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Abstract 

In this paper, we describe a straightforward least squares approach to 

the problem of finding numerical values for parameters occurring in differential 

equations, so that the solution best fits some observed data. The method consists 

of first fitting the given data by least squares using cubic spline functions with 

knots chosen interactively, and then finding the parameters by least squares solution 

of the differential equation sampled at a set of points. We illustrate the method 

by three problems from chemical and biological modelling. 
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1. Introduction 

The general problem can be stated as follows: we are given a 

system of ordinary differential equations 

dyl 
y' f 1 (t,x_,£_) dt = = 

1 

. (1.1) 

y' = f (t,x_,E_) n n 

where £. = (p1 , •.• , pm) are m(real) parameters whose numerical values 

are unknown. As well, the solution vector x_(t) has been measured at 

certain data points {t.,i=l, ••. ,N}. 
l. 

The problem is to find reason-

able values for E. so that the solution of (1.1) with these parameter 

values, and suitably chosen initial conditions, fits the given data. 

As a specific example, consider the Lotka/Volterra predator prey 

model (see e.g., Clark (1976), pg. 194) 

{ 
y' = 1 

y' = 
2 

Here y1 (t) measures prey population, y2 (t) predator population, and 

the {pi} are positive constants dealing with birth, death, and inter

action rates. Typically, there are measured values for y1 (t), y2 (t) 

at certain times t = t., and we are asked to provide reasonable values 
l. 

for the {pi} so the solution (y1 (t), y2 (t)) approximates the data. 

Of course there is a certain amount of error inherent in the data, so 
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we cannot expect to fit the data perfectly. As well there may or may 

not be exact initial conditions given; the first point (y
1

(t
1
), y

2
Ct

1
)) 

may be just as much in error as the other points. 

Such problems arise frequently in various areas: for example, 

in chemical reaction equations, and in the modelling of biological and 

ecological processes. In this paper, we describe a simple approach to 

the problem, discuss its merits relative to other methods which have been 

proposed, and illustrate the method on three specific examples. 

2. Method of Solution 

Recently, the most popular method for solving this problem has 

been an initial value technique: initial estimates of the parameters are 

made, and equation (1.1) is integrated using these parameters and some 

(possibly given) set of initial conditions. Then the least squares 

deviation of the solution at the data points is measured, and this is 

treated as a function of the parameters, which one tries to minimize over 

the space of parameter values. This approach is described in Bard (1974), 

van Domselaar and Hemker (1975), and Benson (1979). Although it can 

work well, we feel it has some serious drawbacks: 

(a) The solution of (1.1) may be very sensitive to the initial 

conditions, thus making it difficult to integrate the equations. This 

sensitivity will be worsened in cases where the initial conditions are 

not known accurately; often the data error is at least 10%. 

(b) The technique requires guessing the parameter values; if 

these are not known reasonably well in advance, again it may be difficult 



to integrate the equations, and the behavior of the solution may be 

totally different from that obtained using "good" parameters. 
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(c) There is a large amount of computational work involved; each 

new set of parameters requires a full-scale integration of the equations, 

possibly with a special method (e.g., if the initial value system is stiff). 

This all means that the computer programs set up to solve such a problem 

are by necessity long and complex. 

(d) When the parameters occur linearly in (1.1), as in the Lotka/ 

Volterra model, the method does not simplify: an iterative procedure 

still ensues. 

we would like to propose a simple, straightforward method which, 

we feel, overcomes all of these drawbacks: 

(1) First, fit the given data by least squares using cubic spline 

functions. That is, for each component j = l, •.. ,n, construct a cubic 

spline s. (t) 
J 

with fixed knots {t;}, k = 1, .•• ,q, choosing the spline 

coefficients to minimize the least squares deviation at the data points. 

This technique is described in Chapter 14 of de Boor (1979) and we give 

some further details in the next section, as it is useful for data fitting 

in general. 

