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Abstract 

The sensitivity of the solution X to the matrix equation 

AX - XB = C is primarily depeudent on the quantity sep(A,B) introduced 

by Stewart in connection with the resolution of invariant subspaces. 

In this paper, we discuss some properties of sep(A,B), give some 

examples to show how very small it can be for seemingly harmless 

bl d d . h f 'b"l" f h · · AX(k+l) pro ems, an iscuss t e easi i ity o t e iteration = 

X(k)B + C for solving the matrix equation. 
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1. Introduction 

We begin with the matrix equation 

AX - XB = C (1. 1) 

for A(nxn) and B(mxm) square matrices, so that X and Care nxm. This equation 

arises in many applications; for example in the solution of linear elliptic boun­

dary value problems when the unknowns are set up as a matrix X (see Bickley and 

McNamee [1960], Wan [1973]). Much is known about the problem: there is a unique 

solution whenever A and B have no eigenvalues in common; see L~ncaster [1970] for 

a discussion of properties and iterative methods for obtaining X, and Bart~ls and 

Stewart [1972] for a direct method of solution. 

However we are interested in the sensitivity of the solution X to pertur-

bations in A, B, and C. For this, it is illuminating to recast the problem in 

the form of finding invariant subspaces ( ~ I ; ) for the block matrix ( : 1-~), 
Then the results of Stewart [1973] apply: his Theorem 4.1 shows that the sensiti­

vity of Xis inversely proportional to the separ a tion between A and B, 

sep(A,B) = min \ \AP - PB\\ 

\ \P \ \ = 1 

( 1. 2) 

It is this quantity we wish to discuss here, in particular with the Frobenius 

norm \ \ Z \ \ ~ = tr (Z*Z) • 

Of course, (1.1) can also be recast as a linear system 
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A - b
11

I - b21I ... - b I !1 £1 ml 
~ 

- b12I A - b22I ( 1. 3) • 
• = 

~ 

I .. 
- blmI . . . . A - b I X C mm --m --m 

where x. and c. are the columns of X and C. The matrix is of course the Kronecker 
-1 -1 

sum of A and -B, 

Seen in this light, the sensitivity of X should be proportional to the condition 

number K(T); however since 

a . (T) = 
min 

the two are equivalent if we scale A and B so 0 (T) = 1. (Here a . (T), 0 (T) max min max 

denote the smallest and largest singular values of T.) 

In the next section, we discuss some properties of sep(A,B) and show 

with some examples how incredibly small this quantity can be for non-normal ma­

trices. In Section 3, we relate it to the perturbation required to give equal 

eigenvalues in A and B. Then in Section 4, we discuss an iterative method for 

solving (1.1) which is useful for some applications. 

2. Properties of Sep(A,B) 

For A and B normal, Stewart [1973] shows that sepF(A,B) = minlA.(A)-A.(B) I, 
. • 1 J 1,J 

the minimum distance between the eigenvalues of A and B. However, for A or B non-
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normal, the separation can be much smaller than this. When Bis one-dimensional 

(B = the scalar b), 

min 11 (A-b I) x I I 2 = 
11 ~11 2=1 -

a . (A-bI), 
min 

which was used in Varah [1971] to measure the sensitivity of the eigenvector as­

sociated with b in the augmented matrix ( ~ 1-~) . At this point it is interest-

ing to relate this to the quantity sb commonly used to measure the sensitivity of 

b (see Wilkinson [1965, page 68]). The augmented matrix has 

u! = (Oil) as the right and left eigenvectors corresponding to the 

eigenvalue b, where xis the solution to Ax - bx= c. Thus 

1 

= i+ l\ xl li 

whereas 

= a . (A-bl) 
min 

Hence sb depends on.£ but sepF(A,B) does not. However they are certainly related: 

in some sense sepF(A,B) gives the smallest possible sb over all vectors c of norm 

one. We have 

__!_ - 1 
s2 

b 

and this is an equality for certain vectors c. 

For general non-normal matrices A and B, we feel it is extremely impor­

tant to realize that sep(A,B) can be very small even though the eigenvalues of A 

and Bare well separated. 
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Example 1: 

A= 

1 -1 

1 

-1 

1 

1-a 1 

B = 1-a 1 

nxn 

We claim sepF(A,B) = O(am+n-l) as a+ 0, To see this, first form the matrix T of 

( 1. 3) '. 

