
************************************************* 
* * • Why 
$ 

• • 
* • • • • • 
* 
* 
* 
* 

is a .9,Q!B like a dynamic vector in 
BCPL-Sli11 computing system? 

by 

Harvey Abra11son 

Technical Report 80-9 

November 1980 

Department of Computer Science 
The University of British Columbia 

Vancouver, British Columbia V6T 1W5 

Abstract 

the * 
* 
• 
* 
* * 
* * 
* 
* • • 
* 
* 

The Slim co ■puter is a new virtual machine which can be used in 
the translation and porting of the BCPL compiler, and 
eventually, in the porting of an operating system written in 
BCPL. For the purposes of this paper, the Sli■ computer is a 
stack aachine with a single accumulator and a register which 
pain ts to the top of the stacK. 'Ihe procedures .LF:VEL and 
LOHGJU~~, traditionally used to implement transfers of control 
across BCPL procedures, and vhich are usually written in the 
assembler language of a host machine, cannot be used with this 
architecture. Io developing procedures to implement ~!1 
transfers of control, ve show how these essential procedures -
though highly dependant on the Slim architecture can be 
written portably in BCPL, and discoyer an interesting connection 
between i■plemeuting jumps and dynamic vectors (by means of 
Aptovec) in the BCP.L-Slim computing system. Some parameters of 
portability in ■apping an abstract machine to host machines are 
identified, and it is shown how to maintain the portability of 
the above mentioned procedures in the £ace of various mapping 
problems. Finally, ve are led to a comment on the design of 
BCPL to the ef.fect that goto• s are an unnecessary feature of the 
la.ngaage. 

Research supported by the 
Besearch Council of Canada. 

National Sciences and Engineering 
Copyr-ight 1980 Harvey Abraaso.n. · 





BCPL-Slia 1 

The Proble ■ 

The syntax and semantics of BCPL permit sensible 
unconditional transfers of control (gQ!Q's) from one point to 
aaother only within the same procedure (i.e., routine or 
fanction). Rach procedure call results in a new dynamic 
environment or stackfraae vhich contains a linkage area tb the 
preYious environment, arguments to the procedure, local 
variables and vectors. A BCPL label is a static (or global) 
variable initialised to a Yalue which represents the point of 
the program at which it is declared. If a procedure F has a 
label L, then .9.Q1Q L is a sensible command w:ithin F which 
results in a transfer of control to the point designated by L. 
Within another procedure G, however, the command goto L would 
result in a transfer of control to the point labeled by L, but 
aithia the enYironment of G. Refecences to pac meters and local 
variables meant to be in P would actually refer to cells in the 
environ11ent of G, leading quite naturally to disaster • 

.In cases when an unconditional transfer of control was 
required between points in different procedures F and G, BCPL 
historically used a pair of procedures named LEVEL and LONGJUMP 
to effect the change: a call in P to the fu.11ction LEVEL() is 
used to record a BCPL value representing P's environment in a 
static or global variable, say saveE; 

Sa veE : = LEV.EL() 

and then a call in G of the routine LCNGJUMP causes the BCPL 
runtime system to restore the saved environment and to resume 
flow of control from the point labeled by Lin P 

Examples 
examinillg 
package, 
1979 ] .. 

LONGJUMP(SaveE,L). 

of the use of LEVEL and LCNGJUMP may be found by 
the source programs of the BCPL compiler and debug 
and are discussed in (Richards & Whitby-strevens, 

The above sche•e for unconditional transfers across 
procedures is not useable without modification on the Slim 
machine, vhicb is a new abstract computer intended to serve as a 
target for the BCPL compiler .tnd as an aid to the porting of the 
BCPL compiler and also, eventually, of a single-user 
11ulti-process operating system. (See [ Abramson et al, in 
preparation].) The Slim co111puter is a stack machine with a 
single accumulator (the A register), and with a register (the H 
or high-point regist~r) which points to the top of the stack. 
This architecture ~as chosen because code generated for the 
stack-accumulator machine is geAerally more compact than code 
for a pure stack ■ achi .ne; and .because the presence of the H 
register makes it possible to treat interrupts as unexpected 



