
MMM
MMMl1 MjllJM

MM M MM
M M

M M MMMMMM.M MM
MM MM MMMM MMM

MMM MM
MMM MMM
MMIH!MMMMMM

MMMMMMM MMMM
MMM

MM MMM
MM f. MM

MMMMMMM
MMM MM
MM MMM
M MMM

M MM Ml!M
MMMM MMMMMM
MMM

MM
t'JM~MM

M MM
M M

t1 M
MMM
Mi.,M
MMM

MMM t1
MMMMM

* *
* Simulation in a Theory of *
• Programmable Machines *
• *

by

.JOHN L. BAKEB

Technical Report 77-7

,July 1977

Department of Computer Science
University of British Columbia

Vancouver, B. c.

SIMULATION IN A THEORY OF

PROGRAMMABLE MACHINES

John L. Baker

Department of Computer Science

University of British Columbia

ABSTRACT

In a theory of machines controlled by programs, automata-theoretic simula
tion can be presented simply and directly, and can be understood as an aspect of
the algebraic structure of such machines.

Here the notions of product and homomorphism of devices in such a theory
are presented, along with a notion of (comput ational) reducibility of one device
to another. Simulation in the automata-theoretic sense is formally defined, and
its validity as a technique for proving reducibility established uniformly.

The notions of device, product, homomorphism, and reducibility are then
extended to model costs of computation evaluated ~ posteriori (in the manner of
concrete complexity studies), and the validity of simulation as a proof technique
established in this extended setting.

0-1

O. Introduction.

Many results in automata theory are justified by assertions of the form

(1) Any machine of species X can be simulated by some machine of species Y.

(For example, Hartmanis (1972) asserts that any (log n tape)-bounded turing

machine can be simulated by some k-head automaton.) More precisely, an assertion

of the form (1) means that for each formal specification A of species X there is

a formal specification B of species Y and a function f from the set of states

of A to the set of states of B such that, if one computational step according

to A leads from a to a' , then there is a sequence of steps according to B

leading from f(a) to f(a') , and (conversely) if no terminating computation by

A begins with a, then no terminating computation by B begins with f(a) .

For the purpose of such an assertion, a formal specification· is given as a tran

sition function or relation or a diagrammatic or tabular representation thereof,

and includes definitions for "state", "computational step", and "terminating

computation". (In practice, the simulation of (1) is usually uniform, so that

the function f is independent of A, and effective, so that B can be con

structed from A.)

Because of its directness and intuitive appeal, simulation would seem to be

the first proof technique to which one would turn if he were seeking to establish

the relative power of various computing resources as modeled by automata. Unfor

tunately, the appeal of simulation is very dependent on its conformity to a dis

tinction between data and control structures--a distinction which is maintained

in nearly all real-world programming, but is so badly represented by the formal

specifications alluded to in the last paragraph that application of the simula

tion technique in a rigorous proof is impractical. The present state of affairs,

then, is that many proofs in automata theory either avoid simulations at the

expense of clarity or (more usually) use them at the expense of rigor.

The suggestion of Scott (1967), to present automata theory as a theory of

programmable machines, overcomes this difficulty. In such a presentation, it

is natural to specify a simulation of a machine X by a machine Y as comprising

a state-representation function (as f above) together with a computational-step

repre·sentation function, whose values are state transformations of Y realizable

0-2

by microprograns simulating individual computational steps of X. If such a

specification can be given, then the execution of a program on X can be simula

ted on Y by executing the same program, with individual commands interpreted as

invocations of the appropriate simulating microprograms. The distinction between

data and control structures which our intuition and experience call for is well

enough respected by this way of specifying simulations that the contention between

clarity and rigor for place in simulation-based proofs can be reduced to manage

able proportions by its adoption.

The fiercest opponent of rigor is, of course, tediousness. No-one is glad

to examine both the details of a simulation and a detailed proof that it is appli

cable, and this is cause enough that a sketch of the former is all that is usually

offered. However, there is also a deeper reason for our reluctance to include

proof of applicability with simulation arguments: Such proof seems redundant or

out of place in the same way that proof that a particular group homomorphism pre

serves inverses would be. If simulation has any merit as a proof technique, it

should be possible to establish its applicability uniformly--to show that, in

some sense, any simulation which is well-defined on a set of generators extends

necessarily to all the computations they generate. Unfortunately, the definitions

of automata theory are not now given with enough uniformity to realize such a

possibility. Scott's suggestions overcome this difficulty directly.

The difficulties described above as inherent in the usual presentation of

automata theory can be expressed quite concisely: No algebraic structure for

species of automaton has been developed, even though these are our primary models

for data structures and their manipulation. In this paper, I present the elements

of such an algebraic structure, that of programmable machines defined according

to the suggestions of Scott (1967), and show how it can be used to define and

apply simulations uniformly--how, in fact, simulation can be understood as an

aspect of the algebraic structure of programmable machines.

The following notation is used here: Card X denotes the cardinality of

the set X. X\Y denotes the difference {xEXJx¢Y}. D denotes the empty set, 1

the set {O} (when convenient), and-Ol the set {0,1,2,3 ••. } of natural numbers.

The cartesian product xxy (together with projections p and q) is taken

to be defined by the universal construction

0-3

p q
X<r--XxY~Y

f~vg
s

That is, we use for <XxY,p,q> any triple with the property that, given a triple

<S,f,g> , where S is a set, f and g (total) functions, f:S+X,q:S+Y, there

is a unique (total) function h such that p 0 h=f and q 0 h=g. We say therefore

that XxY=YxX and xxl=X.

Likewise, the disjoint union X+Y is taken to be defined by the universal

construction

p q
X-----+X+Y ~ Y

f~{1/g '

so that we say X+Y=Y+X, X+D=X, X+Y=XuY if XnY=□.

Infinite cartesian products and disjoint unions are treated similarly.

Apart from the above constructions, "function" here means "partial function".

Specifically, f:X+Y means that f is a function (single-valued relation) defined

for some elements of the set X and taking values in Y. domf~{xly=f(x) for some

yEY}. ran:f!={yfy=f(x) for some xe:X}. As usual, the barred arrow specifies a func-

tion by its action on an element. f:x~ means (in the proper context) y=f(x).

If X is a set, IdX denotes the identity relation (or function) on X.

0 denotes composition of (partial). functions, and is always defined.

z=[gof](x) if and only if there is some y such that y=f(x) and z=g(y). Thus

dom(g 0 f)={xlf(x)e:domg} and ran(g 0 f)={g(y)lye:ranf}.

In section 3, functions with numerical values are considered. With respect

to these, the following conventions apply: If f,g:X+JJl, then f+g:x..+f(x)+g(x),

with dom(f+g)=domfndomg. f~g if and only if domf=domg and f(x)~g(x) for all

xe:domf. For ne:.8't, n is also sometimes used to denote the function x~n.

0-4

If A is a set, then A* denotes the set of strings (terminating sequences)

in A. For x£A*, !xi denotes the length of x (number of components). (x] de

notes the string obtained by deleting the first component, if any, of x. [x)

denotes the string obtained by deleting the last component, if any, of x. xR

denotes the reversal of x. <> denotes the empty string, (j<>j=O, (<>]=[<>)=<>R

=<>,)

I am grateful for the financial assistance of the National Science Foundation

of the United States* and the National Research Council of Canada+ in developing

the material presented here, as well as for the patience and interest of my

students at the Universities of Calgary and British Columbia.

* Grant GJ-66, administered by Dr. Hellrnut Golde.

t Grant A7882.

1-1

1. Programs, devices, products of devices.

Informally, this paper is about devices which execute programs. A program

for a device~ is a finite directed graph with labeled edges and nodes. (Loops

and multiple edges are permitted.) A typical node r;
0

bas the appearance

,,,~2:;:~
~Sk

Here, the label* a on r; 0 is one of a set of commands valid for /J, and the labels

i 1 , i 2 , •.. , ik on edges directed from s 0 to s
1
,s2 , ••• , tk are distinct elements

of a set lJV(a), the valence of a. A computation E,Z TI on fJ is a sequence of

pairs <s,m>, where s is a node of TI and m is an element of fJ Q' the memory set of

fJ . Associated with each command a is a partial function fja: J)Q ➔ f/Qx JYV(a).