J (a) 
n 

-1 

-I J (a) 
n 

a -1 

T = 

where I and J (a) are mxm, 
n 

X = , ... , x l with 
-m 

-I J (a) 
n 

'J (a)= n 
-1 

a 

Since sepF(A,B) = cr • (T), we need to exhibit a vector min 
I JT~J J 2 __ O("'n+m-1}. Take m-1 m m+n-2 T ~ ~

1 
= (a , a, ... , a ) ; 

I lxl 12 

Now solve for x, x, .•. , x using 
-2 -3 -m 

the block lower triangular nature of T: i.e., solve Jn(a)~ = ~-l' k = 2, •.. ,m. 

We obtain 

m-k+l 
P2k ' ' ' . ' 

m-k+n-1 T 
Pnk ) 

where P = (pij) is the Pascal triangle matrix 

1 n 

1 

p = 1 3 6 10 

1 2 3 4 

1 1 1 1 . . . 1 

,_ 

! 
' 



5 

Thus I !xi 1
2 

= O(a
0

) and I IT~! 1
2 

= O(an+m-l). So sepF(A,B) can be very small even 

for moderate sized a: we computed sepF(A,B) for several values of m, n, and a, 

and show some results in Table 1. 

Table 1 

n m a sep 

4 4 1/2 3.4 10-4 

6 3 1/4 7.0 10- 7 

6 4 1/8 1.3xlo- 10 

6 6 1/16 2. 2xl0 
-16 

Example 2: Some matrices of order 12. 

We first considered the Frank matrices F, defined by 
n 

(F n \j = n + 1 - max ( i, j ) , if. j 

= 0, otherwise. 

~ i - 1 

These are well-known to have ill-conditioned eigenvalues, and have been used often 

as test matrices (see for example Golub and Wilkinson [1976]). We first used the 

QR method to put F
12 

into upper triangular form, with the computed eigenvalues 

(all real and positive) arranged in decreasing order. Then we took A as the 

first k rows and columns, and B as the last. (12-k) rows and columns, and computed 

sepF(A,B). These are given in Table 2. 

Table 2 

k sep k sep k sep 

1 9.2 5 0.24 9 5.7xl0 -7 

2 4.2 6 6. 6x 10 -3 
10 2. 3xl0 -7 

-4 -7 
3 3.4 7 1.0xlO 11 3.2xl0 

-6 
4 1. 7 8 4. 4x 10 
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Thus, as is well known, the invariant subspace corresponding to the smallest few 

eigenvalues is not well determined (see Wilkinson [1963, page 153] for the cor­

responding condition numbers si of the eigenvalues). 

What is surprising (to this author at least) is that although this beha­

viour appears pathological, it is not; this amount of ill-condition is to be ex­

pected in non-normal matrices of this order. We generated upper triangual-:r ma-. · 

trices of order 12 with elements chosen randomly from (0,1), and took A and Bas 

above. The results are in Table 3. 

Table 3 

k sep k sep k sep 

1 3.0 10- 5 5 2.3 10-8 9 3.1 10-8 

2 5.2 10-5 6 2.0 10- 8 10 1.4 10-6 

3 8.9 10-5 7 4.9 10- 8 
11 5.4 10-7 

10- 6 10- 8 
. 

4 1.0 8 2.9 

When we took the diagonal elements from (0,1) and the upper triangular elements 

from (-2,-1), the results were even more remarkable: the separations were all 
-8 -12 

less than 10 , and some were less than 10 . Similar results were obtained 

when the diagonal elements were fixed at i/12, i=l, .•• ,12. 

The conclusion is clear: the invariant subspaces of non-normal matrices 

are incredibly ill-conditioned in general, even for moderate-sized matrices; they 

can only be resolved accurately using extended precision arithmetic. We feel 

strongly that these separations should be calculated whenever one is attempting 

to resolve invariant subspaces of non-normal matrices. 

3. Spectrum Overlap 

Give matrices A and B, it is also of interest to measure the amount re-
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quired to perturb A and/or B so they have a common eigenvalue; this is discussed 

in Golub and Wilkinson [1976]. Towards this end (and for other reasons) it is 

useful to make the following definition: 

Definition 3.1: The e:-spectrum of A is the region 

For A normal, this consists of circles of radius e: around each of the eigenvalues 

of A. For A non-normal, this is a more complicated region of the complex plane. 

Fore: small, this region gives the values A where (A-Al) is nearly singular; in­

deed if Ae:Se:(A), there is a matrix E with I /El / 2 $ e: so that (A-AI+E) is singular . 

