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ABSTRACT

Very special computational difficulties arise when attempting to
solve linear systems arising from integral equations of the first kind.
We examine here existence and uniqueness questions associated with so-called
reasonable solutions for such problems, and present results using the best-
known methods on inverse Laplace transform problems. We also discuss the
choice of free parameters occurring in these methods, from the same point of

view.
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1. INTRODUCTION

We are concerned with the numerical solution of the linear nxn system

Kf (1.1)

n
((a]

where K is inherently ill-conditioned because of the source of the system.
We assume for definiteness that the source is an integral equation of the

first kind in one dimension:

JE(S,t)%(t)dt g(s). (1.2)

We shall only consider the case when K is a smooth kernel; then clearly the
mapping f - 5 by (1.2) "smooths out" functions, and even takes non-continuous
f into smooth é, so we can't hope to solve (1.2) for arbitrary 5. This also
applies to (1.1), of course, and in Section 2 we examine this problem in more
detail, in an attempt to specify when the given discrete problem (1.1) has a
reasonable solution.

Several methods have been developed for solving (1.1), and in Section 3
we consider four of these: the truncated singular value decomposition method,
the regularization method, the modified regularizatiorn method, and a function
expansion method. We refer to Varah (1979) and Bjorck and Elden (1979) for
more details and references. Each of these methods involves a free parameter,
and for appropriate choice of this parameter, each method is relatively stable

with respect to perturbations in the data, so that each is a reasonable



computational method. As we shall see, however, the solutions obtained may
be very different from one another, so that it is extremely difficult to
say which is "the best" numerical solution. In Section 4, we examine several
numerical examples illustrating this, all involving the inverse Laplace
transform operator in (1.2).

Finally in Section 5, we discuss the choice of free parameters in the
methods. We find that although reasonable choices can be made for the
expansion methods, this does not appear to be the case for regularization

methods.



2. EXISTENCE OF REASONABLE SOLUTIONS

For the continuous problem (1.2), one way of specifying the existence
of a reasonable solution is the Picard condition: for L2 kernels K with
ij(s,t)zdsdt < w, there are orthogonal functions {¢i(s)}, {wi(t)}, and

corresponding scalars Ay 0 so that

fk(s,t)¢i(5)ds A;95(t)

ijs,t)wi(t)dt A;05(s).
Then if 5(5) = Eéi¢i(s)’ then f(t) = z(éilxi)wi(t); however f e L, only if
z(éilxi)z < o, which is the Picard condition. This obviously restricts the
class of data function ; for the problem.

We should add at this point that the rate at which the Ag = 0 depends

directly on the smoothness of the operator K: for example, when K is the

(non-smooth) Green's function

s(1-t), s <t
K(s,t) =
t(l-s), s > t,
2 =
then A = E?._ And, when K is the (smooth) harmonic continuation operator
n
2
- ] -
K(s,t) =5 1-p

1-2p COS(S-t)tp2

on (0,2m), then An = pn (p <1). Thus, smooth kernels load to much more ill-

conditioned problems.



Now consider the discrete problem (1.1), which can be derived from

(1.2) by applying a specific quadrature rule in t, say
- - %
K(s,t. ) =
%:wJ (s tJ)f(tJ) g(s)

which, applied at n sample points S; gives the linear system Kf = g. The
discrete analogue of the above expansions for the continuous problem is of
course the singular value decomposition (SVD)

K = upv',

where U and V are orthogonal, and D = diag(oi) with 0y 20y 2 con 20 > 0.
However, to derive some reasonable discrete version of the Picard condition
is not so straightforward - we need first of all to define what is meant by

a reasonable solution to (1.1).

Definition: The vector f is a reasonable solution to (1.1) with noise level

e if ||f]| = 0(1) and ||Kf - g]] = O(e).

Here we should mention that the O(e) notation means "about the same size as"
and should not be taken to mean anything in an asymptotic sense.

