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l. INTRODUCTION 

The principal concern of this paper is the design of a retrieval system which 

combines current techniques for query evaluation on relational data bases [e.g. 

Codd 1972] with a deductive component in such a way that the interface between 

the two is both clean and natural. The result is an approach to deductive retrieval 

which appears to be feasible for data bases with very large extensions (i.e. specific 

facts) and comparatively small intensions (i.e. general facts). More specifically, 

a suitably designed theorem prover "sweeps through" the intensional data base, ex

tracting all information relevant to a given query. In particular, this theorem 

prover never looks at the extensional data base. The end result of this sweep is 

a set of queries, each of which is extensionally evaluated. The union of answers 

returned from each of these queries is the set of answers to the original query. 

There are two important consequences of .this decomposition of the question

answering task into a .theorem prover computing on the intensional data base, and 

an extensional processor computing on the extensional data base: 

1. The extensional processor can be realized by a conventional data base manage-

ment system. 

2. Because the theorem prover never accesses the extensional data base, the 

intensional data base can be compiled using the theorem prover as a once-only 
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compiler. This means that at query evaluation time there is no need for a 

theorem prove~ nor are there the usual problems involving search which plague 

current theorem proving systems. 

This paper is essentially a survey of some of the results in [Reiter 1977a0. 

As such, it is necessarily impressionistic, so that no proofs are given for the 

theorems stated, and the basic approach to query evaluation which decouples the 

theorem prover from the extensional processor is described by means of an extended 

example. A rigorous presentation is contained in [Reiter 1977a]to which the 

interested reader is referred for the painful details. 

2. DATA BASES 

The results of this paper apply only to first order data bases with the follow

ing properties: 

(i) The data base consists of finitely many twffs (typed well formed formulae). 

For example, in an inventory domain, such a twff might be 

(x/Manufacturer)(y/Part)(z/Part)Manufactures x,y A Subpart z,y ~ Supplies x,z 

i.e. every manufacturer of a part supplies all its subparts. The restricted 

universal quantifier (y/Part) may be read 11 For every y which is a Part 11
• The 

restrictions Manufacturer and Part are called types, and are distinguished 

monadic predicates. If Tis such a type, then (x/.)W is an abbreviation for 

(x)TX ~ W. We shall later require the notion of a restricted existential 

quantifier (Ex/T) which may be read 11 there is an x in T11
, (Ex/T)W is an 

abbreviation for (Ex)Tx AW. We denote by ITI the set of all constants which 

satisfy the type T, Thus, !Part! might be {gadget-l,widget-3, bolt-49, ... ,}. 

In general, a twff has the form (x1/T 1) ... (xn/Tn)W for n~O where Wis any 

quantifier-free ordinary first order formula containing no function signs, 
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and T1, ... ,Tn are types. Notice that no existentional quantifiers are 

permitted - all twffs are universally quantified. In the case that the 

twff has no quantifiers, it is an ordinary ground first order formula. 

(ii) There are only finitely many constant signs. Constant signs denote individuals 

of the data base e.g. bolt-49, Acme-manufacturers, etc. 

(iii) Equality is a distinguished predicate. We assume that the data base contains 

the following equality axioms: 

El. (x)x=x 

E2. ( x )(y) x=y ::i y=x 

E3. (x)(y)(z) x=y A y=z ::i x=z 

E4. For each n-ary predicate sign P 
I I I I 

{x1) ... {x ){x1) ... {xn) x1=x1 A,.,A x =x A Pxl' ... ,xn ::i Pxl' ... ,xn n . n n 
In addition, if c1, ... ,cp are all of the constant signs of the data base, then 

the following domain closure axiom applies: 

DC. {x)[x=c1 v x=c2 v ... v x=cpJ. 

The domain closure axiom restricts the universe of discourse to just 

those individuals denoted by the constant signs of the theory. In the 

intended interpretation, answers to queries will be formulated exclusively 

in terms of these finitely many individuals. 

