On the Separation of Two Matrices
by
J. M. Varah

Technical Report 77-20

December 1977

Department of Computer Science
The University of British Columbia
Vancouver, British Columbia, V6T 1W5

Abstract

The sensitivity of the solution X to the matrix equation $A X-X B=C$ is primarily dependent on the quantity sep (A, B) introduced by Stewart in connection with the resolution of invariant subspaces. In this paper, we discuss some properties of $\operatorname{sep}(A, B)$, give some examples to show how very small it can be for seemingly harmless problems, and discuss the feasibility of the iteration $\mathrm{AX}^{(k+1)}=$ $X^{(k)} B+C$ for solving the matrix equation.

1. Introduction

We begin with the matrix equation

$$
\begin{equation*}
A X-X B=C \tag{1.1}
\end{equation*}
$$

for $A(n \times n)$ and $B(m \times m)$ square matrices, so that X and C are $n \times m$. This equation arises in many applications; for example in the solution of linear elliptic boundary value problems when the unknowns are set up as a matrix X (see Bickley and McNamee [1960], Wan [1973]). Much is known about the problem: there is a unique solution whenever A and B have no eigenvalues in common; see Lancaster [1970] for a discussion of properties and iterative methods for obtaining X, and Bartels and Stewart [1972] for a direct method of solution.

However we are interested in the sensitivity of the solution X to perturbations in A, B, and C. For this, it is illuminating to recast the problem in the form of finding invariant subspaces $\left(\begin{array}{c|c}I & X \\ \hline 0 & I\end{array}\right)$ for the block matrix $\left(\begin{array}{c|c}A & -C \\ 0 & B\end{array}\right)$.

Then the results of Stewart [1973] apply: his Theorem 4.1 shows that the sensitivity of X is inversely proportional to the separation between A and B,

$$
\begin{align*}
\operatorname{sep}(A, B)= & \min ||A P-P B|| \tag{1.2}\\
& ||P||=1
\end{align*}
$$

It is this quantity we wish to discuss here, in particular with the Frobenius norm $||Z|| \frac{2}{F}=\operatorname{tr}(Z * Z)$.

Of course, (1.1) can also be recast as a linear system

$$
\left(\begin{array}{cccc}
A-b_{11} I & -b_{21} I & \cdots & -b_{m 1} I \tag{1.3}\\
-b_{12} I & A-b_{22} I & & \\
\vdots & & & \ddots \\
\vdots & & & \vdots \\
-b_{1 m} I & \cdots & \cdots & \cdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
x_{m}
\end{array}\right)\binom{x_{1}}{x_{m}}=\left(\begin{array}{c}
c_{1} \\
-1 \\
c_{m}
\end{array}\right)
$$

where \underline{x}_{i} and \underline{c}_{i} are the columns of X and C. The matrix is of course the Kronecker sum of A and $-B$,

$$
T=I \otimes A-B^{T} \otimes I .
$$

Seen in this light, the sensitivity of X should be proportional to the condition number $k(T)$; however since

$$
\sigma_{\min }(T)=\left|\left|x\left\|_{2}^{\min }=1| | \underline{x}\right\|_{2}=\min _{\|\left. P\right|_{F}=1}^{\| A P-P B| |_{F}=\operatorname{sep}_{F}(A, B), ~}\right.\right.
$$

the two are equivalent if we scale A and \mathbb{R} so $\sigma_{\max }(T)=1$. (Here $\sigma_{\min }(T), \sigma_{\max }(T)$ denote the smallest and largest singular values of T.)

In the next section, we discuss some properties of $\operatorname{sep}(A, B)$ and show with some examples how incredibly small this quantity can be for non-normal matrices. In Section 3, we relate it to the perturbation required to give equal eigenvalues in A and B. Then in Section 4, we discuss an iterative method for solving (1.1) which is useful for some applications.
2. Properties of $\operatorname{Sep}(A, B)$

