ERRRRERRFSREEERR AR TR R R R ARk ke kR e Rk hbhka kR ke Rk Kk

* *
* Why is a goto like a dynamic vector in the ¥
* BCPL-S1linm computing system? *
* *
* by *
* *
* Harvey Abramson *
* *
* Technical Report 80-9 *
* *
* November 1980 *
* *
* x
* *
* *
ERREERERRR AL RAR IR RSN RAR EREE R SR RA KSR E AR K KK KKK KEX

Department of Computer Science
The University of British Cclumbia
Vancouver, British Columbia V6T 1W5

Abstract

The Slim computer is a new virtual machine which can be used in
the tramslation and porting of the BCPL compiler, and
eventually, in the porting of an operating system written in
BCPL. PFor the purposes of this paper, the Slim computer is a
stack machine with a single accumulator and a register which
points to the top of the stack. The procedures LEVEL and
LONGJUMP, traditionally used to implement transfers of control
across BCPL procedures, and which are usually written in the
assembler language of a host machine, cannot be used with this

architecture. In developing procedures to implement all
transfers of control, we shov how these essential procedures -
though highly dependant om the Slim architecture - <can be

written portably in BCPL, and discover an interesting connection
between implementing jumps and dynamic vectors (by meams of
Aptovec) in the BCPL-Slim computing system. Some parameters of
portability in mapping an abstract machine to host machines are
identified, and it is shown how to maintain the portability of
the above mentiomned procedures in the face of various mapping
problens. Finally, ve are 1led to a comment on the design of
BCPL to the effect that goto's are an unnecessary feature of the
language.

———— —— —— —— e ——

Research supported by the National Sciences and Engineering
Research Council of Canada. Copyright 1980 Harvey Abramson.

BCPL-S1im 1

The Problea

The syntax and semantics of BCPL permit sensible
unconditional transfers of control (goto®'s) from one point to
another only within the same procedure (i.e., routine or
function). Fach procedure call results in a new dynanmic
environment or stackframe which contains a linkage area to the
previous environment, arquments to the procedure, local
variables and vectors. A BCPL label is a static (or global)
variable initialised to a value vhich represents the point of
the program at which it is declared. If a procedure F has a
label L, then goto L is a sensible command within F which
results in a transfer of control to the point designated by L.
Within another procedure G, however, the command goto L would
result in a traansfer of control to the point labeled by L, but
within the environment of G. References to parameters amnd local
variables meant to be in F would actually refer to cells in the
environnent of G, leading guite naturally to disaster.

In cases when an unconditional transfer of control was
required between points in different procedures F and G, BCPL
historically used a pair of procedures named LEVEL and LONGJUMP
to effect the change: a call in F to the fuanction LEVEL() is
nsed to record a BCPL value representing F's environment in a
static or global variable, say SaveE;

SaveE := LEVEL ()

and then a call in G of the routine LCNGJUMP causes the BCPL
runtime system to restore the saved environment and to resume
flow of control from the pcint labeled by L in F

LONGJUMP (SaveE,L) .

Examples of the use of LEVEL and LCNGJUMP may be found by
examining the source programs of the BCPL compiler and debug
package, and are discussed 1in [Richards & Whitby-Strevens,
1979]

The above scheme for wunconditional transfers across
procedures 1is not useable without modification on the Slim
machine, vhich is a new abstract computer intended to serve as a
target for the BCPL compiler and as an aid to the porting of the
BCPL compiler and also, eventually, of a single-user
multi-process operating systenm. (See [Abramson et al, in
preparation].) The Slim computer is a stack machine with a
single accumulator (the A register), and with a register (the H
or high~point register) which points to the top of the stack.
This architecture was chosen because code generated for the
stack-accumulator machine is gemerally more compact than code
for a pure stack machine; and because the presence of the H
register makes it possible to treat interrupts as unexpected

2 BCPL-Slim

procedure calls and allows the easy isplementation of dynamic
vectors in addition to facilitating the storage and retrieval of
implicit variables during expression evaluation. (See [Fox,
1978].) The LEVEL and LONGJUMP pair of procedures cannot be
used without alteration because the Slim computer requires not
only that the environment be re-established, but also that the H
register point to the correct cell on the stack when flow of
control resumes at the destination latel. The solation to this
problen points out an interesting connection between
unconditional tramsfers and dynamic vectors on the Slim
computer, wmakes rpossible a more portable BCPL library, and
suggests some comments about BCPL and about portability via the
abstract machine technique.