Finally, we assume that for each constant sign c, the ground equality 

literal c=c is in the data base, and for each pair of distinct constant signs 

c,c' the inequality literal c~c• is in the data base. Intuitively, as far 

as the data base is concerned, two constant signs are treated as equal iff 

they are identical syntactic objects. 
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Let DB be a data base as defined above, and let EDB be the set of ground 

literals of DB. EDB will be called the extensional data base. The intensional 

data base is defined to be IDB= DB - EDB. Intuitively, the EDB is a set of 

specific facts like "John Doe teaches Calculus 103", while the IDB is a set of 

general facts like "All widgets are manufactured by Foobar Inc.i 1 or "John Doe 

teaches Calculus 102 or Bill Jones teaches Calculus 103 (but I don 1 t know which)" 

together with the equality and domain closure axioms. 

3. QUERIES AND ANSWERS 

A query is any expression of the form 

<x1l-r1' · · · ,xi-rn I (qlyl/81) · · · (qmYm1°m)W(xl' · · · ,xn ,yl' · · · ,ym)> 

where (qiyi/e;) is (yi/ei) or (Eyi/ei), the -r 1 s and e's are types, and 

(1) 

W(x1, ... ,xn,Yi,···,Ym) is a quantifier-free formula containing no function signs 

and whose vari.ables are xl' .•. xn,Yl, ... ,ym' For brevity, we shall usually denote 

the typical query (1) by <Xii\ (qy/e)W(X,y)>. 

Intuitively, (1) denotes the set of all n-tuples x such that x E 111 1 and 

such that (qy/e)W(X,y) is true. 

As an example, consider an inventory domain and the request "Give those 

manufacturers who supply all widgets". This might be represented in our query 

language by 

<x/Manufacturerl(y/Widget)Supplies x,y> 

Formally, let DB be a data base as defined in Section 2, and 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 If i = -r1, ... ,-rn is a sequence of types, then Iii = l-r11 X ••• x 1-rnl 
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Q = <X/;l(qy/e)W(x,y)> a query. 

to Q (with respect to DB) iff 

1. -+C(i) E 1-:1 . . 1=1, ... ,r and 

2. DB I- V ( qy/e)W(c( i) ,y) 
;~r 

A set of n-tuples {t(l) , ... ,t(r)} is an answer 

Notice that if {C(l) , ... ,t(r)} is an answer to Q and tis any n-tuple of constants 

such that c E Iii then so also is {C(l), ... ,t(r) ,t} an answer to Q. This suggests 

the need for the following definitions: 

A is a minimal answer to Q iff no proper subset of A is an answer to Q. If A is 

minimal, then if IAI = 1, A is a definite answer to Q. Otherwise A is an 

. d f. . t t Q I t d f d t. . d f. . t b {+(1) +( r)} ,n e 1n1 e answer o . ns ea o eno 1ng an 1n e 1n1 e answer y c , ... ,c , 

we prefer the more suggestive notation t(l) + ... + t(r)_ Indefinite answers have 

interpretation: 

x = t(l) or x = c(2) or ... or x = t(r) but there is not enough information, given 

DB, to determine which. We shall sometimes refer to expressions of the form 

t(l) + ••. + t(r) as disjunctive tuples. Finally,we denote by UQH the set of minimal 

answers to Q. 

In order to better understand w~y the possibility of indefinite answers 

must be entertained, consider the following fragment of a kinship data base: 

Example 3.1 

IDB 

(x/Male)(y/Human)Brother x,y J Sibling x,y 

(xz/Male)(y/Human)(w/Female)Uncle x,y A Father z,y A Mother w,y 

J Brother x,z v Brother x~w 

EDB 

Uncle a,b Father c,b Mother d,b Brother a,e 

Consider the query "Who are all of a's .siblings?" 
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Q = <x/HumanlSibling a,x> 

Then lloll = {e, c+d} 

i.e. e is a sibling of a. Moreover either c is a sibling of a or dis, but there 

is not enough information available to determine which is the case. 