(2) When these spline fits have been found (so that the data has 

in effect been smoothed), we then find parameters to minimize the least 

squares deviation in the differential equation system (1.1) measured at 

some set of sample points 
,. 

{ t.}, i = 1, ••• ,M • 
1 

That is, we find l2. to 

min 

l2. 
1 I Gs~ Ct.) - f. Ct. , ~, :e.>] 

2 

• 
. 1 1·=1 J 1 J 1 
J= 

(2 .1) 
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In particular, notice that when the parameters £. appear linearly in 

(1.1), this is a linear least squares problem, which can be solved direct

ly by setting up the overdetermined system of nM equations in m 

variables {£_) and solving this by a QR factorization or by using the 

normal equations. Moreover, no initial value solver is needed and no 

specific initial conditions are required. Thus the amount of computation, 

and the complexity of the program needed, are much less than for the 

initial value method described earlier. We should add that this technique 

is not new: a similar method (using a different data fitting technique 

in (1)) was proposed by Swartz and Bremerman (1975), and other similar 

methods have probably been proposed earlier. 

3. Least Squares Cubic Splines 

To simplify the notation, assume we have only one y-component, so 

our data are {(t. ,y.), i = l, ••• ,N}. 
l. l. 

Also let 

We wish to approximate this by a cubic spline s{t) with knots {t~} , 
l. 

* * * a < t
1 
~ t

2 
~ • • • ~ t q < b • Thus the spline s(t) is made up of different 

cubic polynomials in each interval * * * * (a , t
1
), (t

1 
, t

2
), .•• , (tq , b) , 

matched at the knots so that s" (t) is continuous throughout (a,b) . 

Since each cubic polynomial has four coefficients, and the above requires 

three continuity conditions per knot, we are left with (q + 4) 

coefficients to determine by least squares solution of the dqta 

equations s(t.) = y., i = l, ... ,N. 
l. l. 

Of course, one can solve directly by expressing each cubic polynomial 

in powers of t, matching the continuity conditions at the knots, and 
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solving the least squares problem for the other coefficients. However, 

it is much easier (technically, if not conceptually) to use a B-spline 

basis for the cubic splines: each cubic B-spline B ~4 } (t) 
l. 

is uniquely 

defined by 5 successive knots, and is positive inside and zero outside 

this range. They can be easily generated by the recurrence relation 

(see de Boor (1979), pg. 131) 

B~l) (t) = 
l. 

{ 

1 , 

0 , otherwise 

B ~k) (t) 
l. 

t - t~ (k 1) t~ k - t ( 1) = l. B. - (t) + __ i_+ ___ B k- (t) 
t * - t* 1 t* - t* i+l i +k- 1 i i+k i+l 

k=2,3,4. 

Notice this generates in order the B-spline of degree 1, 2, and 3 over 

the appropriate set of knots. To make this complete, the endpoints a 

and b must be included as 4-fold multiple knots. Since there are q 

interior knots, this defines (q + 4) B-splines, which then forms a 

basis for all cubic splines over these knots. To find the best least 

squares spline, we solve the overdetermined linear system 

q+4 (4) 
}: a.B. (t.) = 

j=l J J i 

y. 
l. 

, i = 1, ... ,N • 

This is the data fitting technique we advocate here. The knots 

{t;} must be chosen fairly carefully in order to get a reasonable fit 

of the data with not too many knots. It is best to do this interactively, 

using a graphics terminal if possible. We should also remark that the 



knots may be multiple: a double knot, for example, allows the second 

derivative of the spline to be discontinuous. This can be helpful in 

fitting data which change abruptly. 

Clearly it is important that the derivative s' (t) be a 

reasonable approximation to the rate of change of the given data. As 
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is well known, this can be a tricky business, and it is for this reason 

that we have used cubic splines. Our experience indicates that such a 

cubic spline gives as good a derivative as can be expected from the data. 

As an indication of this, when we tried the method on the example of 

Anderssen and Bloomfield (1974), we obtained the same accuracy as they 

did for their Fourier or regularization method. 