For A and B normal, Stewart [1973] shows that $\operatorname{sep}_{F}(A, B)=\min _{i, j}\left|\lambda_{i}(A)-\lambda_{j}(B)\right|$, the minimum distance between the eigenvalues of A and B. However, for A or B non-
normal, the separation can be much smaller than this. When B is one-dimensional ($B=$ the scalar b),

$$
\operatorname{sep}_{F}(A, B)=\min _{||x||_{2} \mid(A-b I) \underline{x} \|_{2}=\sigma_{\min }(A-b I), ~}^{\text {min }}
$$

which was used in Varah [1971] to measure the sensitivity of the eigenvector associated with b in the augmented matrix $\left(\begin{array}{c|c}\mathrm{A} & -\mathrm{c} \\ \hline 0 & \mathrm{~b}\end{array}\right)$. At this point it is interesting to relate this to the quantity s_{b} commonly used to measure the sensitivity of the eigenvalue b (see Wilkinson [1965, page 68]). The augmented matrix has $v_{b}=\binom{\underline{x}}{1}$ and $u_{b}^{T}=(0 \mid 1)$ as the right and left eigenvectors corresponding to the eigenvalue b, where \underline{x} is the solution to $A \underline{x}-b \underline{x}=\underline{c}$. Thus

$$
s_{b}^{2}=\cos ^{2}\left(u_{b}, v_{b}\right)=\frac{1}{1+||x||_{2}^{2}}
$$

whereas

$$
\operatorname{sep}_{\mathrm{F}}(\mathrm{~A}, \mathrm{~B})=\sigma_{\min }(\mathrm{A}-\mathrm{bI})=\left\|(\mathrm{A}-\mathrm{bI})^{-1}\right\|_{2}^{-1^{\dot{ }}}
$$

Hence s_{b} depends on \mathcal{c} but $\operatorname{sep}_{F}(A, B)$ does not. However they are certainly related: in some sense $\operatorname{sep}_{F}(A, B)$ gives the smallest possible s_{b} over all vectors \underline{c} of norm one. We have

$$
\frac{1}{s_{b}^{2}}-1=\|x\|_{2}^{2} \leq\left\|(A - b I) ^ { - 1 } \left|\left\|_{2}^{2}| | c\right\|_{2}^{2}=\frac{\| c| |_{2}^{2}}{\left[\operatorname{sep}_{F}(A, B)\right]^{2}}\right.\right.
$$

and this is an equality for certain vectors c.

For general non-normal matrices A and B, we feel it is extremely important to realize that $\operatorname{sep}(A, B)$ can be very small even though the eigenvalues of A and B are well separated.

Example 1:

We claim $\operatorname{sep}_{F}(A, B)=0\left(\alpha^{m+n-1}\right)$ as $\alpha \rightarrow 0$. To see this, first form the matrix T of (1.3):
where I and $J_{n}(\alpha)$ are $m \times m$. Since $\operatorname{sep}_{F}(A, B)=\sigma_{\min }(T)$, we need to exhibit a vector $\underline{x}=\left(\underline{x}_{1}, \ldots, \underline{x}_{m}\right)^{T}$ with $\frac{||\underline{x}||_{2}}{\|\left.\underline{\underline{x}}\right|_{2}}=0\left(\alpha^{\mathrm{n}+\mathrm{m}-1}\right)$. Take $\underline{x}_{1}=\left(\alpha^{m-1}, \alpha^{m}, \ldots, \alpha^{m+n-2}\right)^{T}$;
it is easy to see $\left|\left|J_{n}(\alpha) \underline{x}_{1}\right|\right|=0\left(\alpha^{n+m-1}\right)$. Now solve for $\underline{x}_{2}, \underline{x}_{3}, \ldots, \underline{x}_{m}$ using the block lower triangular nature of T : i.e., solve $J_{n}(\alpha) x_{k}=\underline{x}_{k-1}, k=2$, .., m. We obtain

$$
\underline{x}_{k}=\left(p_{1 k}^{m-k}, p_{2 k}^{m-k+1}, \ldots, p_{n k}^{m-k+n-1}\right)^{T}
$$

where $P=\left(p_{i j}\right)$ is the Pascal triangle matrix

$$
P=\left(\begin{array}{rrrrrrr}
1 & n & . & . & & & \\
1 & . & . & . & & & \\
1 & 3 & 6 & 10 & . & . & \\
1 & 2 & 3 & 4 & . & . & . \\
1 & 1 & 1 & 1 & . & . & .
\end{array}\right) .
$$

Thus $\|\underline{x}\|_{2}=0\left(\alpha^{\circ}\right)$ and $\|\underline{T} \underline{\underline{x}}\|_{2}=0\left(\alpha^{\mathrm{n}+\mathrm{m}-1}\right)$. So $\operatorname{sep}_{\mathrm{F}}(A, B)$ can be very small even for moderate sized α : we computed $\operatorname{sep}_{F}(A, B)$ for several values of m, n, and α, and show some results in Table 1.