A Solution

In preparation for an unconditional transfer of control on
the Slim machine, the environment is recorded not im a simple
BCPL value, but 1in a vector of three cells by a BCPL function
called Remember.

In order to understand the Remember function, hovever, it
is necessary to describe the Slim computer's representation of a
procedure's envircnment. The current environment or stackframe
is pointed to by the environment or E register. The E register
in fact points to the second cell of the two cell 1linkage area
of the current stackframe, in which is recorded a return address
or value for the Slim computer's program counter or C register
(wvhich 1is where the calling procedure resumes upon normal
termination of the called procedure). 1In the first cell of the
linkage area, at an offset of -1 from the E register is a value
which points to the stackframe of the calling procedure, that
is, it contains the value of the E register at the calling
point. If the current procedure has n argueents, these are
found on the stack at positive offsets 1,...,0 from the E
register. Any local or vector variables lie on the stack above
the argument(s), and above these 1lie the elements of the
respective vectors.

Using the following manifest constants

manifest { LinkSize = 2
ECell =0
CCell = 1
Savel =0
SaveLabel = 1
SaveH = 2

BCPL-Slim 3

the BCPL recording function Remember is given by:

let Remember (Recover, Label) = valof
(Recover!SaveE := (®Recover—-LinkSize) !ECell || save old E
Recover!Savelabel := Label |} Transfer target

Recover!SaveH := ARecover - LinkSize - 1 il save old H
resultis Recover

The arguments to the fanction Remember are Recover, the three
cell vector in which the information necessary for transfer of
control is to be recorded, and Label, the target of the eventual
jump. Within the funtion Remember, the absglute address oan the

stack of Remember's linkage area is given in BCPL by:
@Recover - LinkSize.

The value of the F register when Remember is called is therefore
given by:

(3Recover-LinkSize) !ECell,

and the value cf the H register when Remember is called is given
by:

@Recover - LinkSize - 1,

vhich is the address of the «cell just below the <current
environaent's linkage area. The result of Remember, the address
of the recording vector, should be stored in a static or global
variable.

The Transfer routine wvhich actually performs unconditional
jumps depends on the way that the BCPL return construct is
implesented on the Slim coaputer. Cn Slim, a return from a
procedure has the following effects: the E and C registers are
reset to the respective values found in the current stackframe's
linkage area; and the H register is reset to point to the cell
just before the current stackframe®'s linkage area. There is no
difference in a return from a routine or a function. The result
of a function is simply found in the A register or accumulator.

Using the following static variables

static [NewLink
RecoverCopy
}

n
(=]

the BCPL Traunsfer routine is given by:

4 BCPL-Slinm

let Transfer(Becover) be
{ let 0ldLink = 3@Recover - LinkSize
il New link just above old H.

Newlink := Recover!SaveH + 1 || Use static variables
RecoverCopy := Recover |l to prevent overwriting.
if 0ldLink = Newlink i{{ A goto in same environment?
do [NewLink!CCell := Recover!Savelabel
return
}

i] Set BCell to old H + LinkSize,

il force return within Transfer.
0ldLink!ECell := Recover!SaveH + LinkSize
01dLink!CCell := ReturnHere

return

ReturnBere:
NewLink!ECell := RecoverCopy!SaveE Il set ECell to old E
NewLink!CCell := RecoverCopy!SavelLabel || set CCell to target

Transfer works by manipulating its own linkage area and by
setting up a "virtual" linkage area from which a return can be
made to the appropriate label, in the appropriate environment,
and with the appropriate value in the H register. The address
of Transfer's linkage area 1is recorded in 0OldLink, and the
virtual 1link, recorded 1in Newlink, is to be created one cell
beyond the value of the H register saved in the Recover vector
by Remember. The address of the Recover vector is saved in the
static variable RecoverCopy (see below). Transfer's linkage
area is first adjusted so that at the explicit return, instead
of returning to Transfer's calling point, control resumes at the
command within Transfer labeled "EReturnHere®, and with the B
register pointing to the virtual Newlink. The virtual 1linkage
area is then set so that it <contains the appropriate
(Remenber-ed) value for the E register, and the Label to which
control should be transferred. The implicit returm at the end
of Transfer uses this virtual link %o =set the B, C, and H
registers appropriately. In the case where there is no change
of environment and the transfer is eqguivalent to a goto, i.e.,
when O0ldLink and Newlink have the same value, it is only
necessary to reset the return address in Transfer's 1linkage
area.