Pairs <s,m>, <s',m'> can occur consecutively in a computation by TI on1' only if IT

includes a nodes as above, s=s
0

, and fJ (m)=<m' ,i.> and s'=s. for some j. Exe-
o a J J

cution of the program step specified at s
0

, then, comprises modification of the

memory configuration of fj and (deterministic) selection of the next program step

The specification of a device B also includes an input set f1
8

, an input

function .1)
1

: .!}8➔ t>Q, an output set .fJT, and an output function ,,Z,
0

: ~Q➔ J)T. A

program node is terminal if it is not labelled with any command (and has no edges

leading away from it). Each program TI has a specified start node rr
8

. The

* Unfortunately, the sense in which the word "label" is used in the study of
graphs conflicts with the sense in which it is used in the study of programming.
To those who study graphs, the word denotes something that can occur more than
once, like a particular opcode in a machine-language program. To those who study
programming, the word denotes something which cannot meaningfully occur more than
once, like (the name of) a particular node in a graph. I use "label" in the
former sense in the first two paragraphs of this section, and avoid using it in
the rest of the paper. It is good to think of the si as labels in the programming
sense.

1-2

partial f unction computed .QY_ II on lJ , .t:,II: .BS-+ ,t)T, is determined thus: For XE: ~S,

if there is a computation by II on b starting with <TIS, .B1 (x)> and ending with

some <r,;,m> with I',; terminal, then .f)II(x)=.B0 (m). Otherwise, .BIT is not defined at

x.

The following is a more formal statement of our basic definitions.

1.01 A program II comprises the following:
IVV\N

IIQ ~ a finite set, the nodes;

TIS E: II, the start node ;
Q -

TIA , a partial function with domIIAcITQ, the action f unc t i on;

ITB , a partial function with dom IIBcdomJIAxu for some finite set U,

and with ranITBcrr
0

, the branching function.

It is also convenient to define

ITT=rr
0
\domIIA, the terminal nodes;

IIc=ranIIA, the commands ;

IIV(r,;)={il<r,;,i>E:4omIIB}, the valence of r,;, defined for each 1',;E:TIQ;

IIn= {IIV(r,;)lsE:TIQ}, the unifi ed set of valences .

For example, supposing the node r,;
0

illustrated in the first paragraph of

this section to occur in a program II, we have IIA(r,;
0
)=a and TIB(r,;

0
,i

1
)=r,; 1 , etc.

The usual dots-and-arrows notation for directed graphs is convenient for

specifying programs, For a node I',; in a program IT: to specify that ITA(r,;)=a,

write "r,;:a" (or just "a" if no reference to I',; is needed) near the dot represent

ing r,;; to specify that I',; is a terminal node, write "r,;:" or nothing near its dot;

to specify that TIB(r,;,i)=r,;', write "i" near the arrow representing the appropriate

edge <r,;,r,;'>. Designate ITS by putting its dot at the head of an arrow with noth

ing at its tail. To avoid graphic inconvenience, use an arrow with "r,;" but no

1-3

dot at its head to indicate that that arrow is to be taken as ending at the dot

for node r.;;.

1.02. A device/:) comprises the following:
N'VVl,A/

t)Q, i,
8

, br• sets, the memory, input, and output sets;

.JjI: JJ
8

-+ ~Q' .,60 : J')Q+ ~T' partial functions, the input and output

functions;

/jC' a set; the commands;

l)G' a partial function with dom /JGc o6Cx oOQ and ran fJGc ~Qxu for some

set U, the general interpretation.

It is also convenient to define, for each a£ "°c•

J:>V(a)={il l'G(a,m)=<m' ,i> for some m,m' }, the valence of a;

,lJa: J')Q+/)QxJjV(a):rn..,_,,./JG(a,rn), the interpretation of a.

1. 03. If TI is a program and .f> a device, then e (TI, f)), the set of com
/VVV,J

putations by TI on fj, is the set of sequences <r.;; ,rn >. ,,<r.;; ,m > in nQxJ'-Q in
o O n n

which, for all j£{1,2, ••• ,n}, i>TI (r.;;)(mj_ 1)=<mj,i> and ITB(r.;;j-l'i)=r.;;j for some
A j-1

~T(rr,.f>), the set of terminating computations by IT on fJ, is the set of

sequences <r.;; ,m >, •. <r.;; ,m > as above in which r.;; £ITT. o o n n n

The length of a computation of the above form is n.

1.04. Lemma.
/VVV'N

If IT is a program, t) a device, and <r.;; ,m >£ITQx tJQ , then
0 0 ·

there is at most one sequence <r.;; ,m >, •• <r.;; ,m > in CT(IT,l)).
o O n n

~- If IT is a program and f) a device, then J'IT, the function computed J2Y.

IT on tJ, is a partial function defined thus:

1-4

where <TIS, l\ (x) > •.. <z:; ,m>e: eT (II,£)) (uniquely, by (1. 04)).

It is quite usual to specify automata as manipulating several data struc

tures more or less independently--as having an input tape and one or more working

tapes, counters, or pushdown stores, for example. It is easy to produce the same

effect in a theory of programmable machines, and to do so in a way which shows

the independence of the data structures very clearly: Define the product of a

family 'J of devices to be a device whose memory, input, and output sets are the

cartesian products of the corresponding sets in":/,, and whose command set is the

disjoint union of the command sets in~- Define the input and output functions

to operate componentwise, and each command interpretation to respond to and to

affect only the component (of a memory set element) to which it applies.

The notion of product of devices is of great utility and fundamental impor

tance. It permits the same input-output conventions to be applied to several

data structures, or several input-output conventions to be applied to the same

data structure. In particular, it permits non-determinism in string-based com

putability studies to be seen (as it ordinarily is in number-based computability

studies) as a matter of projection--a:ceJatl.on computed non-deterministically as a

projection of a function computed deterministically. Through this notion, the

unifying power of Scott's suggestions is made more explicit.

Here is a slightly more formal definition, in which the cartesian product of

a family {X.lje:J} of sets (indexed by a set J) is taken to be the set of functions
J

f: J-+ u X j with f (j)EXj for all j e:J. (So in particular domf=J.)
j e:J

~- If J is a set and for each jE:J l'j is a device,

is defined thus (writing d) for the product x lJ.):
jE:J J

then a device x f)j
jE:J

1-5

<?\: xt-+m, where m(j)= (J:rj) I (x(j)) for all j E:J.

cx>0 :mi-+-y, where y(j)=(of\)0 (m(j)) for all jE:J.

/Pc is the disjoint union + (i).)c.
j tJ J ,

For each ct£ PC, if ct£(IJ.)C, then
J

if such that (/'J.) (m(j))=<m'(j),i>,
J ct

IP :mt-+-<m' ,i>, where m'=m except that m' (j)
ct

All products occurring in this paper have finite index set (J, in (1.06)).

For these devices and for their input sets, etc., we use the usual notations

~xe x ••• , Jf, leaving the specification of index set implicit. In case of re

peated factors or where otherwise necessary, we distinguish commands by natural

number or other appropriate subscripts.

When a product is being denoted lJx e X... or Jjk, elements of its input,

output, and memory sets may be denoted by ordered tuples, the order corresponding

to that of the notation for the product, but with singleton factors omitted.

It is worth remarking that a certain duality between data and control

appears in (1.06). With respect to devices considered as data structures, the

product construction is an inverse limit. With respect to programs, the asso

ciated control structures, the product construction is a direct limit.

The following examples illustrate the above definitions.

1.07. Example. If A is a finite set, the ~-way input device Inl(A)is
NAN

specified thus (omitting the superscript):

InlQ=(A+f➔})*, Inl8=A* , InlT=l.

In1
1

:xr-+x~, In1
0

:<>,-.+Q (undefined on non-empty strings).

Inl ={o}.
C

1-6

In10 :axr►-<x,a> for all aEA+{,} (undefined on<>).

This is, of course, a version of (one might say an interpreter for) the

well-known finite automaton (Moore machine). The end marker-I is necessary

since the notion "final state" has been taken away from the device (and assigned

to its programs). Notice that a terminating computation on Inl must include

applications of oat each position of its input and to the end marker, since

1.08. Example. If A is a finite set and kE-lJl\{0}, the k-head two-way
rJV,.N

input device In2(A,k) is specified thus (writing K for In2(A,k)):

k K =A*x.KL K =A* K = 1.
Q "'C ' S ' -~

KI:xt-+<x,O .•• ,O>, K0 :<x,n
1

••• ,nk>t-+O.

Kc= {1iJ1si~k}u{Rijl$iSk}u{Ii=Jl~isk}.

For each i, lSiSk,

~ :<x •.• ,ni, .. >1-+<<x •.. ,ni-l. .. >,O> if ni>O.
i

~: <x, •. ,ni,,.>1--+<<x ... ,ni+l..,>,O if nis:JxJ.
i

KI =:<x ... ,ni.,.>f-+<<x, •. ,ni •.. >,a>, if, for some strings u,v over A+{~,,},
i

x =uav and JuJ=ni. (¾(Ii=)=A+{~,~}.)

