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l. INTRODUCTION 

We are concerned with the numerical solution of the linear nxn system 

Kf = g (l. l) 

where K is inherently ill-conditioned because of the source of the system. 

We assume for definiteness that the source is an integral equation of the 

first kind in one dimension: 

JK(s,t)f(t)dt = g(s). l l.2) 

We shall only consider the case when K is a smooth kernel; then clearly the 
-mapping f-+ g by (1 .2) "smooths out" functions, and even takes non-continuous 

f into smooth g, so we can't hope to solve ll .2) for arbitrary g. This also 

applies to (1 .1), of course, and in Section 2 we examine this problem in more 

detail, in an attempt to specify when the given discrete problem (1 .1) has a 

reasonable solution. 

Several methods have been developed for solving (1 .1), and in Section 3 

we consider four of these: the truncated singular value decomposition method, 

the regularization method, the modified regul~rizat~o~ method, and a function 

expansion method. We refer to Varah ll979) and Bjorck and Elden (1979) for 

more details and references. Each of these methods involves a free parameter, 

and for appropriate choice of this parameter, each method is relatively stable 

with respect to perturbations in the data, so that each is a reasonable 
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computational method. As we shall see, however, the solutions obtained may 

be very different from one another, so that it is extremely difficult to 

say which is "the best" numerical solution. In Section 4, we examine several 

numerical examples illustrating this, all involving the inverse Laplace 

transform operator fn (1 .2). 

Finally in Section 5, we discuss the choice of free parameters in the 

methods. We find that although reasonable choices can be made for the 

expansion methods, this does not appear to be the case for regularization 

methods. 

I • 

I 

I 
f 
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2 . EXISTENCE OF REASONABLE SOLUTIONS 

For the continuous problem {l .2), one way of specifying the existence 
-of a reasonable solution is the Picard condition: for L2 kernels K with 

JJK{s,t) 2dsdt <~,there are orthogonal functions {~i(s)}, {~
1
lt)}, and 

corresponding scalars Ai ➔ 0 so that 

A,~.(t) 
l l 

- - -
Then if g(s) = ra.~.(s), then f(t) = r(a

1
./A.)~.(t); however f £ L2 only if 

l 1 1 l 

r(S./A.) 2 <~,which is the Picard condition. This obviously restricts the , , 
-

class of data function g for the problem. 

We should add at this point that the rate at which the A, ➔ 0 depends 
l -directly on the smoothness of the operator K: for example, when K is the 

(non-smooth) Green's function 

__ {sll-t), s < t 
K(s,t} 

t{l-s), s ~ t, 

And, when K is the (smooth) harmonic continuation operator 

K(s,t) l l -p 2 
= 2n l-2p cos(s-t}tp2 

on (0,2n), then An= pn {p < 1). Thus, smooth kernels load to much more ill­

conditioned problems. 
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Now consider the discrete problem (1.1), which can be derived from 

(1.2J by applying a specific quadrature rule int, say 

n ~ -
rw.K(s,t.)f(t.) = g(s) 
1 J J J 

which, applied at n sample points si gives the linear system Kf = g. The 

discrete analogue at" the above expansions for the continuous problem is of 

course the singular value decomposition lSVD) 

where U and V are orthogonal, and D = diag(cri) with cr1 ~ cr 2 ~ ... ~ crn ~ 0. 

However, to derive some reasonable discrete version of the Picard condition 

is not so straightforward - we need first of all to define what is meant by 

a reasonable solution to (1 .1). 

Definition: The vector f is a reasonable solution to (1 .1) with noise level 

e: if llfll = 0(1} and IIKf - 911 = O(E:). 

Here we should mention that the O(e:) notation means "about the same size as 11 

and should not be taken to mean anything in an asymptotic sense. 

The question of whether a given discrete problem (1 .1) has a reasonable 

solution can be decided by means of the SVD of K: if K = UDVT and we define 

y and e by VTf = y, UTg = e, then 
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n 2 
ry .. 
l 1 

Thus it is clear that for f to be a reasonable solution, the given data g 

must be such that 

i < i ' - 0 

with i
0 

chosen so that le; I <£for i > i
0

• 

( 2. l ) 

Notice this is a condition on the discrete data g, and is in some sense 

a discrete analogue of the Picard condition. Typically in practice, if the 

data hve noise level £, the le; I decrease to 0(£) and remain at about this 

1 evel for i < i < n, \'1hereas the a. decrease to zero. Thus for there to be 
0 - 1 

a reasonable solution, the IBi I must decrease as fast as the oi' down to 

the noise level. 