Needless to say, this manipulation of the stack is not
without cost and risk. The variables NewLink and RecoverCopy
must be static rather than local because at the return within
Transfer the environment is damaged and local variables in
Transfer could not properly be accessed by offsets from the E
register. Furthermore, when the 0ldLink and Newlink areas
overlap but are not coincident, there is a temporary stack
anomaly upon the return within Transfer in that the H register
is pointing to a «cell below the cell pointed to by the E
register. There is a stack protection mechanism on the Slia

BCPL-S1lim 5

computer, howvever, which readjuosts the H register to the sane
value as the E register so that the condition which should hold
between these registers

is in fact satisfied.

A Bonus: APTOVEC in BCPL

In BCPL the size of a vector must be known at compile time,
that is, statically. The fixed size of the vector is used by
the compiler to determine the exact size of the enviromment in
which the vector is declared. If a vector v'is declared in a
procedure F then a cell is allocated on the stack to the vector
variable v. This cell lies beyond F's argquments and among F's
local variables, and is initialized to point to the first cell
(v!0) of an array of n+1 cells. This array of cells lies beyond
all of PF's 1local and vector variables. Because of the fixed
size requirement, programmers are forced to define vectors of
such a size as to cover all expected eventualities. In those
cases vhere programmers required or wished to specify vector
sizes by some (dynamic) computation, a functiom APTOVEC was
provided which could be described, albeit illegally, by the
following BCPL-like code:

let APTOVEC (F,N) be

{ let V = VEC N)| illegal!
resultis F(V,N)

}

According to [Richards & Whitby-Strevens, 1979], this function
is "opormally implemented in assembly language" simply because
dynamically determined vector sizes as given in the
pseundo-definition of APTOVEC are not permitted in BCPL. Space
for the vector would be dynamically allocated within APTOVEC's
stackframe, just below the environment for F. Upon an exit from
F, the space would be automatically deallocated when APTOVEC's
stackframe was destroyed.

It 1is possible to define a version of APTOVEC for the Slim
computer in BCPL in the absence of dynamically (i.e., run time)
deterained vector sizes by making use of the Remember and
Transfer procedures. The "trick"™ is to suitably manipulate a
Remember—-ed value of the H register, and to force a Transfer
within the following function:

6 BCPL-Slia

let Aptovec(f, n) = valof
{ let Save = vec 2
and v = vec 0
Remember (Save, LabelAl))
Save!SaveH #:= n {1 This adds n to the saved H value

Transfer (Save) 1| producing the effect of v = vec n.
LabelA:

resultis f(v, n)

}

Just before the call to Remember the H register is pointing to
the single, zero'th element of the vector v. It is this value
of the H register which is Remember-ed. Immediately after the
call to Remember, the saved value of the H register 1is
incremented by 10 (the notation X #:= ¥y being syntactic
saccharine for x := x + y). The call of Transfer is like a goto
the following command, but has the side effect of altering the H
register and therefore increasing the size of the vector v to
n + 1 elements. Upon a mormal exit from f, the implicit return
in Aptovec restores the environment of the procedure which
called Aptovec, and thereby, deallocates the space given to the
vector v and resets the H register to its value at the calling
point. (See below, however, for another more efficient version
of Aptovec which, although it makes use of the Slim computer's
assembly language, is still portable.)

The ansver to the question which titles this paper is
therefore: A dynamic vector 1is 1like a goto imn the BCPL-Slim
computing system because both dynamic vectors and goto's can be
implenented by means of a common data structure and a common set
of procedures which manipulate this data structure.

Some Parameters of Portability

Historically, BCPL compilers have been ported by the
abstract machine technique, vwhereby code is generated for a
machine which is interpretively simulated on a host computer.
The first such BCPL machine was the OCODE machine ([Richards,
1971)), succeeded by the INTCODE machine ([Richards, 1974]).
More recently the Pica-B ([Abramson et al, 1978]) and the Slim
({ Abramson et al, in preparation]) computers have been designed
to aid in the porting of the BCPL cosmpiler and also, eventually,
in the porting of operating systeas. (The Pica-B is essentially
the INTCODE machine with an interrupt register.)