The connnand interpretations K are undefined if the conditions stated are not met.
a

This device is also fairly familiar. It uses distinct heads to scan an

input tape with end markers t- and -t. The heads can be moved left or right inde

pendently, but not past the end markers. An I.= command controls branching in a
1

program for In2(A,k) according to the symbol scanned by the i th head. Coinci-

dence of heads is permitted rut not generally detectable. Initially, all heads

are scanning the left end marker~.

1-7

The two-way input device In2(A) is defined to be In2(A,l). For this device,

L, R, I= denote respectively L, R, I=.
1 1 1

1.09. Example. If Bis a finite set, the turing device Tur(B) is specified
"""""'

thus (omitting the superscript):

Tur =B*x(Bu{<>})xB*, Tur =Tur =1. Q S T

TurL:<x,a,y>f+<<[x),a' ,ay>,O> where x=[x)a'.

Tur :<x,a,y>~<<xa,a' ,(y]>,O> where y=a'(y].
R

Tur :<x,a,y>H-<<x,a,y>,a>. (So Turv(T=)=Ru{<>}.)
T=

Tur ,:<x,a,y>~<<x,a' ,y>,O>, T+a

This is a version of the well-known turing machine. The memory element

<x,a,y> represents the string xay over B scanned at the indicated occurrence of a.

Possibly x=a=<>, so that the scan point may be beyond the left end of the string.

Also possibly a=y=<>, so that the scan point may be beyond the right end. As for

In2, the T= command reports the symbol (or<>) scanned. New information can be

recorded by execution of a T~a command. In particular, execution of T+a on

<<>,<>,y> or <x,<>,<>> lengthens the string. Initially, the string is empty. Exe

cution of L leaves <<>,<>,y> unchanged, and execution of R leaves <x,<>,<>>

unchanged. (You might say the unrecorded part of the infinite tape is slippery.)

By itself, Tur can only compute two functions: O~O and the empty function.

(A) (B) (A) (B) Interest lies in its role in products such as Inl xTur and In2 xTur .

(The set of domains of functions computable on these products is of course the

set of recursively enumerable (or grammatica~ languages over A.)

1.10. Example. The counter device Ctr is specified thus:
NVVV

CtrQ=-81, Ctr8=CtrT=l.

Ctr
1

:0H-0. Ctr
0

:x~O.

Ctrc={X+,X-}.

Ctrx+: x 1-+<x+ 1, O>.

CtrX_:01--+<0,0>,x+ll-+<x,1>.

1-8

This device represents the behavior of a single natural-number register,

initialized to O, which can be incremented or (in a single operation) tested

against O and decremented. Like Tur, it is insignificant by itself.

1.11.
/'VVV,.A.

Example.
(A) (B)

According to (1. 06, 1. 08, 1. 09) , In2 >< Tur is specified

thus (writing X for this product);

X =(A*x~)x(B*x(Bu{<>})xB*), X =A*, X =1. Q s -~

~ :<<x,n>,<u,a,v>>1-+<<<x,n-l>,<u,a,v>>,O> if n>O.
I

~ :<<x,n>,<u,a,v>>1-+<<<x,n>,<[u),a' ,av>>,O>, where u=[u)a'.
T

1.12.
l'o..A/V',.

Example .
({a}) ({O 1})

Figure 1 exhibits a program TI for In2 xTur ' ,

specified by some named program fragments to be assembled by the reader (func

tioning as a macroinstruction processor) in the obvious way.

Since xlj~[x)lOj is the transformation nt--+n+l in binary numerals, it is

clear that dom(In2({a})xTur({O,l}~)={a(Zj)jje-:Jl}. (In this program and in all

that follow, completely redundant branch labels are omitted.)

1-9

Inc y◊,D

T+-0

Rew
;:,,-., ;,•

LT T= L, T=
Chk -<=>---01--~,.,•----'J;;,..--◊---,..

0

TT
Rr I=

V
Chk
➔•

Figure 1. Program of example 1.12. On Tur(B), Rew computes

<x,a,y>l-+<xay,<>,<>>, Inc computes <xlj,<>,<>>~<[x)lOJ,<>,<>>, and Chk

halts only on <lOJ,<>,<>>.

1.13. Remark.
fVVV\-

The theory developed here follows the suggestion of Scott

(1967) that computation should be deterministic by definition, non-determinism

coming in only as a matter of interpretation. Specifically, a relation (non

deterministically) computed by a program IT on a device fJ can be defined as the

projection of the function J:)IT obtained by omitting a specified factor of /:JS

(presumed to be a product), the omitted comppnent being thereby regarded as an

auxiliary input selecting a particular path in the tree of computations by IT on

~ determined by the non-omitted components. It will be clear that the simula

tions studied here in terms of deterministic computation carry over usefully to

the non-deterministic interpretation.

2-1

2. Reducibility, homomorphisms, and simulations.

One of the most important objectives of automata theory is the establishment

of hierarchies of species of automaton according to their relative computational

power. This is important because of the light it sheds on the relative intrinsic

difficulty of computational problems~ In our theory of programmable machines, such

hi~rarehies are represented as partial orderings of the class of devices. The

following is perhaps the most obvious such ordering, and is definitive for com

parison of computational power.

2. 01. If Jj and l are devices, then .fl < t (1) is reducible to l) if and
IV,,.,..;,,

only if, whenever II is a program, there is a program II' such that !.- II,= cCTI.

,tJ ~ e. (~ is equivalent to t.) if and only if iJ < ~ and e, < J) as above.

Corollary. < as above is reflexive and transitive. ~ as above is an equi-

valence relation.

To state some well-known facts in terms of this notion of reducibility,

(A) (A) .
Inl ~ In2 for any finite set

*According to informed opinion of the present day, the classification of pro
blems according to species of automaton capable of their solution is crude or
awkward enough that work on a classification according to the intrinsic difficulty
of their solution on a particular, necessarily all-powerful, device (their com
plexity) is more likely to be fruitful. It remains true, however, that several
fundamental distinctions (regularity of languages and computability itself, most
importantly) appear very clearly in a species-of-automaton hierarchy, that species
of automaton are more attractive than complexity classes~ seas models for
natural computing devices, and that it is known how to translate complexity (albeit
crudely) into species of automaton, but not vice-versa. Furthermore, a well
formulated general notion of species of automaton may well be as useful to the
study of a particular species as the general notion of field has been to the study
of the real numbers. For all these reasons, it seems to me worthwhile to flaunt
present opinion and devote some effort to alleviating the awkwardness of the
species-of-automaton classification.

2-2

are non-empty.
(B)

It is also true that Tur ~Ctr, but only because only the

trivial functions Id
1

and O can be computed on either of these devices.

The last remark suggests that, although reducibility is fundamental notion,

it is not sharp enough·to probe the structure of products. The following more

restrictive ordering is useful in this connection.

~- If fJ and fJ 1 are devices, then fJ« £1' (/J is stably reducible to

JY) if and only if "Xe< .fJ' X C for all devices ! .

tJ ~ ~ Jj ' (l) is stably equivalent to Jj ') if and only if J3 « _f\' and

/.J' « J, as above.

Corollary 1. << as above is reflexive and transitive. << as above is an

equivalence relation.

Corollary 2. If /J and JJ' are devices, then

(i) I) ~ ~ Jj' if and only if cb >< t ~ cf)' x t, for all devices l, .

(ii) If /j « J)' , then /j < JJ' .

(iii) If Jj ~ ~ i) ', then J) ~ J, '.

(To prove (ii), notice that JJ ~ Jj xrd, where IdQ=Id8=IdT=l, Id
1
=Id0=rd

1
,

and Idc=[l.

By way of example, it should be clear that Inl (A)<<In2(A) for any finite set

A (this will be proved in example 2.22), but In2(A) is not stably reducible to

Inl(A) if A is non-empty. Likewise, it should be clear (by an informal appeal to

Church's thesis) that Ctr<<Tur and Turn<<Tur for any nE-V'}, where Tur denotes

Tur(B) for some non-empty finite set B. We will show below that Tur<<Ctr4 ,

whence it follows that Tur~~ Ctr4.

Any partial ordering can be regarded as a representation of the algebraic

2-3

structure of the underlying set~ However, such external representations are

generally shallow. Deeper understanding comes from representations of internal

structure, such as the following.

h,8J. If Jj and C are devices with fJCc be, then a homomorphism f from

[) to t,, comprises functions fQ; J:JQ-+ Cq, f 8 : Jj8-+ t 8 , and fT: ;!T-+ t'.T satisfying:

domfQ= rflQ.

fQorfJI= giof8 , fTo ,[) 0= t, 0 °fQ.

eG(a,fQ(m)) = f <fQ(m'),i> if .l7G(a,m)=<m 1 ,i>

/ undefined if <a,m>tdom1"G.

