising result that integers from arbitrary ranges can be sorted in linear

uniform time on a RAM 2 . As before~ exceedingly large integers play an important

role in the algorithm. In contrast to our earlier algorithms, indirect

addressing turns out to be unnecessary.

The following RAM2 algorithm sorts inputs x1 , .•. ,xn in linear time.

Algorithm 3

Step l: Read input x1 , ... ,xn.

Step 2: For i = l , ... , n do

2n 1• 2Ln/2J (1 y. + x. + w •• o.g.
l l

n > 4).

(This is done in order to get mutually different integers of the same order type.

which satisfy: y. > y. => y. - y. > 2Ln/ 2J.
l J l J

Step 3: Compute w +
n Y·
E 2 1

i =l

{By this one gets an integer, whose binary representation has ,l's exactly in

the yi-th positions, and the distance between two of these l's is at least

2L n/2J bits).

- 22 -

Step 4: For i = l, ... ,n do
y· w l

a. + L-y J2 .
l 2 i

(The binary representation of integers ai has l's only in the yj-th position for

l ~ j ~ n whereat yj ~ yi).

Step 5: Compute b + ta;.

{The binary representation of b has the following property:

In positions Y;,·•-,Y; + 2Ln/ 2J there is a binary representation of the number

of integers from {y1 , ... ,yn} which are less than or equal to yi {i.e. the rank

of Y;)).

Step 6: For i = l , ... ,n do

Ci +l);j

di + LL~}2J j . z[n/2J

k. + C • .:. d.
l l l

{At this point ki denotes the rank of xi in {x1, ... ,xn}. That is (k1, ... ,kn)

is a permutation of (l, ... ,n) and k. < k. => x. < x .. It should be clear that
l J l - J

the sorted output could now be produced using indirect addressing. However,

as the remaining steps of the algorithm show, indirect addressing can be

avoided).

Step 7:

7c: For i = l , ... ,n do
~

2ki2 S
1
. + ::; . + X.

l l

- 23 -

(The binary representation of Sn is a concatenation of the integers x1 , •.• ,xn
- -

with xi represented in bits ki2x, ... ,(ki+l)2x-l).

Step 8: Ba: r 0 + Sn

8b: For i = l, ... ,n do

X z
1
. + r. 1 - r.2 ,_ ,

write output z1 .

(The output n-tuple (z1 , ... ,zn) is a permutation of (x1 , ... ,xn) satisfying

z1 < z2 < • . • < z .) - - - n

It is clear by inspection that Algorithm 3 runs in linear time assuming

uniform charging. The correctness of the algorithm can be confirmed using

the comments following each step. This establishes the following:

Theorem 4: s2(n,R) = O(n), for all REN.

- 24 -

6. Related work

6.1 Upper bounds

In addition to the basic results mentioned in the introduction, there

are a number of recent results that speak directly to the problem of sorting

integers in restricted ranges. P. van Emde Boas [3J was the first to describe

an efficient priority queue maintenance algorithm designed specifically to

deal with integers from a restricted range. In subsequent papers [4,5] van

Emde Boas' result has been refined to the following:

Theorem A (van Emde Boas): There is a data structure supporting the full

repertoire of priority queue operations over the range [l ,R-1] that uses O{R)

space and O(lg lg R) processing time per element processed. The space must

be initialized in time O(R) before the structure can be used.

It follows immediately from Theorem A that Si(n,R) = O{n lg lg R) + O(R),

the second term being a one time pre-processing {initialization) charge. While

this bound itself is not competitive with conventional technique (as R increases

the pre-processing cost dominates), it does point out that the incremental cost

of sorting n integers in the range [0,R-1] is only O(n lg lg R).

6.2 Lower bounds

The upper bounds described above are complemented by lower bounds. For

machines using real inputs, with addition, substruction, multiplication and

ordinary division, but no capability of indirect addressing an n(n log n) lower

bound was proven by Hong Jiawei L6]. A similar lower bound is due to Paul and

Simon [8] (and independently C. Rackoff [9]). They showed:

- 25 -

Theorem B (Paul, Simon, Rackoff): On a RAM with instruction set {+,!,x} and

capability of indirect addressing the worst case complexity of any program

that sorts n numbers in a sufficiently large range is at least n(n log n).