The INTCODE machine was designed to simplify the
portability process because when programmers with no previous
experience of BCPL wundertook to port the compiler by means of

BCPL-Slinm T

the OCODE machine, it was found that "it often took longer than
expected and frequently ... strategic errors in design" were
made ([Richards, 1974]). Even though the INTCODE machine may
have eased the problem of porting the BCPL compiler, there still
seems, however, to have been an important gap in the portability
process, namely the existence of important library procedures
not written in BCPL: typically the procedures LEVEL, LONGJOUMP
and APTOVEC were written 1in the assembler 1language of the
computer hosting the BCPL compiler. The successful
implementation of these procedures without an explicit
operational defintion of their effects could prove an obstacle
{albeit a slight one to experienced programmers) to the porting
of BCPL from omne machine tc another.

Given an abstract machine such as Slim, for example, it is
relatively easy to write in BCPL important library procedures
vhich, though highly machine dependent, become as portable as
the BCPL coampiler itself. This is not to say that eventually,
after a successful port of the compiler and library, more
efficient versions of these procedures should not be writtem in
the assembler language of the host machine. Rather, the initial
port becomes much simpler in that one 1is provided with
procedures which provide high-level, reliable and explicit
operational descriptions of sometimes non-standard or even
bizarre manipulations of the abstract machine.

There is another advantage to portable versions of such
procedures and that 1is that they provide a test of the
consistency of the mapping of the abstract machine to the host
machine. If the mapping of the abstract machine is
straightforvard and correctly done, then these procedures -
unaltered - should behave as expected. Inconsistencies in the
behavior of these procedures on the host machine would be an
indication of a possible error in the mapping.

The host machine, however, wusually has one or more
architectural guirks which must be accounted for in any mapping
of the Slim machine, and some compiler implementation decisions
may, in effect, be viewed as perturbatioms of the Slim computer.
It is possible to revise the definitions of the procedures given
above in such a way that they perform their expected functions
as defined on the Slim computer yet are still portable even in
the face of machine specific or isplementation specific
problens.

Several parameters of the mapping of Slim to a host machine
can be identified:

8 BCPL-S1lim

1. The linkage structure for procedures may be differents:
there wmay be more tham two cells in the linkage area
and/or the arrangement of cells in the linkage area may be
a permutation of the order given above.

2. There may be a hardware stack or stack register which
imposes a "downward®™ growing stack: when something gets
pushed onto the stack the value in the H register
decreases; and vhen something gets popped, +the value in
the H register increases.

3. The addressing mechanism on the host machine may be
different from the BCPL-Slim cell addressing schene.

The problem described above as parameter one is an example
of a comrpiler implementation decision which affects the mapping.
In effect, one could imagine that the Slim Manufactory produces
several amodels of the Slim conmputer which differ in the
structure of the 1linkage area, and im the microcode of
instructions which manipulate the linkage area (the mark, call
and return instructions). Portability of the Remember and
Transfer procedures can be maintained by adjusting the manifest
constants ECell, CCell, and LinkSize.

The problem described as parameter two of the mapping,
occurs, for example, when a PDP-11 is the host machine. Any
procedure which makes use of absolute addresses of stack cells -
as do Rememher, Transfer and Aptovec -~ must be modified to take
account of the direction of stack growth. To aid in maintaining
portability in the face of this problem, a manifest constant
Forward and a function IsForward are defined as follows:

il true: upward stack
manifest ([Forward = false } ||

|} false: downward stack
x

let IsForward (x) = Forvard -> x, -X

The wmanifest Porward is true for "upward"™ growing stacks as on
Slim itself, and false for ™downward" growing stacks. The
function IsForward adjusts a gquantity x, usually am offset,
according to the stack direction. An example of the use of the
function TYsForward in Remember would be to note that the value
of the E register to be Remember-ed is found by:

(?Recover + IfPorward(—-LinkSize)) !ECell

since, if the stack grows downward and the order of cells in the
linkage area 1is as described above, the address of the linkage

BCPL-Slim 9

cell which coantains the old value of the E register would be

dRecover + LinkSize

rather than
#Recover - LinkSize.