The last condition entails <a,fQ(m)>edom !;. G~<a,m>edom ~G and

J\(a)c C.v(a) for all ae ,/:JC, This condition can thus be stated (f0xc) o £i G=

C. Go (cxfQ), or equivalently

It is required, that is, that the following diagrams commute:

This notion of homomorphism is restrictive enough that it extends naturally

to computations and thence to functions computed by a program, as we now show.

* In the language of category theory, just regard fJ < C, or t = t as a
morphism .fJ ➔ ~ •

2-4

2.04, Lemma. If fJ and E. are devices, f a homomorphism from J)· to c. ,
(\AN\/

and IT a program, then

(i) If <\ ,m/ •.• <z;k'Il\t>E: L. (IT ,J,), then <z;
0

,fQ (m
O

)> ••• <z;k,fQ (11\)>E: e(n ,!,) .

(ii) If <r;
0
,n/···<r;k'~>E:e(n,t.), ITA(z;j)E:J:)C for Q:s;j<k, and n

0
=fQ(m

0
) for

some m
0

E:/)Q, then there are m
1
., .. •II\E: JjQ with <z;

0
,m/ .. ,<z;k'Il\>E: e(n,o0) and

nj=fQ(mj) for l$j<k.

Proof: (i) is easily proved by induction on k. Also proceed by induction on k

to prove (ii), which is trivially true for k=0. We have

aE:/)cc Cc, ~v(a)c Cv(a). Thus c/no)=<fQ{nt?,i> and .Ba<mo)=<ml,i> for

some m
1

E: f>Q, iE: /JV(a). Application of the inductive hypothesis completes the

proof.

2 .05. Theorem. If b and ~ are devices, f a homomorphism from ,8 to e, ,
;v..,vv-

Proof: Let X£domJ;,n, <ITS, ,l\(x)>, •• <z;,m>E: eT(n,.15). Then <TIS,fQ(.8I(x))>

••• <z;,fQ(m)>E: C!T(n,c) by (2.04(i)). Since CI(fs(x))=fQ(.f\(x)), we have

err (fs (x))= CO (fQ (m))=fT <~o (m))=fT(cl'n (x)).

Conversely, if fs(x)E:dom En, <Ils,c\(fs(x))> ••• <z;,n>£ L.T(IT,e.), then,

since CI(fS(x))=fQ(f\(x)) and nee .E)C' there is some m£/JQ such that

<ITS, .l\ (x) > ••• <r; ,m>£ e T (IT ,.,B) and n=fQ (m), by (2. 04 (ii)), Also, since

fQ(m)E:dome'.
0

, we have mE:domb
0

, so xE:domoBn.

The hypothesis ITCclJCin (2.05) is a technicality, and only necessary here

because it was not made part of definitions 1,03 or 1.05, The weakness it induces

is very slight, as we show in (2.07).

2.06.
~

If IT is a program and "/j a device, then IT is for J) if and only if

2-5

~. Lemma. If II is a program and /:) a device with J, C;t□ , then there is a

program II' for rfJ such that II' =II for tdQ,S,T}, and e(rr',/J)= L(JI,.B).
l l

Proof: Let a.e:lJC be fixed, define II'=II except that

(1) If IIA(s)i J}C, set II'A(s)=a. and II'v(s)=□.

(2) If IIA(s)e: cBc, set II'B(~,i)=IIB(~,i) if ie: JJV(IIA(~)), undefined otherwise.

2. 08. Theorem. If ~ and c are devices, f a homomorphism from tJ to C. ,
Nv,A./

and II a program, then there is a program II' such that CII 1 °f
8

=fT 0 J\.

Proof: If et)c=D, then either ~II=□, in which case fT 0 .Brr=O°f
8

, or

J\= J:)0° oOI, in which case fToJJ rr= Co 0 liofs. Both D and ~00 CI are

computable on C .

If cOC;tO, then (2.05,2.07) apply to complete the proof.

We can now see that the existence of a homomorphism f from t) to t:, with

f
8

and fT suitably trivial implies that Jj is reducible to i.. In fact, this

result extends to stable reducibility, as we now show.

2.09. Lemma. If fJ is a device and e =Id" for idQ,S,T}, then e is a ,.__.. ==- l ~

homomorphism from fJ to JJ •

~• Lemma. If J is a set, for each je:J /jj and Cj are devices with

(,f;j)Cc(t'.j)C and fj a homomorphism from bj to cj, and ~l=,XJ(fj)t (that is,
J e:

h
1
:t~t', where t'(j)=(fj)

1
(t(j)).) for te:{Q,S,T}, then li1 is a homomorphism

from x Jj, to x C ..
j e:J J j e:J J

Proof: We assume that foundations are so arranged that +
j e:J

With this assumption, the proof is routine.

2-6

2. 11. Theorem. If JJ and Jj' are devices and f a homomorphism from oD to
~

J:) ', then, whenever e is a device and IT a program, there is a program IT' such

Proof: For 1E{Q,S,T}, define g =f
1
xidC. By (2.09, 2.10), g is a homomor-

1
phism from J:Jxe to J}' x e_ . (2 .08) completes the proof.

cor ollary. If ,/) and /j' are devices and there is a homomorphism f from

JJ to rfJ' with f =Id and fT=Id A , then lJ « i) ' .
S dam~, ran o.10

I

We come now to the definition of simulation, the principal subject of this

paper. As will be seen, the notion of homomorphism is technically quite useful

in our development. Howeve·r, it is so restrictive that existence of a homomor

phism from /:J to C,. is unusual even when fJ « e,, . This is because existence of a

homomorphism from fJ to C implies that every step of a computation on lJ can be

imitated on C as a single step. In a simulation, this condition is relaxed to

permit C, to imitate a single step of b by exec,uting a sequence of steps--a pro

gram, in fact. This relaxation makes simulation much more useful for establish

ing reducibility between devices.

From an algebraic point of view, we may say that homomorphism reveals the

internal structure of devices with respect to execution of single connnands, so

that it is quite insensitive to the interaction of programs and devices, whereas

simulation reveals the internal structure of devices with respect to execution of

programs. As we will see, existence of homomorphism implies existence of simula

tion, which (under suitable circumstances) implies stable reducibility. This

heirarchy may be seen as proceeding from internal to external with respect to

algebraic structure. Thus, we may regard simulation as revealing a peculiarly

computational intermediate level of structure in devices.

2-7

2. 12. If al) and C are devices, then a simulation of /j _£Z c comprises
~

functions fQ: lJQ-+ CQ, fs: ,b s-+e S' fT: J)T-+CT, fl and fo: eQ-+ CQ, and for each

a.£ IJ C, fa.: C. Q-+ t Q x JJ V (a.), all satisfying:

domfQ=bQ.

fQo.Or=froe'Io fs, fTobo=eoofoofQ.

(f xid~ ())or/, =f of for each a.EJJC, Q oJ,,lv a. a. a. Q

There are programs r
1

and r
O

such that, for 1£{1,0},

m I aft (m) <=;><er t) s ,m> .•• <O 'm I>£ LT (I'\ , C) .
For each a.El)C and each finite subs~t vclJV(a.), there

is a program r(V) such that
a.

(f (m)=<m' ,i> and i£V)<:=><(r(V))
8

,m> •• ,<i,m'>£ LT(r(V) ,C,).
a. a. a.

The strictly algebraic requirements of this definition are simply that the

following diagrams commute:

cq --f--~cQxJ3v<a.>
a.

The computational requirement is that C be microprogrammable to simulate coB

in the sense that f
1

, f
0

, and the fa. be computable one,.,

Since TIT must be finite for any program IT, but JJV(a.) may be infinite, some

stratagem like the inclusion of V as a parameter in the requirement that the r(V)
a.

(supporting f) exist is necessary. If, as in a.

is finite, it is clearly ·sufficient to specify

the examples given below, J3V(a.)

r<JJv(a.)) which we denote simply a. ,

2-8

r .
Cl

Corollary . If /J and l are devices and there is a homomorphism from JJ to

E' then there is a simulation of I) bye •

2.13.
,v,.,vo..,,

Example . If B is a finite set, then there is a simulation of Tur(B)

by Ctr4 •

Proof: Everything is trivial if

Define wHw°:B* +,Dl by <>=O, wai=b•w+i.

the "b-adic 1' representation of w,)

Define fs=fl'=Idl' fQ: <x,a,y> 1-+<x,a,yR,o>' fr=fo=Id-!}b'-+. For ClE:Tur~B)' let

f be defined to satisfy (2.12) with respect to the programs r given in figure 2. Cl Cl

f is then the required simulation.