The question of whether a given discrete problem (1.1) has a reasonable

solution can be decided by means of the SVD of K: if K = UDVT

y and g by VTf =Y, UTg = B, then

and we define



-5 -

z * 2 2 2
||Kf—g||2 = ?(Oi‘yi-si) and Hf“g = 1Y

-t 3

Thus it is clear that for f to be a reasonable solution, the given data g

must be such that

s (2.1)

B, = 0(0;), i <y

with i  chosen so that IBiI <e fori>1.

Notice this is a condition on the discrete data g, and is in some sense
a discrete analogue of the Picard condition. Typically in practice, if the
data hve noise level e, the IBil decrease to O(e) and remain at about this
level for io < i < n, vhereas the o, decrease to zero. Thus for there to be
a reasonable solution, the |31| must decrease as fast as the 55 down to
the noise level.

Also, this condition (2.1) provides a basis for existence of a
reasonable solution f, but says nothing about uniqueness. Indeed, it is clear
again from the SVD expansion that there will be many reasonable solutions;
for i > io (assuming o; <€ for i > io as well) the y; are essentially arbitrary.
We will return to this point later when comparing the solutions obtained by
various methods. Here we wish to emphasize that all such solutions are
equally valid from a strictly computational point of view; 1in order to obtain
unique solutions, we must further restrict the problem using other means (for
example by restricting the class of solutions allowed or specifying a particular
expansion for the solution).

We also feel this approach (of reasonable solutions) is more appropriate

than that of conditioning given in Varah (1979), because it does not depend



on the method used to solve the problem.



3. THE NUMERICAL METHODS

(a) SVD: this is the truncated SVD method, which produces f as f = gyiv(i).
where Yi = Biloi and k is the free parameter. If k is chosen as is (;s in
Section 2) with noise level e known, and if the problem has a reasonable
solution, then it is easy to see that this always produces such a reasonable
solution: |[|Kf-g|], = O(e) and ||f||2 = 0(1). Since y, =0 for i > i, the
SVD solution can be said to provide the minimal reasonable solution possible.
Moreover, even if the noise level e is not known, one can examine the
sequences {oi}’ {Bi} and take k, the cutoff point, where the o, become smaller

than the |31|~ This gives a reasonable solution for e chosen accordingly.

(b) LS: this is the original regularization method, which produces f as
" 2 2 2
fo = min(] IKe=g| Iy + o[17112)
or equivalently as the solution of the normal equations
KT

(KK + azl)fu = K'g.

In examining the nature of the solution fa, it is most convenient to again

use the SVD expansion; then

——~—%——— v(i). (3.1)



At first sight, it appears that this is rather different from the SVD

solution in (a), since all vectors v(1) contribute. However for properly

chosen values of the free parameter o, most of these are damped, and we are
left with a solution very much 1ike the SVD. To see this, consider the same
situation as before, with o, + 0, leil -+ ¢ and B; = 0(e) for i > i,. First,
B ()
20

>> 1 so we cannot have a reasonable solution - so we must choose

if a << ¢ and we have some o; = a, then the i-th term in (3.1) is
B.

20

a > e. Moreover if a is chosen roughly equal to €, then for i < i , the i-th
coefficient —5—> n B,/0; since o, > e and for i > i , —5—> » 0 since

1+a /U,i o’ '|+a2/01? h

and

°i+0'

Thus the LS solution, with appropriate a, is close to the SVD solution,
and this is certainly borne out by numerical experience. The most important
connection is that both give a solution in terms of the expansion of singular
vectros {v(i)} of K.

(c) MLS: this is the modified regularization method, which produces f as
. 2 . 2 2
i = m}n(lle-gllz + o ||Lf]]5)
or equivalently as the solution of the normal equations
KT

(KK + a‘LTL)fa - K'g.

Here L is usually some discrete approximation to a derivative operator, and we

in fact use simple forward differences to get L.