Portability of the procedures Remember, Transfer, and Aptovec is
preserved in the face of this problem by using the IsForward
function and by suitably adjusting the manifest constants
Forward, ECell and CCell. (See the Appendix for versions of
these procedures which have been revised to maintain portability
under the three identified mapping parameters. In the revised
Aptovec it 1is assumed that when Forward is false, vectors are
implemented in such a fashion that as one traverses the stack in
the direction of stack growth from a vector variable v, the
first cell of the n + 1 cells of the vector encountered 1is in
fact v!n, and the last one is v!i0. Thus in Aptovec, v!0
eventually vecomes v!n of the dynamic vector. This assumption
is made so that the BCPL vector subscripting mechanism will work
as expected.)

The problem described as parameter three of the mapping
also occurs when the PDP-11 is the host machine. The PDP-11 is
byte addressable and a single cell of the Slim computer
corresponds to two bytes of the PDP-11. A Slim address must be
multiplied by 2 in order to get a correct machine address when
necessary. If an IBM 360/370 or ome of its clones such as an
Amdahl 470 were the host, a £lim address would have to be
multiplied by 4. Any procedures which require host machine as
opposed to Slim addresses must be modified to take care of this
problem. In order to maintain portability of such BCPL
procedures we defipe a manifest constant AddressUnitsPerCell and
a function MachineAddress as follcws:

manifest { AddressUnitsPerCell = 2 } || 1 for Slim
i1 2 for PDP-11, etc.
let MachineAddress(CellAddress) =

CellAddress * AddressUnitsPerCell

In an implementation of BCPL via Slim on the PDP-11, machine
addresses are used in the 1linkage area. Therefore, in the
procedure Transfer, when the 0ldLink is modified <care must be
taken to insure that a machine address rather than a cell
address is stored in the ECell of the link:

10 BCPL~Slim

0ldLink!ECell :=
MachineAddress (Recover! SaveH+IfForwvard(LinkSize))

The revised procedures in the Appendix make the assumption
{following a local implementaticn of BCPL via Slim on the
PDP-11) that machine addresses are rTequired by the link but
otherwise BCPL cell addresses cam be used. The definition of
MachineAddress would have to be altered, of course, if the host
machine address of a Slim cell were not simply a multiple of the
cell address.

It is believed that the portability of Remember, Transfer
and Aptovec, and indeed, of any other BCPL procedure could be
maintained should more parameters of the mapping of Slim to a
host machine ke identified: the method would be to define
additional manifest constants and procedures to deal with such
new parameters.

More Efficient Portable Procedures

If one allovws an inline code facility in BCPL, then it 1is
possible to provide more efficient but still portable versions
of some of these procedures. (The measure of efficiency here is
the ©onumber of abstract machine instructioms in the translated
version of the procedure.) The BCPL yile command was introduced
in [Abramson et al, 19787 with the following syntax and
semantics:

vile "string"

The "string™ is copied, stripped of its surrounding quotation
marks, directly into the streanm of abstract machine
instructions.

The following version of Aptovec makes use of a single yvile
commands:

let Aptovec (£, n) = valof

{ let v = vec 0
vi0 := n +# 1 || stack n
vile "MHY {i v = vec n
resultis f£(v, n)

The inserted "MH"™ is a “Modify High Point instruction (mnemoaic
"M") with an operand (mnemonic "H") which indicates that the

BCPL-Slinm 11

value by which the H register is to be modified is to be found
at the top of the stack. This value, in v!0, is popped just
before the H register is modified. (The procedures Remember and
Transfer given above are based, in fact, on versions written by
John Peck which originally used vile commands 1liberally; they,
however, were 1limited in application only to unconditional
transfers of control across procedures.)

It should be emphasized that these extensions of
portability by the abstract machine technique are not limited to
the Slim machine: portable versions of LEVEL, LONGJUMP, and
APTOVEC have been written for the Pica-B and INTCODE machines.
Nor are these extensions limited to porting BCPL: they should be
applicable to porting any high-level lanquage. Highly machine
dependent software can still bLke rportable as 1long as the
dependence is on a carefully defined abstract machine.