Also, this condition (2.1) provides a basis for existence of a 

reasonable solution f, but says nothing about uniqueness. Indeed, it is clear 

again from the SVD expansion that there will be many reasonable solutions; 

for i > i {assuming a
1
• <£for i > i as well) they. are essentially arbitrary. 

0 0 1 

We will return to this point later when comparing the solutions obtained by 

various methods. Here we wish to emphasize that all such solutions are 

equally valid from a strictly computational point of view; in order to obtain 

unique solutions, we must further restrict the problem using other means (for 

example by restricting the class of solutions allowed or specifying a particular 

expansion for the solution). 

We also feel this approach tof reasonable solutions) is more appropriate 

than that of conditioning given in Varah (1979), because it does not depend 
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on the method used to solve the problem. 
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3. THE NUMERICAL METHODS 

(a) SVD: this is the truncated SVD method, which produces fas f = ~y.v(i), 
1 1 

where y
1
• = s./o. and k is the free parameter. 

1 1 
If k is chosen as is (as in 

Section 2) with noise level £ known, and if the problem has a reasonable 

solution, then it is easy to see that this always produces such a reasonable 

solution: 11Kf-gll 2 = O(e:) and llfll 2 = 0(1). Since Y; = 0 for i > i
0

, the 

SVD solution can be said to provide the minimal reasonable solution possible. 

Moreover, even if the noise level e: is not known, one can examine the 

sequences {cri}, {81} and take k, the cutoff point, where the a 1 become smaller 

than the IB; I• This gives a reasonable solution fore: chosen accordingly. 

(b) LS: this is the original regularization method, which produces fas 

or equivalently as the solution of the normal equations 

In examining the nature of the solution f, it is most convenient to again 
a 

use the SVD expansion; then 

( 3. 1 ) 
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At first sight, it appears that this is rather different from the SVD 

solution in (a), since all vectors v(i) contribute. However for properly 

chosen values of the free parameter a, most of these are damped, and we are 

left with a solution very much like the SVO. To see this, consider the same 

situation as before, with oi -+ 0, Is; I -+£and 13i = 0(£) for i > i
0

• First, 
13 . ( . ) 

we have some o
1
. = a, then the i-th term in (3.1) is -

2
1 v 1 if a « £ and 
a 

and I:! I » 1 so we cannot have a reasonable solution - so we must choose 

a>£. Moreover if a is chosen roughly equal to£, then 
a.fa. , 1 

coefficient 2 2 ~ B;la; since cri ~£and for i > i
0

, 
1 +a / a. 

a. + 0. 
1 

1 

for i < i $ the i-th 
- 0 

8/a; 
2 2 ~ 0 since 

l +a /ai 

ihus the LS solution, with appropriate a, is close to the SVD solution, 

and this is certainly borne out by numerical experience. The most important 

connection is that both give a solution in terms of the expansion of singular 

vectros {v(i)} of K. 

(c) MLS: this is the modified regularization method, which produces fas 

or equivalently as the solution of the normal equations 

Here Lis usually some discrete approximation to a derivative operator, and we 

in fact use simple forward differences to get L. 
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Here the appropriate expansion is not the SVD of K, but the generalized 

SVD of the matrix pair (K,L) as in van Loan (1976): 

-1 
K = UDaX , 

with U and V orthogonal, Da and Db diagonal, and X the matrix which simultaneously 

diagonalizes the symmetric pair lKTK,LTL). Using this decomposition, the solution 

f can be written as an expansion in the vectors xli), the columns of X: 
Ct 

where again a= UTg and {ail' {bi} are the elements of Da' Db' ordered so that 

the {ai} (which are the singular values of KX) are decreasing. Notice that this 

has the same form as the LS solution, except that the {x(i)} have replaced the 

{v(i)}. 

(d) KX: this is the truncated expansion method, using any set of vectors 

{x(i)}k - one asks 
k l 

f = rc.x(i). Thus 
1 , 

for the best solution of Kf = g using vectors of the form 

we find c as mini jKXc - gj I~, solving using the QR method or 

normal equations on KX. 
C (. 

In particular, using the x ,) as above in (c) would 

give c. = a./a., in which case this method would bear the same relation to MLS , , 1 

as SVD does to LS. 