4. EXISTENTIAL QUERIES AND EQUALITY 

Recall that a data base was defined, in part, to contain the equality axioms 

El - E4, and the domain closure axiom DC. The presence of these axioms will clearly , 

prove disastrous for any theorem proving approach to query evaluation. The use of 

proof procedures with 11 built in 11 equality e.g. paramodulation [Robinson and Was 1969] 

will be of little value since the domain closure axiom will still be present and for 

data bases with a large number of constants, this axiom will inevitably lead to 

unfeasible computations. Fortunately, for existential queries i.e. queries of the 

form <!/ii (Ey/e)W(!,y)>, these ;axioms turn out to be irrelevant. 

Theorem 4.1 

Let E(DB) be the equality and domain closure axioms of a data base DB, and let 

Q be an existential query. Then A is an answer to Q with respect to DB iff it is 

an answer to Q with respect to DB - E(DB) i.e. the equality and domain closure axioms 

are irrelevant to existential query evaluation. 

5. REDUCTION OF ARBITRARY QUERIES TO EXISTENTIAL QUERIES 

As we saw in the previous section, equality poses no difficulties for 

existential queries. Unfortunately, Theorem 4.1 fails for arbitrary queries. To 

see why, consider the following data base: 

Equality axioms El - E4. 
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DC (x)x=a' 

Pa,a 

hi = {al 

i.e. a data base with a single constant a and a single type T. Then 

tt<x/TI (y/T)Px,y>H = {a}. But (y/T)Pa,y i.e. (y)Ty ~ Pa,y is not provable without 

the domain closure axiom DC. 

The approach which we adopt is to reduce arbitrary queries to existential ones 

by invoking the 11 projection 11 and 11 division 11 operators which we now define. 

+ + I ( + 7) (+ + ) Let Q = <x/T,z/14J qy/fd W x,y,z >. The quotient of IIQII by z, t:.
2

IIQII, is a set of 

disjunctive tuples and is defined as follows: 

c(l) + ••. + c(m) E t:.ZIIQII iff 

+ I Im (+(1) 1. ForallaE VJ, c ,a1)+ ... + (c(m) ,am) is an answer (not necessarily 

+(1) (+(m) ) minimal) to Q (and hence some sub-disjunctive tuple of (c ,a1) + ... + c ,am 

is an element of IIQII), and 

2. For no i, l~i~m, does c(l) + ..• + c(i-l) + c(i+l) + ... + c(m) have property 1. 

(There is a slight abuse of notation here. If c = (c1····•cn), then (c,a) is 

intended to denote (c1, ... ,cn,a).) The operator t:.
2 

is called the division operator 

with respect to z and is an appropriate generalization of the division operator of 

[Codd 1972]. 

The projection of Q with res pect to z, rr
2

UQU, is a set of disjunctive tuples and 

is defined as follows: 

c(l) + ... + i(m) E rr IIQII iff 
z 

1. There exist constant signs aJi) E IVJI ,j=l, ... ,ri i=l, ... ,m such that 

+ (+( i ) ( i ) ) II I j~r. i~m c ,aj E QI and 
l 

2. For no i, l~i~m, does c(l) + ... + c(i-l) + c(i+l) + ... + c(m) have property 1. 
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The operator TT
2 

is called the projection operator with respect to z and is an 

appropriate generalization of the projection operator of [Codd 1972]. 

The following theorem indicatesthe importance of these operators: 

Theorem 5.1 

If W(x,y) is a (not necessarily quantifier-free) formula with free variables x 
and y, then 

1. ll<x/-rl(y/e)W(x,y)>II = 6yll<x/i,y/elW(x,y)>II 

2. ll<x/-r l{Ey/e)W(x,y)>II = TTyll<*/i,y/elW(x,y)>II 

Using Theorem 5.1 we can now represent an arbitrary query as the appropriate 

application of projection and division operators to an existential query. For 

example, 

ll<x/-r 11(Ey/-r2)(z/-r3)(Ew/-r4)W(x,y,z,w)>II = TTY6
2

tt<x/-r 1,y/-r2,z/-r3!(Ew/-r4)W(x,y,z,w)>R 

In view of Theorem 5.1· it is sufficient to devise techniques for evaluating 

existential queries only, in which case, by Theorem 4.1, we can eliminate the 

equality and domain closure axioms from the data base. 