Here the appropriate expansion is not the SVD of K, but the generalized

SVD of the matrix pair (K,L) as in van Loan (1976):

- -1 N -1
K= UDaX . L = VDbX 2

with U and V orthogonal, Da and Db diagonal, and X the matrix which simultaneously

diagonalizes the symmetric pair (KTK,LTL). Using this decomposition, the solution

fu can be written as an expansion in the vectors x(1), the columns of X:

n B. .
fo ? a.+a2;?/a. o
i it
where again g = UTg and {ai}, {bi} are the elements of Da’ Db’ ordered so that
the {ai} (which are the singular values of KX) are decreasing. Notice that this
has the same form as the LS solution, except that the {x(i)} have replaced the
{v(i)}.
(d) KX: this is the truncated expansion method, using any set of vectors
{x(i)}$ - one asks for the best solution of Kf = g using vectors of the form
f= gcix(i).

1
normal equations on KX. 1In particular, using the x

Thus we find c as mZn||KXc - 9||§’ solving using the QR method or
(1) as above in (c) would
give c; = Bi/ai’ in which case this method would bear the same relation to MLS
as SVD does to LS.

This method can be particularly useful if we can restrict the form of
the solution f to such an expansion - again this is adding more constraints to

the problem than in the other methods, but may result in there being a "unique"

solution.
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4. NUMERICAL EXAMPLES

A1l our examples stem from discretizations of the inverse Laplace

transform:
[este(e)at = gls).
0

This problem illustrates nicely all of the pitfalls associated with i11-posed
problems, when different data g(s) are used. The integral is discretized
using n-point Gauss-Laguerre quadrature, so approximations are generated for
f(t) at the Gauss-Laquerre abscissae'{tj}?. The sample points'{si} can vary,
but normally n points equally spaced in (0,n] gave the best results. Although
all our examples come from known f and g, so that we can measure the "error"
in f, this is rather artificial: 1in practical cases the data g will only be
known at specific points {Si}’ and we can only measure the error in the
residual sense (||Kf - g]|).

(1)

For this problem, the singular vectors v are asymptotic to zero

(i.e. v§1) + 0 as j -+ n), whereas the X-vectors x(I)

As well, both sets of vectors satisfy the oscillation property: v(1) and x(1)

are asymptotic to 1.0.

each change sign (i-1) times.

1

Example 1: g(s) = I E * f(t) = FHE

Here we used n=10 points with'{si}? equally spaced in [1,10]. For

SVD, it is instructive to see the'{oi} and {Bi} explicitly:



-1 -

o .74 .28 055 .29x1072 w10t s7xi078
-2 -2 -2

By | -.92  -.08 014 611072 -.16x10 _57x10

o 51x1073 s2x10720  36x1072°  Loox1072°

B 47x10°2 - .34x10"2 A9x1072  —12x1072

Notice that although no noise level ¢ is known, the ]Bil decrease to about

1072

while the o decrease to zero. Clearly we should take k = 3; this gives
a residual of .012 and a maximum error of 0.1. For the LS and MLS methods,

it is not so clear how to choose a. Indeed it appears that for a large range
of o, we can obtain reasonable solutions, even though they may be very different.
This is particularly true of MLS, where the expansion vectors x(i) are asymp-
totic to 1, not 0, and the asymptotic nature of the solution to the inverse

Laplace transform is not well-determined by the data g(si). We give the basic
results in Table 1 and the graphical results in Figure 1 (for SVD and LS) and

Figure 2 (for MLS).

Table 1
LS MLS
a | |Kf-g]| max | f.-f(t.)] |1kf-g]|  max|f,-f(t,)]
51 .023 .083 .017 .40
.01 .012 17 .012 .22
.001 .010 1.7 .012 1.6
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1 1 -
Example 2: g(s) = 5" S5 * f(t) =1-e t/2
Again we used 10 points with {Si} equally spaced in [1,10]. Of course

the {oi} are as in Example 1, and the {Bi} are as follows:

2 3 3

B: | -.31 -.16 -.32x10" .81x107 -.57x10"

3

-.034

3 4 4

-.34x10° 17x107 -.59x10" .49x10”

In this case the {Bi} decay more rapidly to about 10'4 , so that it is appropriate
to take k=4 terms (or possibly k=3); this gives a residual of .0011, and an
error of 1.0 because the solution f(t) is asymptotic to 1.0 (not 0 as in Example
1). However the SVD solution is still reasonable from the point of view of our
definition, and it can only be seen as incorrect if more information is supplied
about the problem.