In the programs r in figure 2, the commands for the components of Ctr4 are
Cl

denoted L±, R±, C±, and U±, respectively. The circled characters show how to fill

the ellipses. rR is obtained from r1 by interchanging "L" and "R" throughout.

2.14. Exampl e. For A a finite set, tE:-D1_, define a device IX4(A,t)
NVVV

Z(A) 4 4(A,t)() exactly as In xCtr , but with IX Xt+ w,n,x
1

,x
2

,x
3
,x

4
undefined if

xi~l~w~lt-1. (This is then In2(A)xCtr4 , but with the Ctr components strictly

bounded by (lwl+Z)t on input w.)

It is easy to see that there is a simulation f of IX4(A,t) by In2(A, 4t+l)

with

fQ:<w,n,x
1

,x
2
,x

3
,x,,>!-+<w,n,d ,d •. ,d ,d

20
••• ,d ..• ,d •.. d,,

1
>,

~ 10 11 1,t-1 30 t+0 ~,t-

where the dij are determined by

satisfying O~dij < l._w-tl ,

2-9

C+ 0:
-~•----..:;..

(j)

Figure 2. Programs supporting simulation f of Tur(B) by

Ctr4 in example 2.13.

(Thus, in this simulation, diO •.• di,t-l is the (lwl+2)-ary representation of xi,

for xi' for iE{l,2,3,4}. This simple, if somewhat bizarre, example is useful in

the proof of (3.18) below, which, like this example, is adapted from Hartmanis

(1972).

It is intuitively obvious how, given a device b, a program TI, and the

microprograms r supporting a simulation of I, by a device !., , to obtain a pro-
a.

gram TI' which makes ~ imitate JJ exactly: Simply regard each occurrence of a

command a. in TI as a macroinstruction whose expansion is ra.. The following theorem

shows that such use of macroinstructions (supported by microprograms) in programs

2-10

for a device does not change its computing power. The proof given is an expres

sion of the simple idea just mentio.ned, rather obscured by its devotion to

avoiding technical pitfalls.

2. 15. Theorem. If G is a set of programs and JJ a device, then J) ~ Jj ' ,
fVVVV

where JJ~=.D 1 for 1dQ,S,T,I,O}, IJ'c=Jjc+G, Jj'a.=i:ba. if a.EJ')c, and, for each

r t. G ' tfJ' r (m) = <m' ' r; > <;=> < r s 'm> • • . < r; 'm' > t. LT (r ,..8) .

Proof: If G=□, then ,IJ'=J:}. If /j •□, then the set of functions computable
C

on either /7 or of)' is {[l, il>
0
°J\L We therefore suppose G;tO, c,8C;tO.

If II is a program, then there is a program II' for fJ with /Jrr,= .brr, by

(2.07). If II' is for iJ , we have cb'rr,= ibrr,. This shows /J< J:J'.

Conversely, we proceed by induction on the number of nodes l';EIIQ with ITA(r;)EG.

If this is O, then o8rr= ae'rr• Otherwise, let ~EIIQ with IIA(~)•fEG. If ~=IT8 ,

r
8

ErT, and IIB(~,rs)=~, then J}rr' =□, and we may take IT'=~~, where a.Ecf}c, to obtain

bIT,=~'rr· Otherwise (the unexceptional case), by (2.07), assumer is for J:).

Define a program II' by:

II'q=(IIQ\{~})+(rQ\rT);

II'A:7;1-+{ IIA(r;) if 1:;EIIQ

r A (r;) if r;Er Q

II'B:<r;,i>H- { ITB(z:;,j_) if 1:;EIIQ

r
13

(r;;,i) if z:;EfQ;

IT' =IT· all- where S S'

~=I';; if 7;EII 1 Q'

"t"'-{r s if r sir T

ITB(~,rs)if rsErT and ITB(~,rs)I~

undefined if r st.I' T and IIB(~ ,rs)=~, and

2-11

s= { rr• Cs, sl if rrB (t;, l;)•h~

r 8eJ r
8
, if rrB (t;, l;)=t; and r

8
ir T

undefined if ITB(t;,l;)=t; and if 1';£I'T.

Jj'rr 1 =,f)~ , and IT' has fewer G-nodes than IT, so the induction is established.

With the necessary tools in hand, we now establish analogues (2.16, 2.19) of

(2.08, 2.11) with "simulation" replacing "homomorphism". By the corollary to

(2.12), it would seem that the homomorphism results could be stated as corollaries.

This is not the case for (2.08), however, since it is used in the proof of (2.16).

2 .16. Theorem. If /!> and t are devices, f a simulation of 1J by f:_. , and
,vv,..;v

IT a program, then there is a program '!' such that C '!'of
8
=fT 0 brr.

Proof: Define a device ,f)' by .0\=t.
1

for 1E:{Q,S,T}, i)'c=Jjc, t)'
1
=f

1
°l 1 ,

/)
1

0=c, 0 °f0 , and ,fj'a=fa for a£~c· Obviously fQ,fS,fT make up a homomorphism

from /) to /)'. By (2.08), then, there is a program IT' such that J,'rr 1 °f$=fT 0 .,Bil.

Define a device I:>" by J:J'\= c.
1

for 1dQ,S,T,r,o}, cB"c={r
1
,r

0
}u{ra (v)la£J}c

and V is a finite subset of fJV(a)}, Jj"r
1

:mtt<f
1

(m),O> for 1dI,O},

fJ"r (v):ml-+f (m) if f (m)=<m',i> and i£V.
a a a

D fi rr" b rr" rr' +{s T} rr" =S rr" (S)=r rr" (s O)=rr' e ne a program y Q= Q , , S , A I' B , S'

IT" (r)=r(IT'y(l';)) for r£IT' \II' IT" (r i)=IT' (r i) f r IT' \IT' di IT' (r)
A' IT'A(t) ' Q T' B '' B '' or,£ Q Tan £ V' '

rr"A(r;)=r
0

and IT"B(r;,O)=T for 1',;£IT'T. (IT"T={T}.) It is easy to see that, for all

x£dom <:\, <S, C:
1

(x)><r;
0

,m / .•. <r;k'~><T ,ffi>£ eT (IT", a8 ") ~ (<1'; O ,m/,,, <r;k ,~> £

LT(rr',.6 '), r;
0
=rr'

8
, m

0
=a0'

1
(x), and m=f

0
(~).) It follows that a8"rr 11=l)'rr,·

Finally, by (2.15), .J,"<t., so c'!'=JY'rr" for some'!'.

This proof displays the facility with which simulation can be approached

using a program/device presentation. The data-structure aspect of the simulation,

subsumed in our formal notion of simulation, is handled by the appeal to (2.15)

2-12

and the designation of ranfQ as a distinguished set of simulating configurations

in t,_Q implicit in the definition of J)'. The construction of II" (renaming

commands of II' to indicate their reinterpretation as microprogram invocations and

adding prelude rI and postlude r 0) is all that is needed to handle the control

structure aspect of the simulation. Once these two aspects of simulation are

clearly distinguished, each is easy to deal with, even in the most general setting.

LlJ· Lemma. If~ is a device, e
1
=Id.r, for 1£{Q,S,T}, eI=e

0
=eQ, and

1

e =iJ for all o.£/JC, then e is a simulation of b by b.
0. 0.

Lll!· Lemma. If J is a set, for each j£J ,ej and f!.. . are devices and
J

f. a simulation of JJ. by
J J

C., and if (f.) I;tid " , (f.)
0

;tidd 19 for only
J J ran c-I J om Co

finitely many j£J, then h is a simulation of x I}. by .x J 8., where
j£J J Jc J

h . = x (f.) for 1 d Q, S, T, I, O} and,
1 • J J 1

]£

for o.£(fl.)C, if m£.xJ(b.)Q and (f.) (m(j))
J]£ J J 0.

=<~,i>, then h (m)=<m',i> with m'=m except that m'(j)=£.
0.

2.19. Theorem. If ,fj and lJ' are devices and f a simulation of /j by

J) •, then, whenever e, is a device and II a program, there is a program II' such

= < f x Id ..,) o < J} x e) .
T CT II

Proof: By (2.17,2.18), there is a simulation g of ,j xc, by

with g =f xid s and gr=frxid fi • (2 .16) completes the proof.
S S ~S CT

Corollary. If fj and ,b ' are devices and there is a simulation f of /j

by Jj' with f 8=Iddom ~I' and fr=Id I,\. , then rB « Jj '.
1JJ ran w

0

This is the principal result of this paper. It shows that simulation can

be used as intended in formal proofs establishing the stable reducibility of one

device to another. By this result, for example, (2.13) is a rigorous proof that

Tur(B)<<Ctr 4 for any finite set B.