4. Details of the Method 

To succeed, our technique should be used in an interactive 

environment. When the data are first fitted with a cubic spline, it is 

very important that a graph of the fit be plotted. For a given knot 

set {t;}, we may obtain a small least squares residual at the data 

points, and yet the spline may deviate considerably from the "expected 

curve" between the data points. With an interactive plot, the knots 

{t*} can be adjusted to get a better "visual" or overall plot. Similarly, 
k 

one cannot automate the choice of knots by minimizing the least squares 

residual at the data points over all possible knot sets {t=}. Such 

a choice will not necessarily produce the "best" fit, because of the 

possible deviation between data points and because the final curve we 

are after is not the spline fit, but a solution curve of the differential 
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equation . This is borne out in our examples in Section 6. 
,. 

Similarly, the choice of sample points {t.} 
l. 

is somewhat 

arbitrary, and should be done interactively. Enough points should be 

chosen that the behavior of the solution is adequately represented, and 

it is important to place sample points "where the action is", that is, 

where the solution is changing rapidly. It has been our experience that 
,., 

a reasonable selection of sample points {t.} 
l. 

and knots is what 

is important, not their exact placement; that is, the method is fairly 

robust. 

After the choice of sample points, the next step is the solution 

of (2.1). As we have mentioned, this is a linear least squares problem 

if the parameters appear linearly in (1.1), and if so, the problem can 

be solved directly using normal equations or a QR factorization (which 

is, of course, required for the spline fit earlier). If the parameters 

appear nonlinearly, however, there are many techniques, algorithms, and 

programs available. We have contented ourselves with using a simple 

direct search algorithm for nonlinear minimization, which has the 
of. 

advantage of not requiring any pratial derivative l. 

op .• 
J 

However, much 

more sophisticated techniques are available for such nonlinear least 

squares problems and should probably be used, since these partial 

derivatives are required in any case if we want to obtain confidence 

intervals for the parameters by solving the sensitivity equations (see 

eqn. (4.1) below). Particular methods are Levenbert/Marquardt (which is 

available in various implementations) and the algorithm of Dennis/Gay/ 

Welsch (1979), which was designed for large residual problems. For a 
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survey of such methods, see Nazareth (1980). 

There is also an intermediate case which often arises: some 

of the parameters can appear linearly and some nonlinearly in (1.1). In 

this case one can use the idea of separability or variable projection (see 

Golub and Pereyra (1973), or Ruhe and Wedin (1980)), in which the linear 

parameters are implicitly solved for, the resulting (fully) nonlinear 

least squares problem is solved for the nonlinear parameters, and then 

the linear paramete~s are obtained using their representation in terms 

of the nonlinear parameters. Since this reduces the size of the nonlinear 

least squares problem to be solved, it is worthwhile. 

Once the parameters ;e_ have been found, their validity can be 

checked by integrating the system (1.1) using these values. As we indicated 

earlier, this can present difficulties, particularly if exact initial 

conditions are not given. This is the case in our first two examples in 

section 6, and we get around this problem by using the data at the first 

point t
1 

as the initial data, but allowing these initial values to vary 

slightly, choosing those values which minimize the least squares residual 

over all the data points. This, of course, is another nonlinear least 

squares problem, but it only serves to give an appropriate estimate of 

the final best residual and best solution, not to change the parameter 

estimate. 

Fina~ly, we should mention a special problem which arises in 

the third problem considered below, whereby data is only given for~ 

of the components. In our example, we handle this by converting the 

given system into one of higher order where only those variables appear 

which have data measurements. Of course, this only works if the other 
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variables can be explicitly solved for using the various equations of 

(1.1). 

5. The Sensitivity Equations 

After having obtained estimates of the parameters £ and the 

solution vector z(t), one can obtain estimates of the sensitivity and 
ay . 

accuracy of the parameters. Define zij = ap; ,i = l, .•• ,n,j = l, ... ,m. 