A Comment on the Design of BCPL

One final comment about the design of BCPL may be in order.
BCPL is gquite rich in control structures, so rich in fact, that
"post of the time goto-commands are not needed" ([Richards §
Whitby-Strevens, 1979]). The procedures Remember and Transfer
given above implement all unconditional transfers of coantrol at
relatively low costs of time and space. Since goto commands in
BCPL are very rarely necessary, aad since transfers across
procedures must be implemented by procedures anyhow, it seems as
if BCPL could easily dispense with the linguistic apparatus of
the goto command. Removal of this redundant and 1little used
construct would also have the beneficial effect of simplifying
BCPL compilers.

12 BCPL-S1lim

Acknowledgments

This research was supported by the National Science amnd
Engineering Research Council of Canada.

I would 1like to thank John Peck for a close and critical
reading of an early versiom of this paper, and Gordonm Simom, who
in porting BCPL via Slim to the PDP-11 provided certain
interesting problems to solve.

BCPL-Slim 13

References

[Abramson et al. 78]

Abramson, H.D. & Pox, Mark & Gorlick, Michael & Manis, Vince §
Peck, John, The Pica-B Computer: An Abstract Target Machine for
a Trapsportable Single-User Operating Environment, Proceedings
ACH 78, Washington, D.C. December 4-6, 1978.

[Abramson & Peck in preparation)]

Abramson, HD. & Peck, J.E.L., The Design of the Slim computer,
in preparation, October 1980.

[Fox 78]

Fox, M., Machipne architecture and the programming langquage BCPL,
B.Sc. Thesis, Dept. of Computer Science, University of British
Columbia, Vamcouver, Canada, 1978.

[Richards 71]

Richards, M., The portability of the BCPL compiler, Software -
Practice and Experience, vol. 1, 1971,

[Richards 74]

Richards, M., Bootstrapping the BCPL ccmpiler using INTCODE,
Machine Oriented Higher Level Languages (van der Poel, Maarsen,
editors) North Holland 265-270, 1974.

[Richards & Whitby-Strevens 79]
Richards, 4. & Whitby-Strevens, C., BCPL-the language and its
compiler, Cambridge Umiversity Press, 1979.

14 BCPL~-Slinm

Appendix

manifest { AddressUnitsPerCell = 1 1} 1 for Slim
il 2 for pDP-11
it 4 for 360,370
{] true: upward stack
Forward = true ||
il false: downward stack
LinkSize = 2
ECell =0
CCell = Forward->1,-1
SaveE =0
Savelabel = 1
SaveH = 2
}
static { NewlLink =0
RecoverCopy = 0

}

let Remenber {Recover, Label) = valof

Il save old E, target of Transfer and old H

{ Recover!SaveE := (dRecover+IfForward(-LinkSize)) !ECell
Recover!SavelLabel := Label
Recover!SaveH := @dRecover + IfForward(-LinkSize-1)
resultis Recover

}

and Transfer (Recover) be
{ let 0ldLink = @Recover+IfForward (-LinkSize)
Il Create new link just above old H.
NewlLink := Recover!SaveH+IfForward (1)
|| Use static variables to prevemt overwriting.
RecoverCopy == Recover
1| Is this a goto in the same environment?
if O0ldLink = Newlink
do [Newlink!CCell := Recover!Savelabel
return

}
1| Set ECell to old H ¢+ LinkSize,
|| adjusting for stack direction and machine addressing:
0ldLink!ECell :=
MachineAddress (Recover!SaveH+IfForward{LinkSize))
0ldLink!CCell := ReturnHere
return
ReturnHere:
|| Complete formation of new link and return:
NewLink!ECell := RecoverCopy!SaveE
NewLink!CCell := RecoverCopy!Savelabel

i

BCPL-Sliam

and MachineAddress (CellAddress) =
CellAddress ¥ AddressUnitsPerCell

and IfForward(x) = Forward -> x, ~Xx

and Aptovec(f, n) = valof
{ let Save = vec 2
and v = vec 0
Remember (Save, LabelAl)
|| Modify saved value of H register,
Il adjust for stack direction:
Save!SaveH +:= IfForward(n)
unless Forward do v -:= n
Transfer (Save) Il v = vec n
LabelA:
resultis f (v, n)
}

and AptovecVile(f, n) = valof
{ let v = vec 0
vi0 z=n ¢ 1 b
vile "MH" i
anless Forward do v —-:=
resultis f£(v, n)

stack n + 1
¥V = vec n
n

15