For LS and MLS, the same comments apply as in Example 1. Here, although
the MLS solution may look better (for some o) because of its asymptotic nature,
there is no way to guarantee this for a given practical problem, again unless
more is specified about the problem. We take the view that all solutions given
here are reasonable. We again give LS amd MLS results in Table 2 and the

graphical solutions in Figures 3 and 4.

Table 2
LS MLS
a |[Kf-g|] | max|f.-f(t,)] | |Kf-q]| max | f.-f(t.)]
| .032 1.0 013 «39
.01 .0033 1.0 .0017 .24
.001 .0011 1.0 .0011 .22




= 812

2 -, f(t) = t2e /2,

Example 3: g{s) = ———%
(s+0.5)

Here we used 20 points with the {si} equally spaced in [1,10].

4 and an

Truncating the SVD expansion at k=7 terms gave a residual of .25x10°
error of 0.17. The LS and MLS solutions (for various a) are given in Table 3,

with plots in Figures 5 and 6.

Table 3
LS MLS

a | |Kf-g] | maxlfi-f(ti)l | 1kf-g]| maxlfi-f(ti)l

1072 | .60x1072 .54 27x1072 1.8

103 | .28x1073 .30 27x1073 1.3

1074 | .3sx107° A7 .32x107% 1.0

10°% | .21x107% 7 2851074 .29

e-25 0, t 5_2

Example 4: g(s) = — f(t) =
1, t>2

Here is one example of a discontinuous transform. The best SVD solution

4

(with k=4) had a residual of .79x10"" and an error of 1.0. The LS and MLS

solutions are given below in Table 4, and graphically in Figures 7 and 8.
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Table 4
LS MLS
a | |kf-g]| max|fi-f(ti)| | [Kf-g]| max|f-f(t,)]
a .03 1.0 .021 .65
.01 .38x1072 1.0 .23x1072 .45
.001 .42x1073 1.0 .33x1073 .34
0001 | .77x107% 1.0 .99x10™* 31

Of course, the SVD and LS solutions are asymptotic to zero, and again
the MLS solutions can be asymptotic to almost anything, depending upon the value
of a. We feel that the most important point here is that all the solutions
given here are reasonable, and can only be specified more precisely if more

constraints are put on the problem.
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5. CHOICE OF THE FREE PARAMETER

As we indicated earlier, the choice of k in the SVD method is fairly
clear from the decay of the {Bi} and'{oi}. Unfortunately this does not
appear to be the case for choosing a in the LS and MLS methods. Various
strategies have been put forward for specifing o, notably the technique of
generalized cross-validation (GCV), which has been successfully used for
problems with non-smooth kernels (see Wahba et al [1979]). Here a is chosen

to minimize the function

1 2
_nllo-kf, 115
(& tr(1-A(a))?

where Aa) = K(KTK + aZLTL)"1KT. Except for the 1/n factors, the numerator is
just the square of the residual, and when L=I (i.e. LS method) the denominator
can be expressed as (g —ﬁf—g). In this case, notice that when some g are very
small (as for our smootﬁ kg;nel) the corresponding terms in this sum will be
very close to 1.0 for large ranges of a; as well we have found that the
residual is also nearly constant for large ranges of o, so that V(a) will be
very flat and it will be very difficult to minimize. As an example of this, we
plotted V(a) on a log-log scale for 0 > log « > -20 for Example 1 above, and
present the results in Figure 9. Similar results were obtained for the other
examples.

Thus it seems impossible to choose o using this technique. However we
feel this is not due to any intrinsic fault with the technique, but because

reasonable solutions in our sense can be obtained over a wide range of the

of the parameter a, even though they may look very different.
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