2 BCPL-Slim 

procedare calls and dllows the easy i1ple■entation of dynamic 
vectors in addition to facilitating the storage and retrieval of 
implicit variables during expression evaluation. (See (Pox, 
1978].) The LEVEL and LONGJUMP pair of procedures cannot· be 
used without alteration because the Slim computer requires not 
only that the environment be re-established, but also that the H 
register point to the correct cell on the stack when flov of 
control resumes at the destination label. The solution to this 
problem points out an interesting connection between 
unconditional transfers and dynamic vectors on the Slim 
computer, makes possible a more portable BCPL library, and 
suggests some comments about BCPL and about portability via the 
abstract machine technique. 

A Solution 

In preparation for an unconditional transfer of control on 
the Slim machine, the environment is recorded not in a simple 
BCPL value, hut in a vector of three cells by a BCPL function 
called Remember. 

In order to understand the Remember function, however, it 
is necessary to describe the Slim computex•s representation of a 
procedure's envircnment. The current environment or stackframe 
is pointed to by the enviconHnt or~ ,&,!!gistfil. The E register 
in fact points to the second cell of the t110 cell linkage area 
of the current stackframe, in which is recorded a return address 
or value for the Slim computer's program ~nter or ~ register 
(which is where the calling procedure resu ■es upon normal 
termination of the called proceclure). In the first cell of the 
linkage area, at an offset of -1 from the E register is a value 
which points to the stackframe of the calling procedure, that 
is, it contains the value of the E register at the calling 
foint. If the current procedure has D argu■ent~, these are 
found on the stack at positive offsets 1, ••. ,n from the E 
register. Any local or vector variables lie on the stack above 
the argument(s), and above these lie the elements of the 
respective vectors. · 

Using the following manifest constants 

manifest { LinkSize = 2 
ECell = 0 
CCell = 1 
SaveE = 0 
Sa veLabe 1 = 1 
saveH = 2 

J 



BC PL-Slim 3 

the BCPL recording function Remember is given by: 

let Re■ember(Recover, Label) = valof 
( Becover!SaveE := (@Recover-LinkSize)!ECell 

Recover!Savetabel := tabel 
11 save old E 

Recover!SavEB := @Recover - LinkSize - 1 
resultis Recover 

II Transfer target 
I I save old R 

} 

The arg11ments to the function Remember are Recove.r, the three 
cell vector in which the information necessary for transfer of 
control is to be recorded, and Label, the target of the e•entual 
jump. Within the funtion Remember, the ~bs,2.J.]!1~ e,.ddress on the 
stack of Remember•s linkage area is given in BCPL by: 

@Recover - LinkSize. 

The value of tbe E register when Remember is called is therefore 
given by: 

(~Recover-LinkSize) !ECell, 

and the value cf the H register when Bemeaber is called is given 
by: 

iRecover - Linksize - 1, 

which is the address of the cell jy§1 below the 
environ■ ent•s linkage area. The result of Remember, the 
of the recording vector, should be stored in a static or 
variable. 

current 
address 
global 

The Transfer routine vbich actually performs unconditional 
juaps depeods on the way that the BCPL cet!!:£1! construct .is 
i ■pleaented on the Sli ■ co11puter. en Slim, a cetyrn from a 
procedure has the following effects: the E and C registers are 
reset to the respectiYe values found in the current stackframe•s 
linkage area; and the H register is reset to point to the cell 
just before the current stack.fraae• s linkage area. There is no 
difference in a retuI~ from a routine or a .function. The result 
of a function is simply found in the A register or accumulator. 