6. ANSWERING EXISTENTIAL QUERIES 

The approach of this paper is designed for very large data bases in which the 

vast majority of facts are extensional i.e. IEDBl>>IIDBI with IEDBI very large. 

Under these circumstances, conventional theorem proving approaches (e.g. [Minker 

et al. 1972]) are likely to be quite inefficient since the theorem prover is 

intermingling access to both the IDB and EDB. As an alternative, Figure 1 

illustrates our proposed system design. There are several points worth noting: 

1. As its name implies, the extensional query evaluator evaluates queries in 

our query language, but only with respect to the EDB. As such, it need not 

be a conventional theorem prover. 
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2. The most significant observation is that the EDB and IDB processors are com

pletely decoupled. The IDB, but not the EDB, is invoked during the theorem 

proving process. Conventional theorem provers are notoriously inefficient. 

Since, in applications to large data bases, we can expect IEDBl>>IIDBI, the 

last thing we want is to require of the theorem prover that it have to look at 

the EDB. Moreover, there are far more efficient non theorem proving techniques 

for extensional query evaluation, e.g. relational query evaluation [Palermo 

1974, Reiter 1976]. In effect, this decoupling of the EDB and IDB processors 

relegates the search task over the IDB to the theorem prover, and the 
11 search-free computational 11 task over the EDB to the extensional query evaluator. 

3. The result of the theorem proving process is a proof search tree from which a 

set of queries Q1, ... ,Qm can be extracted. These are extensionally evaluated 

and the results unioned to obtain the answers to the original query Q. 

We cannot, in the limited space of this paper, formally describe and justify 

the approach to deductive question-answering of Figure 1. Instead, we shall try to 

convey its basic flavour by means of an example. The interested reader is referred 

to [Reiter 1977a] for particulars. 
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Typed Unification 
Algorithm 

o=<x/il(Ey/e)w(x,y)> 
1 

Make cla¥s~l form 
of W(x,y) 

Suitable I I 
,___T_h_e_or_e_m"T'"P_r_ov_e_r __ --<;------ ----1 IDB • 

l 
Proof Search Tree 

l 
Query 

Extractor 

l 
Queries Q1, Q2, ... , Qm 

! 

,__Ex_t_e_n_s ,_· o~n-a 1- Q-ue_r_y__, +---------II, EDB I _ Evaluator . . 

l 
IIQ1II, UQ2U, •.. , IIQmll 

! 

~ 
IIQII 

Figure 1 

System Overview 
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•I 

Example 6.1 

We consider a simple fragment of an education domain. 

IDB 

(1) A teaches all calculus courses. 

(z/Calculus)Teach A,z 

(2) B teaches all computer science courses 

(y/CS)Teach B,y 

(3) If teacher u teaches course v and student w is enrolled in v, 

then u is a teacher of w. 

(u/Teacher)(v/Course)(w/Student)Enrolled w,v A Teach u,v ~ Teacher-of w,u 

EDB 

Teach X y Enrolled X 'i. 
A PlO0 a ClO0 
B P200 a P300 
C P300 a CSlO0 
D HlO0 b C200 
D H200 b CS200 

b CS300 
C Hl00 
C Cl00 
d H200 
d P200 
d P300 

jTeacherl = {A,B,C,D} 

I Student I = {a,b,c,d} 

jCoursei = {Cl00,C200,CS100,CS200,CS300,Hl00,H200,Pl00,P200,P300} 

!Calculus!= {Cl00,C200} 

I cs j = {CS 100 ,cs 200 ,cs 300} 

Consider the query 11 Who area's teachers? 11 

Q = <x/TeacherjTeacher-of a,x> 
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We start by treating (Ex/Teacher)Teacher-of a,x as a theorem to be proved with 

DB as hypotheses. Using the usual refutation approach, we create the clausal form 

of its negation i.e. Teacher-of a,x and associate, with the variable x of this 

clause, the type Teacher. Now consider attempting a linear refutation using 

Teacher-of a,x as top clause. There are two possibilities: 
(i) This top clause could be resolved against a unit of the EDB, or 

(ii) It could be resolved against a clause (in this case the clausal form1 of (3)) 

of the IDB. 