Table 1

n	m	α	sep
4	4	$1 / 2$	3.410^{-4}
6	3	$1 / 4$	7.010^{-7}
6	4	$1 / 8$	1.3×10^{-10}
6	6	$1 / 16$	2.2×10^{-16}

Example 2: Some matrices of order 12.

We first considered the Frank matrices F_{n}, defined by

$$
\begin{aligned}
\left(F_{n}\right)_{i j} & =n+1-\max (i, j), \text { if. } j \geq i-1 \\
& =0, \text { otherwise } .
\end{aligned}
$$

These are well-known to have ill-conditioned eigenvalues, and have been used often as test matrices (see for example Golub and Wilkinson [1976]). We first used the QR method to put F_{12} into upper triangular form, with the computed eigenvalues (all real and positive) arranged in decreasing order. Then we took A as the first k rows and columns, and B as the last. (12-k) rows and columns, and computed $\operatorname{sep}_{F}(A, B)$. These are given in Table 2.

Table 2

k	sep	k	sep	k	sep
1	9.2	5	0.24	9	5.7×10^{-7}
2	4.2	6	6.6×10^{-3}	10	2.3×10^{-7}
3	3.4	7	1.0×10^{-4}	11	3.2×10^{-7}
4	1.7	8	4.4×10^{-6}		

Thus, as is well known, the invariant subspace corresponding to the smallest few eigenvalues is not well determined (see Wilkinson [1963, page 153] for the corresponding condition numbers s_{i} of the eigenvalues).

What is surprising (to this author at least) is that although this behaviour appears pathological, it is not; this amount of ill-condition is to be expected in non-normal matrices of this order. We generated upper triangualr matrices of order 12 with elements chosen randomly from $(0,1)$, and took A and B as above. The results are in Table 3.

Table 3

k	sep	k	sep	k	sep
1	3.010^{-5}	5	2.310^{-8}	9	3.110^{-8}
2	5.210^{-5}	6	2.010^{-8}	10	1.410^{-6}
3	8.910^{-5}	7	4.910^{-8}	11	5.410^{-7}
4	1.010^{-6}	8	2.910^{-8}		

When we took the diagonal elements from (0,1) and the upper triangular elements from $(-2,-1)$, the results were even more remarkable: the separations were all less than 10^{-8}, and some were less than 10^{-12}. Similar results were obtained when the diagonal elements were fixed at $i / 12, i=1, \ldots, 12$.

The conclusion is clear: the invariant subspaces of non-normal matrices are incredibly ill-conditioned in general, even for moderate-sized matrices; they can only be resolved accurately using extended precision arithmetic. We feel strongly that these separations should be calculated whenever one is attempting to resolve invariant subspaces of non-normal matrices.

3. Spectrum Overlap

Give matrices A and B, it is also of interest to measure the amount re-
quired to perturb A and/or B so they have a common eigenvalue; this is discussed in Golub and Wilkinson [1976]. Towards this end (and for other reasons) it is useful to make the following definition:

Definition 3.1: The ε-spectrum of A is the region

$$
S_{\varepsilon}(A)=\left\{\lambda \varepsilon \mathscr{C} \mid \sigma_{\min }(A-\lambda I) \leq \varepsilon\right\}
$$

For A normal, this consists of circles of radius ε around each of the eigenvalues of A. For A non-normal, this is a more complicated region of the complex plane. For ε small, this region gives the values λ where ($A-\lambda I$) is nearly singular; indeed if $\lambda \varepsilon S_{\varepsilon}(A)$, there is a matrix E with $\left||E|_{2} \leq \varepsilon\right.$ so that ($A-\lambda I+E$) is singular. (Take $E=-\sigma_{\min } u v^{T}$, where u and v are the proper left and right singular vectors.)

Returning to spectrum overlap, suppose. the -spectra of A and B overlap at λ; then λ is an eigenvalue of $A+E_{1}$ and $B+E_{2}$, with $\left\|E_{1}\right\|_{2} \leq \varepsilon,\left\|E_{2}\right\|_{2} \leq \varepsilon$. This motivates

Definition 3.2: The spectrum separation of A and B,

$$
\begin{aligned}
\operatorname{sep}_{\lambda}(A, B)= & \min \left\{\varepsilon_{1}+\varepsilon_{2} \mid S_{\varepsilon_{1}}(A) \cap S_{\varepsilon_{2}}(B) \neq \phi\right\} \\
& \varepsilon_{1}, \varepsilon_{2}
\end{aligned}
$$

This is related to $\operatorname{sep}_{F}(A, B)$ as follows:

Theorem 3.1: $\operatorname{sep}_{F}(A, B) \leq \operatorname{sep}_{\lambda}(A, B)$.