Using the follov~ng static variables 

static ( NewLink = 0 
BecoverCopy = O 

} 

the BCPL Transfer routine is given by: 



4 BC PL-Slim 

let Transfer(Becover) be 
( let OldLiak = aRecover - LinkSize 

NevLink :~ Recover!SaveR 
RecoverCopy := Recover 
if OldLink = NewLink 

JI Nev link just above old R. 
+ 1 II Use static variables 

II to prevent overwriting. 
II A goto in same environment? 

do ( NewLink!CCell := Recover!Savetabel 
return 

} 
IJ Set ECell to old H + LinkSize, 
II force return within Transfer. 
OldLink!ECell := Recover!SaveR + LinkSize 
OldLink!CCell := ReturnHere 
return 

Return Here: 
NewLink!ECell := RecoverCopy!SaveE 11 set ECell to old E 
NevLink!CCell := RecoverCopy!SaveLabel II set CCell to target 

.l 

Transfer works by manipulating its ovn linkage area and by 
setti11g up a "virtual" lin.kage area from 11hich a £et!!£~ can be 
aade to the appropriate label, in the appropriate environment, 
and with the appropriate value in the H register. The address 
of Transfer's linkage area is recorded in OldLink, and the 
virtual link, recorded in NewLink, is to be created one cell 
beyond the value of tbe H register s~ved in the Recover vector 
by Remember. The address of the Recover vector is saved in the 
static variable BecoverCopy (see below). Transfer's linkage 
area is first adjusted so that at the explicit ~ill!!, instead 
of returning to Transfer's calling point, control resuaes at the 
command vithi.!! Transfer labeled "lieturnHere", and v.ith the E 
register pointing to the virtual NevLink. The virtual linltage 
area is then set so that it contains the appropriate 
(liemember-ed) value for the E register, and t .he Label to which 
control should he transferred. The implicit return at the end 
of Tiansfer uses this virtual link to set the E, c, and H 
registers appropriately. In the case vhere there is no change 
of environment and the trans .fer is equivalent to a g.Q.lQ, i.e., 
when OldLink and NewLink have the same value, it is only 
necessary to reset the return address in Transfer's linkage 
area. 

Needless to say, this manipulation of the stack is not 
without cost an~ risk. The variables NevLink and RecoverCopy 
■ust be static rather than local because at the ntur!l within 
Transfer the environment is damaged and local variables in 
Transfer could not properly be accessed by offsets fro■ the E 
register. Furthermore, when the OldLink and Nevtink areas 
overlap but are not coincident, there is a temporary stack 
anomaly upon the .retU!:!! within Transfer in that the H register 
is pointing to a cell below the cell pointed to by the E 
register. There is a stack protection ■echanis■ on the Slia 



BCPL-Slim 5 

coaputer, however, which readjusts the H register to the same 
value as the E register so that the condition which should hold 
between these registers 

H > E 

is in fact satisfied. 

A Bonus: APTOVEC in ECPL 

In BCPL the size of a vector must be known at compile time, 
that is, statically. The fixed size of the Yector is used by 
the compiler to determine the exact size of the environment in 
which the yector is declared. If a •ector v• is declared in a 
proced~re P then a cell is allocated on the stack to the vector 
variable v. ·This cell lies beyond P's arguments and among P's 
local variables, and is initialized to point to the first cell 
(Y!O) of an array of n+1 cells. This array of cells lies beyond 
all of P's local and vector variables. Because of the fixed 
size requirement, programmers are forced to define vectors of 
such a size as to cover all ezpected eventualities. In those 
cases where programmers required or wished to specify vector 
sizes by some (dynamic) computation, a function APTOVEC was 
provided which could be described, albeit illegally, by ~he 
follo~ing BCPL-like code: 

let APTOVEC(F,~ be 
{ let V = VEC NII illegal! 

resul tis F (V, N) 
} 

According to [Richards & Whithy-Strevens, 1979], this function 
is -n·nor ■ally impleaented in assembly language 0 simply because 
dynamically determined vector sizes as given in the 
pseudo-definition of APTOV~C are not permitted in BCPL. Space 
for the vectoi: would be dynamically allocated withi.n APTOVEC's 
stackframe, just below the environment for P. Upon an exit from 
F, the space would be auto■aticall~ deallocated when APTOVEC's 
stackframe was destroyed. 