Our approach is to admit both possibilities, as in Figure 2, but to perform just 

the second. Literals enclosed in curly brackets represent literals which possibly 

might have been, but were not, resolved away against the EDB. The label on the 

right branch of Figure 2 indicates that clause of the IDB against which Teacher-of a,x 

was resolved. The left branch is unlabeled, indicating that we could have tried to 

resolve Teacher-of a,x against the EDB, but we have postponed this attempt by 

instead placing the literal within curly brackets. This left node is now closed, 

since there are no remaining literals to resolve against the IDB. The right node, 

with clause Enrolled a,v v Teach x,v remains open. Again there are two possibilities: 

(i) Resolve Teach x,v against the EDB, or 

(ii) Resolve it against clauses (1) or (2) of the IDB. 

Figure 3 represents these possibilities,again postponing the resolution operation 

against the EDB, as indicated by the unlabeled left branch. The branches labeled 

(1) and (2) correspond to possibility (ii). 

It is clear that we can continue expanding nodes in this way. If 

N = {E1, ..• ,Ek} : L1 V ... V ~p · 

is a typical such node, then N will have successors N
0

,N1, ... ,Nr where 

N
0 

= {E1, ... ,Ek,Lp} : L1 V .•. V Lp-l 

l 
In converting IDB formulae to clausal form, one eliminates the quantifiers. Since 
all quantifiers are restricted by types, these types must be associated with their 
corresponding variables in the clausal form. 

-12-



{ } Teacher-of a,x 

{Teacher-of a,x} NIL { } Enrolled a,v v Teach x,v 

Figure 2 

{ } Enrolled a,v v Teach x,v 

{Teach x,v} NIL { } Enrolled a,y 

{ } Enrolled a,z 

Figure 3 
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indicating that we are postponing any attempted resolution of LP against a unit 

of the EDB. For i = 1, ... ,r 

Ni= {E1cri, ... ,Ekcri}: R; 

where Ri is the resolvent obtained by resolving the clause L1 V ... V LP upon 

its rightmost literal LP against a clause of the IDB and cri is the corresponding 

unifying substitution. Notice that we are here using a clause ordering linear 

resolution strate~.Y in which only rightmost literals in a deduction are resolved 

upon. When suitably formalized, such a strategy can be shown to be complete 

[Reiter 1971]. 

For the example at hand, we can continue expanding nodes until eventually no 

further expansion is possible. Figure 4 shows the resulting fully expanded tree. 

The only new feature in this figure is the introduction of an answer literal 

ANS x [Green 1969] whose function is to record the substitutions being made for 

the variable x. Clearly there is a need for this book-keeping device since any 

substitution made for xis a possible answer to Q. 

Now consider a typical terminal node in Figure 4, say 

{ANS x, Enrolled a,v, Teach x,v} : NIL. This means that the non answer literals 

have yet to be resolved away against the EDB. In other words, the query 

o1 = <x/Teacherj(Ev/Course)Enrolled a,v A Teach x,v> 

when extensionally evaluated yields a set of answers to the original query Q. 

Similarly, the remaining terminal nodes yield the following queries for extensional 

evaluation: 

02 = <x/TeacherjTeacher-of a,x> 

o3 = <x/Teacherj(Ez/Calculus)Enrolled a,z A x=A> 

Q4 = <x/Teacherj{Ey/CS)Enrolled a,y A x=B> 

-14-



{ANS x} : Teacher-of a,x 

(3) 

{ANS x, Teacher-of a,x} : NIL {ANS x} : Enrolled a,v v Teach x,v 

{ANS x, Teach x,v} : Enrolled a,v (1) Enrolled a,y 

{ANS A} Enrolled a,z 

{ANS x, Teach x,v, Enrolled a,v} : NIL {ANS B, Enrolled a,y} : NIL 

{ANS A, Enrolled a,z} : NIL 

Figure 4 

I 
LO 
.--1 
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These queries have respective extensional values {C}, ~, {A}, {B} the union of 

which yields 

IIQII = {A,B,C} 

Notice how the intensional and extensional processors are totally decoupled 

under this approach. Figure 4 represents the first phase of query evaluation. 