Differentiating (1.1), it is easy to see that Z satisfies the first 

order linear equation 

Z' = G(t ,~,£) + J(t ,1_,E_)Z 

a£. af . 

(4 .1) 

where Gl.'J' = ~ l. and J .. = ~ These are the sensitivity equations, 
op. l.J oy. 

J J 
and one can obtain estimates of the sensitivity of the solution to changes 

in the parameters (i.e., Z(t)) by integrating (4.1) using the computed 

values for J?_ and z. This is quite well known (see Bard (1974) for 

example), although it is not clear to this author what initial conditions 

should be used for (4.1). If exact initial conditions are specified, 

then z .. = 0 is appropriate and seems to always be used; however, if 
l.J 

the initial conditions are not known exactly, then it is not clear that 

Z .. = 0 should be used. 
l.J 

Once Z(t) has been computed, confidence intervals for the 

parameters can be obtained in the usual way, by assuming that the least 

squares function 

1 N n 2 
= 2 I I (y ·ct.> -y · .) 

i=l j=l J 1 l.J 
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is locally quadratic near the minimum p* . Then if the uncertainty 

or noise level in ~ is 
2 

e: , the confidence intervals are of the form 

*~ Ip. - P· I .s e:/H,; 
l. l. l.l. 

where * H = H(p ,y) is the Hessian matrix at the minimum. This Hessian 

consists of two terms: 

N n 2 

I I (y. <t. > - Y .• ) 
i=l j=l J 1 l.J 

a y. ct.> 
J l. 

Usually the second term is considered negligible so 
N 

computed directly from Z(t): H = L ZT(t.)Z(t.) 
i=l 

1 1 

that H can be 

This is reasonable 

in cases where the residual is fairly small, or the problem is (nearly) 

linear in E.. In other cases, however, the second term can materially 

affect H , and it is probably wise to use a nonlinear least squares 

routine which computes an approximate Hessian as the minimization 

proceeds (again, see Nazareth (1980)). Near-singularity of the Hessian 

can be caused by (for example) nearly linearly dependent parameters, or 

insufficient data to separate the parameters. In any case, this indicates 

the problem is poorly conditioned and should be revised. 

6. Numerical Examples 

A. Barnes' problem (see van Domselaar and Hemker (1975)) 

y' = 1 

y' = 
2 



knot 

t o.o 0.5 1.0 

1.0 1.1 1.3 

0. 3 . 0. 35 0. 4 

1.5 

1.1 

0.5 

2.0 

0.9 

0.5 

2.5 

0.7 

0.4 

3.0 

0.5 

0.3 

3.5 4.0 4.5 

0.6 0.7 0.8 

0.25 0.25 0.3 

11 

5.0 

1.0 

0.35 

This problem as originally given represented chemical reaction equations; 

however, it is also the well known Lotka/Volterra predator-prey model in 

ecology (see e.g., Clark (1976), pg. 194). The solution components to 

this system are oscillatory in nature and out of phase with each other. 

Moreover, the data are only accurate to about 10%, so it is clear that 

we should not try too hard to fit the· data closely. 

Below is a sample of results obtained, using up to four knots 

in the spline approximation: 

spline DE residual parameters integrated best 
positions residuals (#sample points) found residual init.cond. 

3.0 .16, .11 1.3 (20) .85,2.13,1.91 .35 1.02, .25 

3.0 .16, .11 1. 7 (40) .80,2.06,1.86 .36 1.05 I .26 

1.5,3.0 .14, .04 1.0 (20) .85,2.20,2.04 .38 1.02,.24 

1.5 ,3. 0 .14, .04 1.5 (40) .83,2.17,2.01 .37 1.04,.24 

*0.4,2.5 .10, .09 3.0 (40) .62 ,1. 73 ,1.60 .44 1.16, .29 

0.9,2.1,3.6 .11, .04 1.6 (40) .80,2.11,1.94 .36 1.05, .24 

• 
1.0,2.0,3.0,4.0 .09, • 02 1.6 (40) .85,2.21,2.02 .365 1.02, .24 

*.14,.97,3.2,3.9 .06, .01 40 (40) -.01,2.19,1.47 1.9 1.02 I .24 

Knot selection was made visually, except for the cases marked 
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with an asterisk; these knots were found by minimizing the least squares 