It is possible to de.fine a version of APTOVEC for the s li111 
computer in BCPL in the absence of dynamically (i.e., ruo time) 
deterained vector sizes by making use of the Ramember and 
Transfer procedures. The "trick" is to suitably manipulate a 
Reaember-ed value of the H register, and to force a Transfer 
within the following function: 



6 BCPL-Sli ■ 

let Aptovec(f, n) = valof 
( let Save= vec 2 

and v = vec O 
Hemember(Save, labelA) 
Save!SaveH ♦. := a II This adds n to the saved H value 
Transfer(Save) I I producing the effect of v = Yee n. 

LabelA: 
result is f (v, n) 

} 

Just before the call to Remember the B register is pointing to 
the single, zero'th element of the vector•· It is this value 
of the H register which is Bemember-ed. Immediately after the 
call to Remember, the saved value of the B register is 
incremented by o (the notation z +:= y being srntactic 
saccharine for .x : = x + y) • The cal 1 of Transfer is like a g.Q!Q 
the following command, .but has the side effect of altering the R 
register and therefore increasing the size of the vector v to 
n ♦. 1 elements. Upon a normal exit from f, the implicit ret~ 
in Aptovec restores the environ ent of the procedure which 
called Aptovec, and thereby, deallocates the space given to the 
vector v aod resets the R register to its value at the calling 
point. (See below, however, for another more ef£icient version 
of Aptovec which, although it makes use of the Slim computer's 
assembly language, is still portable.) 

The answer to the question which titles thi~ . paper is 
therefore: A dynaaic vector is like a g.QiQ io the BCPL-Slilil 
coml:,)uting system because both dynamic vectors and Sll2' s can .be 
implemented by means of a common data structure and a com■on set 
of procedures which manipulate this data structure. 

Some Para ■eters of Portability 

Historically, BCPt compilers have been ported by the 
abstract ■achine technique, whereby code is generated .for a 
machine which is interpretively simulated on a host computer. 
The first such BCPL machine vas the OCODE machine ([ Richards, 
1971]), succeeded by the INTCODE machine ([Richards, 1974)). 
"ore recently the Pica-B ((Abramson et al, 1978]) and the Sli ■ 
((Abramson et al, in pxeparation]) co■poters have been designed 
to aid in the porting of the BCPL compiler and also, eventually, 
in the porting of operating syste■s. (The Pica-Bis essentially 
the INTCOOE machine with an interrupt register.} 

The INTCODE machine was designed to si ■plify the 
portability process because when programmers vith no preYious 
experience of BCPL undertook to port the coapiler by means of 



BCPL-Slim 7 

the OCODE machine, it ~as found that "it often took longer than 
expected and frequently ••• strategic errors in design" were 
aade ((Richards, 197ij]). Even though the INTCODE machine may 
have eased the problem of porting the BCPL compiler, there still 
seems, however, to have been an important gap in the portability 
process, namely the existence of important library procedures 
not written in BCPL: typically the procedures LEVEL, LONGJUMP 
and APTOVEC were written in the assembler language of the 
computer hosting the BCPL compiler. The successful 
implementation of these procedures without an explicit 
operational defintion of their effects could prove an obstacle 
(albeit a slight one to experienced p.rogrammers) to the porting 
of BCPL fro ■ one machine to another. 

Given an abstract machine such as Slim, for example, it · is 
relatively easy to write in BCPL important library procedures 
which. though highly machine dependent, become as portable as 
the BCPL compiler itself. This is not to say that eventually, 
after a successful port of the compiler and library, more 
efficient versions of these procedures should not be written in 
the asse ■hler language of the host machine. Rather, the initial 
port becomes much simpler in that one is provided with 
procedures which provide high-level, reliable and explicit 
operational descriptions of sometimes non-standard or even 
bizarre manipulations of the abstract machine. 

There is another advantage to portable versions of such 
procedures and that is that they provide a test of the 
consistency of the mapping of the abstract machine to the host 
■achine. If the mapping of the abstract aachine is 
straightforward and cor.rectly done, then these procedures 
unaltered should behave as expected. Inconsistencies in the 
behavior of these procedures on the host machine would be an 
indication of a possible error in the mapping. 