This is the only task allocated to the theorem prover and nowhere in this process 

does the theorem prover probe the EDB. The second phase requires the extensional 

evaluation of the queries o1, 02, o3 and o4 . This can be done by a relational 

data base management system and is certain to be far more efficient for large 

EDBs than any theorem proving technique. For an approach to extensional 

query evaluation designed for the query language of this paper and which 

optimizes for equality see [Reiter 1976]. 

7. COMPLETENESS OF THE QUERY EVALUATION PROCESS 

As this paper is necessarily impressionistic, we have been deliberately 

vague in Section 6 about the nature of the theorem prover that is required. More

over, there are a number of features which the simple example of that section fails 

to illustrate: 

1. The derivation of indefinite answers. 

2. How the types associated with the variables of a clause affect the unification 

algorithm. 

3. The treatment of multiple clauses arising from a query. 

In [Reiter 1977a] all of these issues are made precise. Once this has been 

done, it is possible to prove the following completeness result: 
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Provided the extensional query evaluator returns all and only the answers to 

a given query and provided an appropriate theorem prover is used for the in

tensional processing, then the approach of this paper is complete i.e. all and 

only the answers to a given query will be returned, including indefinite answers 

should they arise. 

In a very real sense, this completeness result must be taken with a grain 

of salt, for in order to properly make use of it the proof search tree generated 

by the theorem prover must be finite, as indeed that of Figure 4 is. In our 

view a data base must be so structured so as to guarantee the finiteness of all 

such trees i.e. there is a design issue here. For some suggestions as to how 

to appropriately structure a data base in order to guarantee finite computations at 

query evaluation time, see [Reiter 1977a]. 

8. COMPILING THE IDB 

We have shown that query evaluation may be decomposed into an intensional 

processor involving a theorem prover which computes only on the IDB, and an ex

tensional processor computing only on the EDB. One very nice feature of this 

decomposition is that it is now possible to compile the IDB using the theorem 

prover as a once-only compiler. 

The basic idea is quite simple. For each predicate of the data base, say 

the predicate Teach of the example, determine all 11 proofs 11 with top clause 

Teach x,y as well as with top clause Teach x,y. Notice that these 11 proofs 11 involve 
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only clauses of the IDB. Next store all such trees, for all predicates, on an 

external file, and discard both the IDB and the theorem prover. Then at query 

evaluation time, read in all of the "proofs" for those signed predicates 

occurring in the query. These trees can then be appropriately combined to yield 

all of the "proofs" required by the query. 

It turns out that this compilation process together with the resulting query 

evaluation are considerably simplified under the so-called closed world assumption 

(CWA). In order to illustrate what is involved we shall assume that the reader is 

familiar with the material and notation in [Reiter 1977b], In particular, 

we shall exploit the fact that the set of CWA answers to an arbitrary query can 

be computed by applying the set operations of union, intersection and difference 

and the relational algebra operation of projection to the open world assumption 

(OWA) answers to atomic queries. Thus, CWA query evaluation reduces to OWA eval

uation for atomic queries. Now an atomic query has the form 

Q = <X/il(Ey/e)Ptl'''''tn> 

where each tis an x, a, y, or a constant, and Pis a predicate sign. Suppose that 

we had available all "proofs" of the literal Pul' ... ,un using only the clauses of 

the IDB, where each variable ui has type ti, the universal type i.e. lul = the set 

of all constants. Then to compute IIQl~WA simply substitute ti for ui in these 

proofs ensuring that the type of ti is consistent with the type of ui. Then, as 

in Section 6, form appropriate queries using the terminal nodes in the resulting 

proof tree, and extensionally evaluate these queries. The method is best explained 

by an example. 

Exampl e 8 . 1 

We shall treat the data base of Example 6.1 in closed world mode. To begin, we 

compile the predicate Teach i.e. we determine all "proofs" of Teach u1,u2 i.e. all 
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"refutations" with top clause Teach u1,u2. Here u1 and u2 both have type u. 