A detailed analysis of the proof given by Paul and Simon shows that

for each sorting-program using only addition, substruction and multiplication

there are input integers in the range [O,nn-1] requiring n(n log n) steps for

correct sorting.

The main idea of Paul and Simon is to associate to a given program P

a binary decision tree T. Each node of the tree represents a special state

of the computation of P. If {i 0, ... ,im} is the set of addresses occuring in

P, the contents of these registers in each s.tate of computation associated to

a node v of Tis described by a polynomial P .(x1 , ... ,x) where (x1 , ... ,xn) V,J n

is then-tuple of input-integers. Paul and Simon show that there are input

integers x1 , ... ,xn of each order type, such that different polynomials

Pv J.(x 1, ... ,x) and P, .,(x., ... ,x) take different values, i.e. x1, ... ,xn , n v ,J 1 n

will not set P = II (P . - P , . ,) to zero. Because of this T has n!
vv',jj' v,J v ,J

leaves and therefore depth at least } ntlog n-2). Essential for the proof

is the following:

Lemma A (Paul/Simon): If Risa polynomial in x1 , ... ,xn' deg R = m and n is

a permutation of (1 , ... ,n), then there is x E Nn of order type n such that

R(~) ; O and (x1, ... ,xn) E {l, ... ,m+n}n.

Employing this lemma one can see that there must be input-integers

x1 , ... ,xn E [0,nn-1] which will cause program P to run at least for

} n(log n-2) steps.
1

1 If we cut off Tat depth 4 n (log n-2) there are only at most
4 n (1 og n-2) + 1 ¼ n

2 < n nodes remaining in T.

- 26 -

l

Within f n(log n-2) steps only polynomials
¼ n (log n-2)

of degree 2 < n4 n

can be produced. Therefore an appropriate input has to set a polynomial of

degree

3
4n

< n - l

to a value different f5om zero. As proven by Lemma A there exist integers
n .

(x1, ... ,xn) E {l, ... ,n-zr } fulfilling this requirement.

As shown by corollary 2 a machine with additional ability of integer­

division can sort such an input in time O(n log log n). Therefore sorting

in restricted ranges is speedable by additional use of integer-division. It

is an open question whether this holds in general. Furthermore it is still

unknown whether a RAM1, a machine with addition, substraction, multiplication

and integer-division, can sort arbitrary n-tuples of integers in linear time.

- 27 -

References

l. Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis of
Computer Algorithm, Addison-Wesley, 1974.

2. Cook, S.A., and Reckhow, R.A., Time bounded random access machines,
J.C.S.S. 7,4 (1973), 354-375.

3. van Emde Boas P., An O(n log log n) on-line algorithm for the insert­
extract min problem, TR 74-221, Department of Computer Science, Cornell
University, December 1974.

4. van Emde Boas, P., Kaas, R., and Zijlstra, E., Desi n and im lementation
of an efficient priority queue, Math. Systems Theory 10 1977 , 99-127.

5. van Emde Boas, P., Preserving order in a forest in less than logarithmic
time and linear space, Info. Processing Letters 6,4 (June 1977), 80-82.

6. Jiawei, H., On lower bounds for time complexity of some algorithms,
Scientia Sinica 32, 8/9, 890-900.

7. Keil, J.M., Computational geometry on an integer grid, M.Sc. Thesis,
Department of Computer Science, University of British Columbia, April 1980.

8. Paul, W.J., and Simon, J., Decision trees and random access machines,
Symposium uber Logik und Algorithmik, Zurich, 1980.

9. Rackoff, C., Private communication, 1980.

I

0

1

2

12

•
•
•

11

. .

1t,

Buckets

Active buckets

~

-+

--'>

Q--._D-+ ... ~□
1 2 n2

□~□~ ... -+□
1 2 nl

·o~□~ ... -+D
1 2 nb

Figure 1