The host machine, however, usually has one or more 
architectural guirks which must be accounted for in any mapping 
of the Slim machine, and some compiler implementation decisions 
aay, in effect, be viewed as perturbations of the Slim computer. 
It is possible to revise the definitions of the procedures given 
above in such a vay that they perform their expected functions 
as defined on the Slim computer yet are still portable even in 
the face of machine specific or implementation specific 
pro.ble11s. 

several parameters of the mapping of Slim to a host machine 
can be identified: 



8 BCPL-Slim 

1. The linkage structure for procedures may be different: 
there may be more than two cells in the linkage area 
and/or the arrangement of cells i.o the linkage area 11ay be 
a permutation of the order given above. 

2. There may be a hardware stack or stack register which 
imposes a "downward" growing stack: whe.n something gets 
pushed onto the stack the value in the H register 
decreases; and vhen so■ething gets popped, the value in 
the H register increases. 

3. The addressing ■echanism on the host aachine aay be 
different from the BCPL-Slim cell addressing sche ■e. 

The problem described above as parameter one is an exaaple 
of a coapiler implementation decision which affects the mapping. 
In effect, one could imagine that the Slim Manufactory produces 
several models of the Slim computer vhich differ in the 
structure of the linkage area, and in the microcode of 
instructions which manipulate the linkage area (the ■ark, call 
and return instructions). Portability of the Remember and 
Transfer procedures can be maintained by adjusting the manifest 
constants ECell, CCell, and LinkSize. 

The problem described as parameter tvo of the aapping, 
occurs, for e~a ■ Fle, when a PDP-11 is the host machine. &ny 
procedure which makes use of absolute addresses of stack cells -
as do Rememher, Transfer and lptovec - aust be ■odified to take 
account of the direction of stack growth. To aid in •aintaining 
portability in the face of this proble■, a manifest constant 
Forward and a function IsForvard are defined as follows: 

II true: upward stack 
manifest ( F orv ard = false } I I 

JI false: downward stack 
let IsForward(x) =Forward-> x, -x 

The manifest Forward is true for "upward" growing stacks as on 
Slim itself, and false for "downward" growing stacks. The 
function IsPorward adjusts a quantity x, usually an offset, 
according to the stack direction. An example of the use of the 
function IsPorvard in Remember vould be to note that the value 
of the E register to be Remember-ed is found by: 

(lRecover • IfPorvard(-LinkSize)) !ECell 

since, if the stack grows downward and the order of cells in the 
linkage area is as described above, the address of the linkage 



BCPL-Sli ■ 9 

cell which contains the old value of the E register would be 

@Recover+ LinkSize 

rather than 

jRecover - LinkSize. 

i>ortability of the procedures Remember, Transfer, and Aptovec is 
preserYed in the face of this problem by using the IsForvard 
function and by suitably adjusting the manifest constants 
Forward, ECell and CCell. (See the Appendix fo.r versions of 
these p.rocedures which have been revised to maintain portability 
under the three identified mapping para ■eters. In the revised 
Aptovec it is assuaed that when Forward is false, vectors are 
i ■ple■ented in such a fashion that as one traverses the stack in 
the direction of stack growth from a vector variable v, the 
first cell of then+ 1 cells of the vector encountered is in 
fact v!n, and the last one is v!O. Thus in Aptovec, v!O 
eYentually vecomes v! n o.f t .he dynamic vector. This assumption 
is aade so that the BCPL vector subscripting mechanism will work 
as expected .. ) 

The problem described as parameter three of the mapping 
also occurs when the PDP-11 is the host machine. The PDP-11 is 
byte addressable and a single cell of the Slim computer 
corresponds to two bytes of the PDP-11. A Slim address must be 
multiplied by 2 in orde£ to get a correct machine address when 
necessary. If an 1B1' 360/370 or one of its clones such as an 
Aadahl 470 were the host, a Slim address would have to be 
■ultiplied by 4.. Any procedures which require host mac.hine as 
opposed to Slim addresses ■ust be modified to take care of this 
problem.. In order to maintain portability of such BCPL 
procedures we define a manifest constant AddressUnitsPerCell and 
a function MachineAddr£ss as follcvs: 