The "refutations" use only the clauses of IDB just as we did in Section 6. Figure 

5 shows the resulting fully expanded search tree. The types associated with each 

free variable at a given node are indicated. Now suppose we wish to determine 

IIQllowA where 

Q = <x/TeacherjTeach x,CSIOO> 

To do so, substitute x of type Teacher for u1 and substitute CSlOO for u2 .in 

Figure 5. The substitution of x for u1 satisfies the type restrictions on u1 
throughout the tree. The substitution of CSlOO for u2 violates the type restric

tion on u2 at node 2 since CSlOO f lcalculusl, so node 2 cannot contribute to 

the evaluation of Q. Nodes 1 and 3 do contribute, so we form the two queries: 

Q1 = <x/TeacheriTeach x,CSIOO> 

Q3 = <x/Teacherjx = B> 

Q1 and Q3 extensionally evaluateto 4> and {B} respectively, whence IJQllowA = {B}. 

It should be clear that we had no use for the entire tree of Figure 5 - only 

the terminal nodes were necessary. Moreover, the relevant information contained 

in these nodes is more succinctly representable by the following three formulae 

with free variables ul and u2 

( i) Teach u1,u2 u1/u b12/U 

(ii) ul = A A" u2 = u2 u/u u/Calculus 

iii) ul =BA u2 = u2 ul/U u2/CS 

We sha 11 refer to these three foYTTlll ae as the compil ed form of the predicate Teach. 

As a further example consider 

Q = <x/Teacherj(Ey/CS)Teach x,y> 

Substitute x of type Teacher for u1 and y of type CS for u2 in (i), (ii) and (iii) 

above. This yields a type inconsistency in (ii), so we obtain two queries: 

Q1 = <x/Teacherj(Ey/CS)Teach x,y> 

Q3 = <x/Teacherj(Ey/CS)x =BA y = y> 
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(1) 

{ANS u1,u2, Teach u1,u2} : NIL u1/u u2/u {ANS B,u2} : NIL u2/CS 

~ ® 

{ANS A,u2} NIL u2/Calculus 

® 

Figure 5 

The refutation search tree for Teach 
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These extensionally evaluate to ct, and {B} respectively, whence IIQllowA = {B}. 

Next we compile the predicate Teacher-of. Figure 6 contains the refutation 

search tree. From its terminal nodes we obtain the following compiled form for 

Teacher-of: 

Teacher-of u1,u2 u1/U u2/U 

(Ev/Course)Teach u2,v A Enrolled u1,v u1/Student u2/Teacher 

(Ev/Calculus)Enrolled u1,v A u2 = A u1/Student 

(Ev/CS}Enrolled u1,v A u2 = B u1/Student 

consider evaluating 

Q = <x/StudentlTeacher-of x,B> 

Substituting x for u1 and B for u2 in the compiled form of Teacher-of yields the 

following queries for extensional evaluation: 

Q1 = <x/StudentlTeacher-of x,B> 

Q2 = <x/Studentl(Ev/Course)Teach B,v A Enrolled x,v> 

Q3 = <x/Studentl(Ev/Calculus)Enrolled x,v AB= A> 

Q4 = <x/Studentl(Ev/CS}Enrolled x,v AB= B> 

These extensionally evaluate to ct,,' td}, ct, and' {a,bJ whence llqllowA ·=· {a,b,d}. 

Finally, consider evaluating the following non atomic query under the CWA: 

Q = <x/TeacherlTeacher-of a,x A Teach x,C5100> 

Then 

where 

Q1 = <x/TeacherlTeacher-of a,x> 

Q2 = <x/TeacherlTeach x,CSlOO> 

Evaluating Q1 using the compiled form of Teacher-of yields {A,B,C}. We have already 

evaluated Q2 at the beginning of this example, yielding {B}. Hence IIQllcwA = {A,C}. 
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{ANS u1 ,u2} ~ Teacher-of u1 ,u2 u1/r.J u,/U 