T (Take E = -a i uv, where u and v are the proper left and right singular vectors.) 
m n 

Returning to spectrum overlap, suppose.the -spectra of A and B overlap 

at A,· then A is an e1· genvalue of A+E
1 

and B+E2 , with I \ E I \ < c- \ \ E \ \ < c-l 2 - ~, 2 2 - ~ • 

This motivates 

Definition 3.2: The spectrum separation of A and B, 

This is related to sepF(A,B) as follows: 

Theorem 3.1: sepF(A,B) $ sepA (A,B), 

Proof: Let e: 1 and e: 2 give the minimum values in Definition 3.2. Thus there is 

some AE:S (A)nS (B). Now AE:S (A) means there is a vector v, \ Iv\ \ 2 = 1, with 
E:l E:2 E:l 

\ \ (A-U)v\ \2 $ e: 1; similarly there is a vector u, \ lul l=l, with I lu*(B-Al) 11 2 $ e: 2 . 
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Now take P = vu*; I IP I I! = tr (P *P) = 11 u I I! I Iv 11 ! = 1, and 

AP - PB= Avu* - vu*B 

= (A-Al)vu* - vu*(B-Al) 

= w u* - vw* 1 2 (say). 

Thus 

IIAP - PBIIF:,; llw1u*IIF + llvw~IIF 

= llw1ll2llull2 + llvll2llw2ll2 

Hence from (1.2), sepF(A,B) :,; E
1 

+ E • 
2 

QED . 

However, this is about as much as can be said in general relating the 

two separations: sep/A,B) may be very much smaller than sepA (A,B), if the cor­

T responding matrix Pis not of the form uv, so there are no corresponding nearly 

null vectors. 

Another way to see this is through the matrix T of (1.3). If 

sepA(A,B) = E1 + E2, then there are perturbation matrices E1, E2 (with I IE
1

1 l=E 1, 

I IE 2 11 2 =E 2) so that A+E1 and B+E2 have a common eigenvalue. Thus the Kronecker 

sum 

is singular; however this is a very special perturbation of T; there could easily 

be a more general perturbation (T+E) which is singular, with I IEI 12 << E
1 

+ E2 

and this would imply sepF(A,~) <<El+ E2. 

This points out another characterization of sepA (A,B). 
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Theorem 3.2: 

P=uv* 

Proof: The first inequality follows direct~y from the proof of Theorem 3.1. To 

see the other, take vectors u,v with I juj j
2 

= j Iv! j
2 

= 1, and form P=uv*; then 

AP - PB= Auv* - uv*B 

= (A-AI)uv* uv*(B-AI) 

for any A. Using x = (A-AI)u and y* = v*(B-AI), we have 

o2 (u,v)= I IAP-PBI I!= I !xi 1:1 !vi I!+ I IYI l!l lul I! - 2Re[(u*x) (v*y)J. 

Now take A= tJ.:/<Au/u*u so u*x = 0. Then 

o2 (u,v) = li(A-AI)ull~ + llv*(B-AI)il! = 

Thus we have exhibited A so that a
1

(A-AI) $Eland a
1

(B-AI) < E
2

, Hence 

Since this holds for all possible u,v, it holds for o(u,v) = n. QED. 

4. An Iteration fot X 

Given the problem (1.1), a rather obvious iteration is 

(4.1) 

studied by Lancaster [1970] and others. Once can also include a shift (µI) in 

A and B. In the light of our discussion earlier, it is of interest to express 
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this iteration in terms of an iteration for the linear system 

c. (4.2) 

Indeed, it is clear that (4.1) is equivalent to solving (4.2) by the linear iter-

ation 

using the splitting 

T = M-N = I (>9 A - BT G I • 

Thus the convergence rate is determined by the spectral radius 

-1 
p(M N) = p((I 

_J T 
X A) (B X I) 

= p(BT -I 
X A ) 

and this last matrix has eigenvalues {b./a., i=l, .... ,m, j=l, .•. ,1i}, where {b.} 
l J l 

and {a.} are the eigenvalues of Band A. So the iteration converges if 
J 

max I b . I < min I a . I . 
l J 

If we include a general shiftµ, this condition means there is a circle with cen­

treµ which includes all the {b.}, but excludes all of the {a.}. An equivalent 
l J 

condition is given in Lancaster [1970]. 

This, of course, is a much stronger condition than sep(A,B) > O; how­

ever sep(A,B) can be very small and the iteration can still converge. In this 

case, the convergence rate is not affected, only the limiting accuracy of the X(k). 

This iteration may in fact b~ useful in some cases of practical inter­

est; in particular in separating blocks occurring in singular perturbation problems 

-1 
in ordinary differential equations, where A has eigenvalues of order€ and B 

eigenvalues of order 1. 

I 

t 

I 
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