Proof: Let ε_{1} and ε_{2} give the minimum values in Definition 3.2. Thus there is some $\lambda \varepsilon S_{\varepsilon_{1}}(A) \cap S_{\varepsilon_{2}}(B)$. Now $\lambda \varepsilon S_{\varepsilon_{1}}(A)$ means there is a vector $v,\|v\|_{2}=1$, with $\left|\mid(A-\lambda I) v \|_{2} \leq \varepsilon_{1} ;\right.$ similarly there is a vector $\left.u, \| u\right| \mid=1$, with $\left||u *(B-\lambda I)|_{2} \leq \varepsilon_{2}\right.$.

Now take $P=v u * ;\|P\|_{F}^{2}=\operatorname{tr}(P * P)=\left\|u| |_{2}^{2}| | v\right\|_{2}^{2}=1$, and

$$
\begin{aligned}
A P-P B & =A v u^{*}-v u^{*} B \\
& =(A-\lambda I) v u^{*}-v u^{*}(B-\lambda I) \\
& =w_{1} u^{*}-v w_{2}^{*} \quad(\text { say }) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\| A P-P B| |_{F} & \leq\left\|w_{1} u *\right\|_{F}+\left\|v w_{2}^{*}\right\| \|_{F} \\
& =\left\|w_{1} \mid\right\|_{2}\|u\|_{2}+\|v\|_{2}\left\|w_{2}\right\|_{2} \\
& =\varepsilon_{1}+\varepsilon_{2} .
\end{aligned}
$$

Hence from (1.2), $\operatorname{sep}_{F}(A, B) \leq \varepsilon_{1}+\varepsilon_{2}$. QED.

However, this is about as much as can be said in general relating the two separations: $\operatorname{sep}_{F}(A, B)$ may be very much smaller than $\operatorname{sep}_{\lambda}(A, B)$, if the corresponding matrix P is not of the form $u v^{T}$, so there are no corresponding nearly null vectors.

Another way to see this is through the matrix T of (1.3). If $\operatorname{sep}_{\lambda}(A, B)=\varepsilon_{1}+\varepsilon_{2}$, then there are perturbation matrices E_{1}, E_{2} (with $\left\|E_{1}\right\|=\varepsilon_{1}$, $\left\|E_{2}\right\|_{2}=\varepsilon_{2}$) so that $A+E_{1}$ and $B+E_{2}$ have a common eigenvalue. Thus the Kronecker sum

$$
I \otimes\left(A+E_{1}\right)-\left(B+E_{2}\right) \otimes I=T+\left(I \otimes E_{1}-E_{2} \otimes I\right)
$$

is singular; however this is a very special perturbation of T; there could easily be a more general perturbation ($T+E$) which is singular, with $\|E\|_{2} \ll \varepsilon_{1}+\varepsilon_{2}$ and this would imply $\operatorname{sep}_{F}(A, B) \ll \varepsilon_{1}+\varepsilon_{2}$.

This points out another characterization of $\operatorname{sep}_{\lambda}(A, B)$.

Theorem 3.2:

$$
\begin{gathered}
\text { Let } n=\left.\min _{\left||P|_{F}=1\right.}|A P-P B|\right|_{F}=\left.||\alpha||_{2}| | v\right|_{2}=1 \\
\mathrm{~min}^{*}
\end{gathered}
$$

Then $\eta \leq \operatorname{sep}_{\lambda}(A, B) \leq \eta \sqrt{2}$.

Proof: The first inequality follows directly from the proof of Theorem 3.1. To see the other, take vectors u, v with $\|u\|_{2}=\|v\|_{2}=1$, and form $P=u v *$; then

$$
\begin{aligned}
A P-P B & =A u v^{*}-u v^{*} B \\
& =(A-\lambda I) u v^{*}-u v^{*}(B-\lambda I)
\end{aligned}
$$

for any λ. Using $x=(A-\lambda I) u$ and $y^{*}=v^{*}(B-\lambda I)$, we have
$\delta^{2}(u, v)=\left\|A P-\left.P B\right|_{F} ^{2}=\left|\left|x\left\|_{2}^{2}| | v\right\|_{2}^{2}+\|y\|_{2}^{2}\right|\right| u\right\|_{2}^{2}-2 \operatorname{Re}\left[\left(u^{*} x\right)\left(v^{*} y\right)\right]$.
Now take $\lambda=d * A u / u * u$ so $u * x=0$. Then

$$
\delta^{2}(u, v)=\|(A-\lambda I) u\|_{2}^{2}+\left\|v^{*}(B-\lambda I)\right\|_{2}^{2}=\varepsilon_{1}^{2}+\varepsilon_{2}^{2}
$$