,

2-13

The reader who is familiar with sim1,tlation arguments may be feeling uncomfor

table about our requirement that a simulation be defined in terms of fQ, which is

a function and therefore single-valued. In many simulations, the representation

of a simulated state depends not only on that state itself but also on the com

putation which led to it. A two-way tape simulation of a pushdown store, for

example, may maintain its representation without erasing symbols removed from

the pushdown store. This sort of consideration suggests that fQ should be many

valued--that, in the definition of simulation, tq should be replaced by e,Q/R,

where R is a suitable equivalence relation.

Unfortunately, the specification of such a relation R corresponding to a

particular simulation would likely be rather complicated, as would the proof that

it is as required. This is because such an R must capture some important char

acteristics of computations, so cannot respect the separation of data and control

structures as well as the present notion of simulation does.

Fortunately, the difficulty we are considering can be overcome without

weakening the separation of data and control structures: If a simulation depends

on computations as well as on configurations attained, simply define it as a

simulation of a device which incorporates its computations in its configurations,

but which cannot itself respond to the additional information its configurations

contain. To complete this section, we give a uniform definition for such devices

and show their simulation to be as useful for establishing reducibility as simu

lation of their precursors.

~- If IJ is a device, then a device Rec(b), the recording version of

IJ, is specified thus (writing R for Rec (/J)) :

RQ={<<m ,a >, •. <m. ,ak >,m. >!For each j, ljk, there is some i such that
0 0 K-1 -1 K

2-14

Jj (m._
1
)=<m.,i>}c(JJQxrfjc)*xJ7Q.

a. 1 J J J-

Rs= l\, RT= l\-
R1 :x H-«>, .f\ (x)>, R0 : <w,m> I-+ b°

0
(m),

For each aE:Jj , R :<w,m>i-+<<w<m,a>,m'>,i>, where b (m)=<m' ,i>.
C a a

Comparison of this definition with (1.03) shows that <<m ,a >, .. <m. ,ak >,
0 0 K-1 -1

~>ERQ if and only if there is some program IT such that <so,mo> .•. <sk,~>£ C(IT,D)

and ITA(s.)=a. for all j, Q$;j<k. The name "recording version" for devices of this
J J

sort appeals to the fact that they (passively) retain a record of their previous

states and state transitions, just as recording thermometers and the like do.

Corollary. If b and e are devices and IT a program, then /j X e IT=Rec (D') xeIT.

Thus b ~~Rec (fJ) .

2.21. Theorem. If tJ and f:J' are devices and f a simulation of Rec(l:r) ,..,.,,..,..,..

by .8', then, whenever C- is a device and IT a program, there is a program TI' such

Proof: By the corollary to (2. 20), Rec (l7) x t TI=,tfx l TI. (2. 19) completes

the proof.

Corollary. If band J)• are devices and there is a simulation f of

Rec(J)) by I}' with f 8=IddomAr' and fT=Id A, thenb<<Jj'.
flJ · ran ev

0

2,22. Example. If A is a finite set, then there is a simulation of
/VvVv

Rec(Inl (A)) by In2(A)_

Proof:

<<x--i,o>w,y> 1-+<x, I x-11 -I YI>. Define f s=Id A*' fT=Idl' tr :A*x-11-+A*x11 :<x,0> -+<x,O>' .

f 0 :A*x'5l-+A*x1t :<x, I xi +1> f-+<x, I xi +1> (undefined otherwise). Define

..

2-15

f 0 :A*x~l-►-(A*x1f)x(A+{,}):<x,n>t-+«x,n+l>,a> if nslxl, and, for some strings u,v,

over A+{-H, x;.uav and lul=n. Consideration of figure 3 shows that f is as

required.

Figure 3. Programs supporting simulation f of Rec(Inl(A))

by In2(A) in example 2.22.

By (2.21), this example proves that Inl(A)<<In2(A) for any finite set A.

t

3-1

3. Cost schedules for devices.

Another important objective of automata theory is to provide models of

computation which are suitable for presenting practical algorithms or important

parts thereof. To be fully useful, such models must represent real-world compu

tations in such a way that t.heir costs--the demands they make on computing re

sources--can be estimated.

Both in theory and in practice, costs can be considered.!! priori: Devices

can be defined to have limited resources, and costs modelled by hierarchies of

devices. Likewise, real-world costs of computation can be limited by monitoring

execution. This~ priori approach in the theory of computing reduces cost esti

mation to computability, so that in our presentation it makes reducibility of one

device to another the basis for cost comparisons, and simulation a proof technique

of fundamental importance.

However, both practical and theoretical workers now usually consider cost

.!! posteriori: A program is run and then the bill is paid; an algorithm is speci

fied for execution in an environment of unlimited resources, and analysis shows

the bounds on its demands. While not so fundamental as in the_!! priori approach,

the role of simulation is important here too: It is often convenient to present

algorithms in terms of distinct models for computation (one- and two-tape turing

machines, for example) lo?hile retaining just one model as the basis for cost com

parisons. To do this, it is sufficient to present simulations of the other models

by the basic model, these simulations so constructed that costs are uniformly

translated.

It is the work of this section to develop this.!! posteriori approach to

cost in terms of our theory of programmable machines. We show how costs can be

included in our model, how the notions of cost and reducibility interact, and

how simulation can be used in this part of the theory.

3.01. If fJ is a device, then a cost schedule c for Jj comprises
Nv-Jv

functions c 1 : J:\+5l_, c 0 : JJQ +-:)1, and, for each a£bc, ca:bQ+!n, all such that

dom c =<lorn Jj for 1dI,O}+tflc·
1 1

3-2

3.02. ,..,..-.,., If Jj is a device and C a cost schedule for JJ, then < ~,c> is a

device/cost pair and $(i) ,c) is a device, i) operating at cost c, defined thus:

$(J),c)Q= .Z,Qx-n, $(l:1,c)s=clts, $(/J ,c)T=.bTx-01.

$(1) ,c)
1

:xi--+<~I(x), c
1

(x)>, $(.b ,c)
0

:<m,j>I--+< J?0 (m) ,j+c0 (m)>.

$(JJ,c)c=J}c'

for each a.E:/JC, $(JJ',c) :<m,j>r+<<m',j+c (m)>,i>, where /J (m)=<m',i>.
Ct Ct Ct

With respect to a particular device/cost pair <b,c>, if IT is a program,

fum en denotes the function ~S ➔.ffi determined by requiring that $ (J1' ,c)n=

(Jj xc) o (x 1-+<x, x>) .
IT IT

3.03. - Example . The cost schedule spc (space) for Tur(B) is defined by

0 th () 1 Cl 1 ·f r < > k> <r' < 1 1 1 > k'> spc = except at spcT x,<>,y =. ear y, 1 <s, x,a,y, ••• s , x.,aJ ,
1 +a

E C:(IT,$(Tur,spc)), then k'-k=lx'a'y' l-lxayl,

It should be clear how to arrange a cost schedule to reflect costs which

are, intuitively speaking, time-oriented: To charge for every step, for example,

just set c =l for all a. (3.03) shows how to arrange for costs which are not
Ct

time-oriented: Arrange to detect the moment at which the cost is incurred.

Even if the design of the device makes it difficult to detect that moment, it

should be possible to achieve the desired effect with a cost schedule for the

recording version, as in the following example.

~- Example. For <w,m>ERec(Ctr 4)Q, define llw,mll to be the largest

integer occurring in m (E-!Jl4) or in any component of w (E(-014 xctr~)*).

Define a cost schedule max for Rec(Ctr 4) by max =O except that
1

maxX +(w,<x ,x ,x ,x>)=l if x.= llw,<x ,x ,x ,x >11- Clearly, if <s,<w,m>,k>
i 12 34 l 12 34

... <s' ,<w' ,m'>,k'>E: e(IT,$(Rec(Ctr 4),max)), then k'-k=II w' ,m'II - llw,mll,

3-3

We now extend the notions of reducibility, product, and stable reducibility

to device/cost pairs, concluding with (3.09), which shows that applicability of

simulation to these extended notions.

3.05. If < /j,c> and < e ,d> are device/cost pairs, then < /),c><< E ,d> ,...,..,...,.,,

(<.t},c> is reducible~< E.,d>) if and only if $(b,c)<$(t:'.,d).

<b,c>~< e,d> (<b,c> is equivalent to <e.,d>) if and only if <b,c>«t'.,d>

and <t,d>«lY,c>, therefore if and only if $(JJ,c)~$(t,d).