deviation of the spline fit for the first component. Notice that although 

these gave better spline fits, the corresponding parameter values were 

very poor. In some sense, we are trying "too hard" to fit the data, and 

produce a curve which is not close to an integral curve of the differential 

equations. 

This problem is linear in 12_, so the minimization (2 .1) is a 

linear least squares problem. Its residual is given in the third column; 

we used 20 (or 40} equally spaced sample points. In each case, the 

parameter values were checked by integrating the system from the first 

data point (t = 0) and varying the initial condition so as to obtain 

the smallest least squares deviation in the integrated residual. These 

results are given in the last two columns. We also give plots of the 

first one knot spline fit and the corresponding integration in Figures 

1 and 2 (for the first component y1 } and for both 4-knot cases in 

Figures 3-4 and 5-6. 

The Hessian matrix for this problem is not ill-conditioned, 

so in that sense the problem is well-conditioned. The rather large 

variation in parameter values obtained (for about the same residual} is 

due to the inaccuracy in the data, and the correspondingly large 

residual (relative to the size of the data). 
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Figure 3 
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Figure 4 
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Figure 5 
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B. Bellman's problem (see Bellman et al (1967)) 

t 1 2 3 4 5 6 7 8 

Y1 0.0 1.4 6.3 10.4 14.2 17.6 21.4 23.0 

t 10 12 15 20 25 30 40 

Y1 27 .o 30.4 34.4 38.8 41.6 43.5 45.3 

This problem arises from a chemical reaction, and is also treated in 

van Domselaar and Hemker (1975). This is somewhat easier to solve than 

problem A, and we give results below: 

spline DE residual parameters integrated best 
positions residuals (#sample points) found residual init.cond • 

20.2 

20.2 

20.2 

5.0,15.0 

5.0,15.0 

2.7 .86 (15) • 46 X 10-5 
1 
.21 X 10-3 

3.9 -1.10 

2.7 .76 (20) .46 xio-5 ,.30 x10-3 
4.0 - .98 

2.7 .98 (40) .47 X 10-5 , .31 X 10-3 3.7 -1.49 

1.6 3.0 (20) -5 -3 .40 X 10 1 .15 X 10 6.7 

1.6 3.1 (40) -5 -3 .41 xl0 ,.23 xlO 6.4 

Notice that we get a better result using only one knot, and this is at 

least indicated by the relative size of the DE residual in column 3. In 

Figures 7-10, we give the best results for both one and two knots. Again 

.89 

.33 



the Hessian matrix was not ill-conditioned; however, in this case 

the data were fitted very well, so the variation in the parameters is 

much less than in Example A. 
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Figure 9 
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Figure 10 
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C. Enzyme Effusion Problem (see van Domselaar and Hemker (1975)} 

t 0.1 2.5 3.8 7.0 10.9 15.0 18.2 21.3 22.9 24.9 

Y1 27.B 20.0 23. 5 63.6 267.5 427.8 339.7 331.9 243.5 212.0 

t 26.8 30.1 34.1 37.8 42.4 44.4 47.9 53.1 59.0 65.l 

Y1 164.1 112.7 88.1 76.2 62.3 58.7 41.9 40.2 31.3 30.0 

t 73.1 81.1 91.2 101.9 115.4 138.7 163.2 186.7 

Y1 30.6 23.5 24.8 26.1 33.3 17.8 16.8 16.8 

This problem represents the modelling of enzyme concentrations in the 

blood, inside and outside the heart, over a period of time. A complication 

here is that observations are only available on y1 • We remedy this 

(as indicated earlier) by solving the first equation for y2 , different

iating, and substituting in the second equation to get a single second 

order equation for y1 . 