Thus we have exhibited λ so that $\sigma_{1}(A-\lambda I) \leq \varepsilon_{1}$ and $\sigma_{1}(B-\lambda I)<\varepsilon_{2}$. Hence

$$
\operatorname{sep}_{\lambda}(A, B) \leq \varepsilon_{1}+\varepsilon_{2} \leq \sqrt{2} \delta(u, v)
$$

Since this holds for all possible u, v, it holds for $\delta(u, v)=\eta$. QED.
4. An Iteration for X

Given the problem (1.1), a rather obvious iteration is

$$
\begin{equation*}
A X^{(k+1)}=X^{(k)} B+C \tag{4.1}
\end{equation*}
$$

studied by Lancaster [1970] and others. Once can also include a shift ($\mu \mathrm{I}$) in A and B. In the light of our discussion earlier, it is of interest to express
this iteration in terms of an iteration for the linear system

$$
\begin{equation*}
\underline{T} \underline{x} \equiv\left(I \otimes A-B^{T} \otimes I\right) \underline{x}=\underline{c} . \tag{4.2}
\end{equation*}
$$

Indeed, it is clear that (4.1) is equivalent to solving (4.2) by the linear iteration

$$
\underline{\mathrm{Mx}}^{(k+1)}=\underline{\mathrm{N}}^{(k)}+\underline{c}
$$

using the splitting

$$
T=M-N=I \otimes A-B^{T} \otimes I .
$$

Thus the convergence rate is determined by the spectral radius

$$
\begin{aligned}
\rho\left(M^{-1} N\right) & =\rho\left((I \times A)^{-1}\left(B^{T} \times I\right)\right. \\
& =\rho\left(B^{T} \times A^{-1}\right)
\end{aligned}
$$

and this last matrix has eigenvalues $\left\{b_{i} / a_{j}, i=1, \ldots, m, j=1, \ldots, n\right\}$, where $\left\{b_{i}\right\}$ and $\left\{a_{j}\right\}$ are the eigenvalues of B and A. So the iteration converges if

$$
\max \left|b_{i}\right|<\min \left|a_{j}\right|
$$

If we include a general shift μ, this condition means there is a circle with centre μ which includes all the $\left\{b_{i}\right\}$, but excludes all of the $\left\{a_{j}\right\}$. An equivalent condition is given in Lancaster [1970].

This, of course, is a much stronger condition than $\operatorname{sep}(A, B)>0$; however $\operatorname{sep}(A, B)$ can be very small and the iteration can still converge. In this case, the convergence rate is not affected, only the limiting accuracy of the $X^{(k)}$.

This iteration may in fact be useful in some cases of practical interest; in particular in separating blocks occurring in singular perturbation problems in ordinary differential equations, where A has eigenvalues of order ε^{-1} and B eigenvalues of order 1 .

References

R. Bartels and G. W. Stewart (1972), Algorithm 432. CACM 15, pp 820-826.
W. G. Bickley and J. McNamee (1960), Matrix and other direct methods for the solution of linear difference equations. Phil. Trans. Roy. Soc. (London). Series A, 252, pp. 69-131.
G. Golub and J. Wilkinson (1976), Ill-conditioned eigensystems and the computation of the Jordan canomical form. SIAM Review.
P. Lancaster (1970), Explicit solution of linear matrix equations. SIAM Review 12, pp 544-566.
G. W. Stewart (1973), Error and perturbation bounds associated with certain eigenvalue problems. SIAM Review 15, pp 727-764.
J. M. Varah (1971), Invariant subspace perturbations for a non-normal matrix. IFIP 71 Proceedings (North-Holland), pp 1251-1253.
F. Wan (1973), An in-core finite difference method for separable boundary value problems on a rectangle. Studies in Appl. Math. LII, pp 103-113.
J. Wilkinson (1963), Rounding Errors in Algebraic Processes. Prentice-Hall, New York.
J. Wilkinson (1965), The Algebraic Eigenvalue Problem. C1arendon Press, Oxford.