Corollary. < as above is reflexive and transitive,~ as above is an equi-

valence relation.

~- If J is a set and for each jEJ < otlj,cj> is a device/cost pair, then

a device/cost pair ~ < JJ.,c.> is define d as follows (writing <tP,c> for the
jEJ J J

pr oduct x <J)j,c.>), provided domcI=domttl
1

and domc
0

=domd)
0

:
jEJ J

rP= X /),.

jEJ J

cI:x1-+ £ (c.)I(x(j)), c
0

:mi-+~ (c.)
0

(m(j)),
jEJ J j£J J

For each a£~, if a£(J\) C, then ca :m 1-+(cj) a (m(j)).

We may denote the cost schedule c in < tP, c> by ~ cj, which may be written
j £J

C. +cj +... •
J 1 2

With respect to a particular device cf}, 0 denotes the cost schedule taking

the value O for all valid arguments.

If < J3, c> is a device/ cost pair and ~ a device, then < JJ x t:.. , c> denotes

<b,c>X< e ,O>. Thus, with respect to such IJ,c,e, err denotes (c+O)rr.

3.07. If <fJ,c> and <.tJ',c'> are device/cost pairs, then <.b,c><<< ~•,c 1 >
~

(< .D,c> is stably reducible to < J)' ,c'>) if and only if < IJ,c>X< e,,d><<<f,1 ,c'>x<!,d>

3-4

for all device/cost pairs < e,d>.

< cfJ, c>~< J, ! c> (<I}, c> is stably equivalent to < J)', c 1 >) if and only if

< ll,c><<< Jj' ,c'> and < ,b• ,c'><<< r/I,c>.

3.08. The orem. If < JJ,c> and < Jj' ,c'> are device/cost pairs, then
,v..,,,...,v

< J:J, c><« Jj' ,c' > if and only if $ (Jj, c) «$ (J}', c'). Therefore <r/J ,c>~< ~• ,c' >

if and only if $(~,c)~~$(oi9',c').

Proof: Suppose <J),c><<< ca• ,c'> and let t, be any device. Clearly

$(/jxc ,c)~$(r/J,c)xt, and $(JJ'xe,,c')~$(J,',c')xc,. Since <J)xt ,c>«Ji'xe, ,c>

by hypothesis, $(/J ,c)xe <$(/J' ,c')xe, as required.

Conversely, suppose $ (/j, c) «$ (If', c') and let < C, d> be any device/ cost

pair, TI any program. By hypothesis, there is a program TI' such that fJ' x c. TI,

= Jj X C TI' CI TI I =en' and dn I =dn' where CTI' CI TI I ' an' and an I are determined by re

quiring that$(a,c)x$(t'. ,d)n=((J} xc)nxcnxdn)oh and$(JJ' ,c')x$(c ,d)n,

=((l>'xe) ,xc' ,xd ,)oh, where h:<x,y>~«x,y>,x,y». It follows that (c+d)n
TI TI TI

=(c'+d)TI'' so <b,c>x<E,d><<a8',c'>x<E,d>, as required.

Coroll ary 1. << in the sense of (3.07) is reflexive and transitive.

in the sense of (3.07) is an equivalence relation.

Corol lary 2. If <I), c> and < i)', c' > are device/ cost pairs, then

(i) <Jt,c>~</)',c'> if and only if <b,c>x<c,d>~<J)',c'>x<c,d>for all

device/cost pairs < t ,d>.

(ii) If </),c><<<ci}',c'>, then <lr,c><<Jj',c'>.

(iii) If <c/J,c>~<r:fj',c'>; then </j,c>~<b',c'>.

3.09. Theorem. If < JJ,c> and <E:. ,d> are device/cost pairs, then
~

< I:>, c><<< C, d> whenever there is a simulation f of J3 by C satisfying:

3-5

f 8=Idd ~ , fT=Id "' , om"'I ran~0

dI+qio e I=cI, (q0+d0 of0)ofQ=c0 ,

for each a£,f}C and each finite subset Vc/JV(a), q~V)ofQ=ca,

all where rI, r
0

, and r~V) are programs as in (2.12) and each q is determined

by

for the corresponding r. (In particular,

domq(V)~{mlf (M)=<m' ,i> for some iEV and
a a

domq =domf for lE{I,O}, and
l l

some m'}.)

A

f :<rn,j> +<£ (iii), j+q (m)> for 1dI,O}, and , for each a£/JC, f,,,:<m,j>1-+<m 1
· ,

l l l u.

j+q (□) (m), i> if and only if f (m)=<M', i>. Then f is a simulation of $ (./J, c) by
a a

$(C ,d) with f8=Iddom$(E ,d)I and fT=Iddom$(.-9,c)o" By the corollary to (2.19),

$(.B ,c)«$(t,, ,d). (3.08) completes the proof.

Like homomorphism, the above notion of reducibility is technically useful,

but too restrictive to be the basis for a significant hierarchy. This is because

costs must be carried over exactly in the relation < /J ,c><< c. ,d>. More signifi

cant results are obtained if drr, is merely subject to an upper bound determined

by the corresponding err. We proceed now to develop such a notion.

3. 10. If X and Y are sets, then 7,(x, Y) denotes the set of (partial)
~

functions f:X+Y.

~- If < I) ,c> and < t, ,d> are device/cost pairs and F: 9(.B
8

,-11:)+rf(e
8
,JJl),

then < J3, c>« e, d> (F) (< Jj, c> is r educible to < ~, d> at cost F) if and only if,

whenever IT is a program, there is a program IT' such that e rr •= J,TI and dTI,~F(cIT).

Corollar;t 1. If /j, ~ , c, d, and F are as above and < J}, c>«e, c;l> (F), then .

3-6

Co r ollary 2. (i) If < P ,c >« J) ,c > (F) and < J} ,c >«J) ,c >, then
00 11 11 22

< JJ ,c >«[} ,c >(F).
0 0 2 2

(ii) If <t> ,c ><</} ,c >and</} ,c ><<cl) ,c > (F), then <J:'J',c ><J; ,c >
00 11 11 22 00 22

(F).

3.12.
MJvVV

If < /J , c> and < /j ' , c' > are device/cost pairs and F: ~(J}
8

;lJD-+ 1'(~' rt;),
s

then <J3 ,c><«e6' ,c'>(F) (<'1,c> is stably reducible to <r/J' ,c'> at cost

and only if < t) X t, c> << J, IX e 'CI> (F) for all devices C , where

domF={fo(<x,y>l--+x)jftdomF} and F:f 0 (<x,y>i-+x)f'..-+F(f) 0 (<x,y>i-rx).

~ p' i
(Equivalently, F is· the restriction of~ °Fo-5l to {fopjfEdomF},

F) if

where p: ~tc
8
-+.t,

8
:<x,y>1--+x, p': JJ 1

8
xc

8
-+J, 1

8
:<x,y>1--+x, and i:t)

8
-+,f)

8
xE.

8
:xt-r<x,y/,

y
0

an arbitrary fixed element of e.
8

.)

Cor ollar y 1. If JJ,ib',c,c', and F are as above and </J,c><<</)',c'>(F),

then cf) <<cf)' and< /J,c>«J)' ,c'>(F).

Corol lary 2. (i) If < /3 ,c ><«,/j ,c >(F) and <,fj ,c ><<< /) ,c >, then
00 11 11 22

< JJ ,c >«< /) ,c >(F).
0 0 2 2

(ii) If<,/) ,c >«<ri) ,c > and <rlJ ,c ><<<IJ ,c >(F), then
00 11 11 22

< b ,c >«<Jj ,c >(F).
0 0 2 2

Corollary 3. If <.fJ,c> is a device/cost pair and F: "J(JJ
8

m)-+'rj<J
8

;')'J) is

such that crr~F(crr) for all programs JI, then <.0,c><<<.l:l,c>(F). Therefore also

<J:l, c>« al5, c> (F).

Corollarl'.' 4. If <EJ ,c >« ,I) ,c >(F), <of) ,c >«,lJ ,c >(F), and
00 11 1 11 22 2

g~h~F (g)~F (h) whenever g,hEdomF, then< of) ,c ><<,fj ,c >(F oF). Therefore
2 2 2 0 0 2 2 2 1

also with 11 << 11 in place of"<".

3.13. Theorem. If b,Jj',c,c',F, and Fare as at (3.12), then
~

3-7

</:J,c><<<~' ,c'>(F) if and only if, whenever< t,d> is a device/cost pair and TI

a program, there is a program II' such that J3 'x err,= J)x CIT and (c'+d)rr,~F(cn)+drr.