■anifest { AddressUnitsPerCell = 2} II 1 for Slim 
II 2 for PDP-11, etc. 

let "achineAddress(CellAddress) = 
CellAddress * AddressUoitsPerCell 

In an implementation of BCPL via Slim on the PDP-11, machine 
addresses are used in the linkage area. Therefore, in the 
procedure Transfer, when the OldLink is modified care must be 
taken to insure that a machine address rather than a cell 
address is stored in the ECell of the link: 



10 BCPL-Sli111 

OldLink!ECell := 
fllachineAddress(Recover!SaveR+IfForvard(LinkSi'Ze)) 

The revised procedures in the Appendix ■ake the assumption 
(following a local i ■plementaticn of BCPL Yia Slim on the 
PDP-11) that machine addresses aLE required by the link but 
otherwise BCPL cell addresses can be used. The definition of 
MachineAddress would have to be altered, of course, if the host 
machine address of a Slim cell were not si ■ply a multiple of the 
cell address. 

It is believed that the portability of Remember, Transfer 
and Aptovec, and indeed, of any other BCPL procedure could be 
maintained should more para■eters of the mapping of Sli• to a 
host machine be identified: the method would be to define 
additional manifest constants and procedures to deal vith such 
new parameters. 

More Efficient Portable Procedures 

If on€ allows an inline code facility in BCPL, then it is 
possible to provide more efficient but still portable versions 
of some of these procedures. (The measure of efficiency here . is 
tbe nuwber of abstract machine instructions in the translated 
version of the procedure.) The BCPL vil~ co■mand was introduced 
in [Abramson et al, 1978] with the following syntax and 
semantics: 

,!ilg "string" 

The "string" is copied, stripped of its 
marks, directly into the stream 
instructions. 

surrounding quotation 
of abstract aachine 

The following version of Aptovec makes use of a single ~il~ 
co1111and: 

let Aptovec(f, n) = valof 
{ let v = vec O 

v!O := n + 1 JI stack n 
vile "MH" II v = vec n 
resultis f(v, n) 

The inserted 11 MH" is a ,odify High Point instruction ( ■nemonic 
"M") with an operand (mnemonic "H"} which indicates that the 

!· 
I 



BCPL-Slim 1 1 

vaiue by which the H register is to be •odified is to be found 
at the top of the stack. This value, in v!0, is popped just 
before the H register is modified. (!he procedures Remember and 
Transfer given above are based, in fact, on versions written by 
John Peck which originally used vile commands liberally; they, 
however, vere limited in application only to unconditional 
transfers of control acioss procedures.) 

It should be emphasized that these extensions of 
portability by the abstract machine technique are not limited to 
the Slim machine: portable versions of LEVEL, LONGJU~P, and 
APTOVEC have been written for the Pica-Band INTCODE machines. 
Nor are these extensions li~ited to farting BCPL: they should be 
applicable to porting any high-level language. Highly machine 
dependent software can still be fortable as long as the 
dependence is on a carefully defined abstract machine. 

A Comment on the Design of BCPL 

One final comment about the design of BCPL may be in order. 
BCPL is quite rich in control structures, so rich in fact, that 
•aost of the time gQ,1Q-commands are not needed" ([ Richards & 
Rhitby-strevens, 1979]). The procedures Remember and Transfer 
given above i ■plement all unconditional transfers of control at 
.relatively low costs of time and space. Since gotQ commands in 
BCPL are ve~y rarely necessary, and since transfers across 
procedures aust be implemented by procedures anyhow, it seems as 
if BCPL could easily dispense with the linguistic apparatus of 
the goto command. Removal of this redundant and little used 
coust.cuct would also have the .beneficial e.ffect of simplifying 
BCPL compilers. 



12 BCPL-Sli111 

Acknowledgments 

ThiE rese~rch was support~d by the National Science aQd 
Engineering Besearch Council of Canada. 

I vould like to thank John i?eck for a c1ose and critical 
reading of an early version of this paper, and Gordon Simoa, vho 
in porting .BCPL v.ia · Slim to the PDP-11 provided certain 
interesting problems to Solve. 