This was more difficult to solve than the first two, both because 

of the nonlinear parameters and because of the difficulty in obtaining a 

good spline fit to the data. Results were as follows: 
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knot spline DE residual parameters integrated 
positions residual (#sample points) found residual 

8.0,ll.0,23.0,43.0 64 7.8 (28) .326,2.674,.40,.198 94 

8.0,ll.0,23.0,43.0 64 15.5 (40) .257,2.62,.364,.29 70 

9.2,11.25,22.7,42.8 62 5.3 (28) • 36, 2. 72, .40 I .04 111 

9.2,11.25,22.7,42.8 62 15.7 (40) .266,2.65,.353,.228 64 

8.0,12.0,18.0,24.0,43.0 60 6.6 (28) .278,2.673,.378,.193 64 

8.0,12.0,18.0,24.0,43.0 60 12. 3 (40) .251,2.61,.348,.327 67 

ll.3,12.1,15.0,29.1,39.4 54 7.9 (28) .017,2.63,.281,.277 1968 

ll.3,12.1,15.0,29.1,39.4 54 58 (40) .192,2.52,.231,.487 136 

For each knot set, we used 28 sample points (= data points) and 

40 sample points (skewed to represent the function better). The first 

knot set represents the best we could do with four knots chosen visually. 

We then tried optimizing the knot locations by minimizing the least squares 

deviation at the data points as a function of the four knots. This gave 

the second knot set which, with 40 sample points, gave the best result. 

We plot this spline fit and result in Figures 11 and 12. The third set 

of 5 knots was again chosen visually and gave equally good results 

(notice, however, that the last parameter has changed appreciably 

without affecting the residual). We again optimized the knots, but this 

final knot set was not as successful (although still reasonable). we 

plot this for comparison in Figures 13 and 14. 
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Figure 12 
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Figure 13 
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Figure 14 

X 

X 

0'009 62 't, CS LS"8Zi7 td. LSZ E:-\7. Ill vCCS8 

0 
OJ . 

x 
en 
cc . 
cc 
to 

X 

X 
r
te . 
tc 
N 

N 
N 
N 

~ 

.... .... 

.... 
N I 

I 
t 

I 
/. 



17 

References 

Anderssen and Bloomfield (1974): Numerical differentiation procedures 
for non-exact data. Num. Math. 22, 157-182. 

Y. Bard (1974): Nonlinear Parameter Estimation. Academic Press, New York. 

R. Bellman et al (1967): Quasilinearization and the estimation of chemical 
rate constants from raw kinetic data. Math. Biosc. !., 71-76. 

M. Benson (1979): Parameter fitting in dynamic models. Ecol. Mod.§_, 
97-115. 

C. de Boor (1979): A Practical Guide to Splines. Springer-Verlag, New York. 

Dennis, Gay, and Welsch (1979): An adaptive nonlinear least squares 
algorithm. MRC Tech. Rep. #2010, Univ. of Wisconsin, Madison. 

Golub and Pereyra (1973): The differentiation of pseudo-inverses and 
nonlinear least squares problems whose variables separate. 
SIAM J. Num. Anal. 10, 413-432. 

L. Nazareth (1980): Some recent approaches to solving large residual 
nonlinear least squares problems. SIAM Review 22, 1-11. 

Ruhe and Wedin (1980): Algorithms for separable nonlinear least squares 
problems. SIAM Review 22, 318-337. 

Swartz and Bremerrnan (1975): Discussion of parameter estimation in 
Biological modelling: algorithms for estimation and evaluation 
of the estimates. J. Math. Biol.!_, 241-257. 

van Domselaar and Hemker (1975): 
initial value problems. 
Amsterdam. 

Nonlinear parameter estimation in 
Report NW18/75, Mathematical Centrum, 