Proof: "If": Take d=O.

"Only if": We have < Jj x$ (t.. , d), c>« cb' x$ (C: , d), c' > (F).
,.

Thus, for some program TI', J, 1 xlrr 1 =lJxe,rr,c'n 1 ~F(crr), and drr 1 =drr. Since

(c'+d)II 1 Tc'n 1 +dII'' all is as required.

Corollary. If JJ is a device, F: ~(Jj S ,-01,)+ ilJt (J) S ,11) , and c and c' are

cost schedules for /J such that c'rr~F(crr) for all programs II, then

< ~,c><<<ll,c'>(F), Therefore also <JJ,c><<b,c 1 >(F).

3.14. Theorem. If G,J9, and clJ' are as at (2 .15), c is a cost schedule --
for some m' , z_;, then < i:J, c>~< ,/j ' , c' >.

Proof: Let C be any device. Under the hypothesis, (2.15) shows that

$(/J,c)x! ~$(r/:J',c')xc,. That is, $(c0',c)~$(J:l',c'). (3.08) completes the

proof.

3.15. Theorem. If </J,c> and< e..,d> are device/cost pairs and
~

F:~(J3
8

,-!Jt.)+?(t,
8

,11,), then </J,c><«l,d>(F) whenever there is a simulation

of /:J by C,. satisfying:

f =rda p f -rd d
S omcr' T- ranitb' an

M, rr is a program, XE .0
8

, <z.;
0

,m/=<rr
8

,c.D
1

(x)>,

< z_; O 'm / ••• < z_;k, ~> E t T (II , .f)) ,

VjcJ.'V(IIA (z_;j)) for all j, O~j<k,
k-1

~ [d
1
+q

1
° ~

1
J(x)+[q0+d0 of0 J(fQ(~))+}: q.~[F(cII)](x),

j=O J
(Vj) () where qj=q IIA(z_;j) fQ(mj) for all j, 0$j<k,

3-8

(V)
all where qI,q

0
, and the qa are defined as at (3.09) in terms of programs rI,

r0 , and r~V) as in (2.12).

Proof: Notice that, if mE JjQ and m=mj for some IT, x, and j as in the

hypothesis above, then there is an upper bound on qj considered as a function of

Vj. In view of this, we can define a cost schedule c for /:J thus:

cI=dI+qr°e I' ~0=(q0+d0 °f0) 0 fQ. For each ctE /JC,

{

max {q(V)(f (m))IV finite, vcfJV(a), and fQ(m)Edomq~V\
c :mH- a Q

a O if the above maximum does not exist, but mEdom Jj.
a

By hypothesis, cIT~F(cIT) for all programs IT, so by the corollary to (3.13),

< ,f}, c><«Jj ,c> (F).

. (V) I A Define a device /)' by /;1 ' = c, 1 for 1dQ,S,T,I,O}, .D'c={r1 ,r0}u{ra aE .uc

and V is a finite subset of l\ (a)}, Jj' r
1

:m ~<f 1 (m), O> for 1 d I, O},

lJ' r
1

(V) :m1-+fct(m) if fa(m)=<rn' ,i> and iEV. Define a cost schedule c' for t)'

by c' =d c' =q for 1E{I o}
l 1' f 1 1 ' '

r
e (m) if m=fQ(m)

, - L,,_ a
C r (V) :m ,-,- (V)

a q (iii) otherwise.
a

c'r (V) is well-defined since ~(m)=ca(m') if fQ(m)=fQ(m').) It is easy to see
a

that f is a simulation of fJ by /J' satisfying the hypotheses of (3.09) so

that <lJ,c><«/j' ,c 1 >,

Define a cost schedule c" for Jj' by c"=c' except that c" (v)=q (V)
r a a

for

all a,V. By the corollary to (3.13), < /)' ,c'><« J:}' ,c"> (Id'J'(.Bs,-1l)).

By (3.14), <fJ' ,c">~< t,c>,

Corollaries 2 and 4 of (3.12) complete the proof.

This is the principal result of this section. It ~hows how simulation can

be used to establish stable reducibility at cost. It is worth noticing that the

3-9

proof of (3.15) is in close analogy to that of (2.16), while the result itself

is analogous to the corollary to (2.19). Just as for the last-mentioned result,

it is important to extend (3.15) to simulations of recording versions, as we now

do.

3.16. Theorem. If ci,,c,C:,d and F are as in (3.15), then <J::),c><«c,d>(F)
,vvvv.

whenever there is a simulation f of Rec(h) by E. satisfying the conditions of

(3.15), but with Rec(b) in the role of b.

Proof: Define a cost function c for Rec(t}) by cI=cI, ~
1

:<w,m>l-+c
1

(m)

for 1dO}+aOC' Define wi-+w: (.t,Qx~x~c)*➔(/JQx/)c)* inductively by<>=<>,

w<m,J,a.~=w<m,a.>, Define k5=Id.i, , ~=Id,B x;jl' kQ:(cBQxi1_xal5c)*x(cl\(~1)➔
S T

((Jj QxJjc) *xJj Q) x-!!: <w, <m,j»H-«w,m> ,j>. k is a homomorphism from Rec($ (J:), c))

to $ (Rec(J3) ,c), so, by the corollaries to (2 .12) and (2. 21), $ (oe, c) «$ (Rec (tl) ,c).

By (3. 08), then, < /3, c>«<Rec (/J), c>.

By (3.15), <Rec(~),c>«<t,d>(F).

Corollary 2 to (3.12) co~pletes the proof,

By way of illustration, the following examples apply several of the results

presented above to obtain a very secure proof of the assettion of Hartmanis (1972)

mentioned at the beginning of this paper.

~- Example. If B is a finite set, then <Tur(B) ,spc><<<Rec(Ctr4),max>

(g 1-+(card B) g+l).

Proof: Extend the definition of f in (2.13) in the obvious way to spe

cify a simulation of Rec(Tur(B)) by Rec(Ctr4) supported by the same programs r .
a

If <~
0

,m
0

>=<IT
8

, Rec(Tur(B))I(O)> and <~
0

,m
0

> •. ,<~k'~>E t(rr,Rec(Tur(B))), ·

we have

[max
1

q
1

oRec(Ctr4)
1

](0)=0,

[q
0
+max0 of0](fQ(~))=O,

k-1
E qJ.=llfq<~)II,
j=O

3-10

where q1 , q0 , qj are as at (3.15), I jw,ml I as at (3.04).

If ~=<w,<x,a,y>>, we have

I lfQ(~)I 1~xay<blxayl+l=bspcTI(O)+l,

where b=card B, ware as in (2.13).

(3.16) completes the proof.

3.18. Example (Hartmanis, 1972). Let L:-!)1-+--!}1:ni--+flg(n+l)l. (lg= binary
l'V'V\I'..

logarithm, fxl=least integer~ x.)

For given finite sets A and B, there is an integer kE,nsuch that, if TI

is a program and

X=dom(In2(A)xTur(B) TI)n{xlspcTI(x)~L(lxl) ,

then there is a program ~ with dom(In2(A,k)~)=X. (Notice that k is indepen

dent of TI.)

Proof: Modify TI so that, on input x, it first uses the counting technique

of (1.12) to lay out a segment of tape with length L(lxl) and then either carries

out all its work within that segment or, if it cannot do .so, fails to halt. Call

the resulting program TI''• We have X=do~(In2(A)xTur(B)TI' ,) and spcrr 1 (x)=L(lxl) for

all X€X,

By (3 .17) and the corollary to (2. 20), there is a program II" with

X=dom(In2(A)xctr4 rr 11) and maxTI' 1 (x)~bL(lxl)+l for all xeX, where b=Card B. Without

loss of generality, assume b~2.

For n>4, 2lgn>L(n)+l, so (n+2) 2flgbl>bL(n)+l. Tl-£ latter relation also

3-11

holds for ne{0,1,2,3,4}, so we I I 2flgb 1 have maxrr" (x) < (x +2) for all xeX, Clearly

h X-d (IX4 (A,2flgbl)) ten, - om II" .

(2.14) and the corollary to (2.19) complete the proof, with k=Brlgbl+l.

The.! priori and_! posteriori approaches to costs of computation are separ-

able only as approaches--in practice and in theory both refer to the same matter,

the allocation of computing resources, It is to be expected, therefore, that

they will often appear together, as they do in the argument above.

4-1

REFERENCES

Hartmanis, J. (1972). On non-determinacy in simple computing devices. Acta

Informatica. 1, 336:344. ~
Scott, D. (1967). Some definitional suggestions for automata theory. Journal

of Computer and System Sciences . 1, 187:212. ,.,.,