BCPL-Sli ■ 1.3 

References 

(Abra■soa et al. 78] 
Abra son, H.D. & Pox, ftark 6 Gorlick, ~ichael & ftanis, Vince & 
Peet. John,~ Pie~=~ Computer: An AbstI~t Target ~achine !..Q[ 
§ 1.D&~!Uil Si.Dgle-Osfi QJ!ggtin9 Environmen!, Proceedings 
ACB 78, Washington, n.c. Dece■ber 4-6, 1978. 

[Abramson & Peck in preparation] 
Abraason, HD. & Peck, J.E.L., Th~ De§ign QI the fil.l~ com2ute~, 
in preparation, October 1980. 

{Fox 78] 
Fox, a •• ~chi ne architectyre and th~ .2!:2~amming laBquage BCPL, 
ft.Sc. Thesis, Dept. of Co11p11ter Science, University of British 
Colu ■bia, Vancouver, Canada, 1978. 

[ Richards 7 1 ] 
Richards, M., The j!Qrt~biliti tl th~ !!~f!: CO.Jlpiler, Software -
Practice and Experience, vol. 1, 1971. 

[ Richards 74] 
Richards, ~-, Boot~~pin~ the ~£f~ ccmPiler .!l§1Jlg !llCOJ;l!, 
Machine Orie.nted Higher Level Languages (van der Poel, Maarsen, 
editors) North Holland 265-270, 1974. 

[Richards & Wbitby-streveas 79] 
Richards, H. & Whitby-strevens, c., BCP1=tl!g language and it§ 
compiler, Cambridge University Press, 1979. 



14 BCI.>L-Sli ■ 

Appendix 

manifest [ AddressUnitsPerCell = 1 I I 1 for Sli ll 
I I 2 for PDP-11 
I I 4 for 360/370 

fl true: upward stack 
Forward = true II 

II false: downward 
Linksize = 2 
ECell = 0 
CCell = Forvard->1,-1 
saveE = 0 
SaveLabel = 1 
SaveH = 2 

} 

static ( NewLink = 0 
RecoverCopy = 0 

} 

let Remember{Recover, Label) = valof 
II save old E, target of Transfer and old H 
( Recover!SaveE := (~Recover+IfPorward(-LinkSize)) !ECell 

Recover!SaveLabel := Label 

} 

Recover!SaveH := mRecover + IfForvard(-LinkSi~e-1) 
resultis Recover 

and Transfer(Becover) be 
{ let OldLink = @Becover+IfForvard(-LinkSize) 

II Create new link just above old H. 
NevLink := Becover!SaveH+IfPorward(l) 
II Use static variables to prevent overwriting. 
RecoverCopy := Recover 
JI Is this a goto in the same environment? 
if OldLink = NevLink 
do ( NewLink!CCell := Recover!Savelabel 

return 
} 

11 Set ECell to old H + tinkSize, 
ti adjusting for stack direction and machine addressing: 

stack 

OldLink!ECell := 
~achineAddress(Recover!SaveH+IfForward(LinkSize)) 

OldLink!CCell := ReturnHere 
ceturn 

Return Here: 

j 

II Complete formation of new link and return: 
NewLink!ECell := RecoverCopy!SaveE 
NevLink!CCell := RecoverCopy!saveLabel 

r 



BCPL-Slim 

and "achineAddress(CellAddres~ = 
CellAddress • AddressOnitsPerCell 

and IfPorward(x) =Forward-> x, -x 

and Aptovec(f. o) = valof 
{ let Save= vec 2 

and v = vec 0 
Reaember(Save, LabelA) 
IJ ftodify saved value of H register, 
IJ adjust for stack direction: 
Save!SaveH +:= IfForward(n) 
unless Forward do v -:= n 
Transfer(Save) II v = vec n 

LabelA: 
.result is f (v. n) 

J 

and AptovecVile(f, n) = valof 
{ let v = vec 0 

Y! 0 := n + 1 
vile "ftR" 

} 

unless Forward do v 
result is f (v, n) 

II stack n + 1 
II v = vec n 

-:= n 

15 