(3) 
{ANS u1,u2, Teacher-of u1,u2} 

{ANS u1,u2~olled u1,v V Teach u2,v 

{ANS u1,u2, Teach u2,v} ; Enrolled u1,v (1) Enrolled u1,v 

{ANS u1,A} Enrolled u1,v 

{ANS ul'u2, Teach u2,v, Enrolled u1 ,v} : NIL 

u1/Student u2/Teacher v/ Course 

{ANS ul'B, Enro 11 ed ul' v} NIL u1/Student v/CS 

{ANS u1,A, Enrolled u1,v} NIL u1/Student v/Calculus 

Figure 6 

The refutation search tree for Teacher-of 

I 
N 
N 
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There are a number of advantages to this approach of compiling the IDB: 

(i) The time required for query evaluation is reduced since there is no need 

to search for all possible proofs. 

(ii) Compilation completely eliminates the need for a theorem prover at 

query evaluation time. Given the unpredictable nature of current 

theorem provers we can expect more stable performance of a deductive 

question-answering system that makes no use of one. 

(iii) The compilation process can be effected by a suitably designed inter

active theorem prover. This can provide for a far greater measure 

of control over the deductive mechanism than is currently possible 

under autonomous theorem proving systems. In particular, the data 

base designer will be in a position to interactively exploit his or her 

knowledge of the semantics of the domain to prune fruitless or infinite 

deduction paths, to apply optimizing transformations, and to recog

nize redundant or duplicate deductions. Moreover, the design of such 

an interactive system is far simpler than that of an autonomous 

theorem prover and requires significantly less code. Finally, since 

efficiency considerations for such an interactive theorem prover are 

irrelevant given that it is functioning as a once-only compiler, it's 

implementation is even further simplified. And of course, once the 

compilation is completed, the compiler may be expunged from the system. 

(iv) The query language of this paper is set oriented i.e. we seek all an

swers to a given query. Moreover the techniques for query evaluation 

which we have proposed are specifically directed at computing sets of 

answers. One might conclude from this that the evaluation of "single 

answer" queries will require a substantially different approach. By a 

"single answer" query we mean one whose appropriate answer is "yes", 

"no" or "I don't know". (This latter cannot arise under the CWA.) For 

example, "Is A a teacher of b?" i.e. Teacher-of b,A or "Does A teach 

calculus?" i.e. (Ex/Calculus)Teach A,x. It should be clear, however, 
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that if the IDB is compiled, it is trivial to evaluate "single answer'.' 

queries. Merely instantiate in turn each formula of the appropriate 

compiled forms of the predicates, and send that formula off to the ex

tensional evaluator to extensionally test its truth value. For example, 

to evaluate Teacher-of b,A we retrieve the compiled form of Teacher-of 

and extensionally test each of the following formulae in turn, return-

; ng 11yes II if and when one of them tests true: 

Teacher-of b,A 

(Ev/Course)Teach A,v A Enrolled b,v 

(Ev/Galculus)Enrolled b,v A A= A 

(Ev/CS)Enrolled b,v AB= A 

The evaluation of 11 sirrgle an·swe·r 11 queries in the case of 11 compound 11 q11eries 

is slightly more complicated. By a compound query we mean one with more than one 

literal. For example, 11 Is anyone a teacher of both a and b? 11 i.e. 

(Ex/Teacher)Teacher-of a,x A Teacher-of b,x. 

In this case one must form all possible conjunctions of pairs of formulae in the 

compiled form to Teacher-of, and extensionally test each of these in turn. Thus 

we must test 

(Ex/Teacher)Teacher-of a,x A Teacher-of b,x 

(Ex/Teacher)Teacher-of a,x A (Ev/Course)Teach x,v. A Enrolled b,v 

(Ex/Teacher)Teacher-of a,x A (Ev/Course)Enrolled b,v Ax= A 

etc. 



One last point. Notice that the concept of a compiler for the IDB is feasible 

only under an approach to deductive question-answering which completely decouples 

the IDB and EDB theorem proving processors, as described in Section 6. Any 

attempt at deductive question-answering by means of a theorem prover which inter

mingles access to both the IDB and EDB can only run 11 interpretively 11 since the 

set of all possible proofs corresponding to a predicate P will in general be 

impossibly large in the presence of any sizeable EDB. 
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