This method can be particularly useful if we can restrict the form of 

the solution f to such an expansion - again this is adding more constraints to 

the problem than in the other methods, but may result in there being a ''unique" 

solution. 
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4. NUMERICAL EXAMPLES 

All our examples stem from discretizations of the inverse Laplace 

transform: 

00 

Je-stf(t)dt = g(s). 
0 

This problem illustrates nicely all of the pitfalls associated with ill-posed 

problems, when different data g(s) are used. The integral is discretized 

using n-point Gauss-Laguerre quadrature, so approximations are generated for 

f(t) at the Gauss-Laquerre abscissae {tj}~. The sample points · {si} can vary, 

but normally n points equally spaced in (O,n] gave the best results. Although 

all our examples come from known f and g, so that we can measure the "error" 

inf, this is rather artificial: in practical cases the data g will only be 

known at specific points {si}' and we can only measure the error in the 

residual sense (l!Kf - 911), 
For this problem, the singular vectors /i) are asymptotic to zero 

(i.e. Vji) ~ 0 as j ~ n), whereas the X-vectors x(i) are asymptotic to l .0. 

As well, both sets of vectors satisfy the oscillation property: v{i) and x(i) 

each change sign (i-1) times. 

Example 1: 1 
g ( s ) = -----,,---=-

s + 0. 5 ' f(t) 

Here we used n=lO points with. {si}~ equally spaced in [l ,10]. For 

SVD, it is instructive to see the · {oi} and {e1} explicitly: 
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(J. , .74 .28 .055 .29xl0-2 .17xlo-4 . 57xl o-8 

8; -.92 - . 018 - . 014 .6lxl0 -2 -.16xlo- 2 .57xlo- 2 

(Ji .5lxl0-J .52xlo-20 . 36xl 0- 25 . 99xl 0- 29 

8i .47xl0- 2 -.34xl0 -2 . l 9xl 0- 2 -.12xl0 -2 

Notice that although no noise level Eis known, the !eil decrease to about 

10-2 while the cri decrease to zero. Clearly we should take k = 3; this gives 

a residual of .012 and a maximum error of 0.1. For the LS and MLS methods, 

it is not so clear how to choose a. Indeed it appears that for a large range 

of a, we can obtain reasonable solutions, even though they may be very different. 

This is particularly true of MLS, where the expansion vectors x{i) are asymp­

totic to l, not 0, and the asymptotic nature of the solution to the inverse 

Laplace transform is not well-determined by the data g(si). We give the basic 

results in Table 1 and the graphical results in Figure l (for SVD and LS) and 

Figure 2 (for MLS). 

Tab 1 e l 

LS MLS 

a I I Kf-g I I max!fi-f(t;) I I IKf-g I I maxlf;-f(ti)I 

.1 .023 .083 .017 .40 

. 01 .01 2 .17 . 012 .22 

.001 .010 1. 7 .012 1.6 



- 12 -

Example 2: g(s) 1 1 = - - -----,-
s s+0.5 ' f(t) = 1 - e-t/ 2 

Again we used 10 points with {si} equally spaced in [1 ,10]. Of course 

the {ail are as in Example 1, and the {a 1} are as follows: 

- . 31 - .16 - .034 -.32x10 -2 .Blxlo-3 -.57xl0-3 

-3 -3 -4 -4 -.34xl0 .17xl0 -.59xl0 .49xl0 

In this case the {ai} decay more rapidly to about ,o-4 , so that it is appropriate 

to take k=4 terms (or possibly k=3); this gives a residual of .0011, and an 

error of Ll because the solution f(t) is asymptotic to 1.0 {not Oas in Example 

1). However the SVD solution is still reasonable from the point of view of our 

definition, and it can only be seen as incorrect if more information is supplied 

about the problem. 

For LS and MLS, the same comments apply as in Example 1. Here, although 

the MLS solution may look better (for some a) because of its asymptotic nature, 

there is no way to guarantee this for a given practical problem, again unless 

more is specified about the problem. We take the view that all solutions given 

here are reasonable. We again give LS amd MLS results in Table 2 and the 

graphical solutions in Figures 3 and 4. 

Table 2 

LS MLS 

a I IKf-g I I maxlfi-f{t 1) I I !Kf-g I I maxlfi-f(t1)l 
.1 .032 1.0 . 013 .39 

.01 .0033 1.0 . 0017 .24 

. 001 .0011 1.0 . 0011 .22 






























