MMM

MMMHM MMM
MM M MM
M M
M M MMMMMMMHY
MM MM MMMM MMM
MMM MM MM MMM
MMM MMM MM MMM
MUMMMMMM MM MMMMMMM MM
MMMMMMB MMMM MMM MM MMMMHM
MoM MM MMM M MM
M MMM M M
M MM MMM MM
MMMM MMMMMM MAM
MMM MMM
MMM
MMM u]
MMMMY

o e ook e ok ok ook okl ROk SOk kR KoK

* . *
* Unlanguage Grammars *
* and Their Uses *
* J *

Ao ek e ok ok ok ok kol ok ok Kok ok kK

by

R. A, Fraley

Technical Report 77-6

August 1977

Department of Computer Science
University of British Columbia
Vancouver, B. C.

Unlanquage Grammars and Their Uses

R. A. Fraley
University of British Columbia
August 17, 1977

ABSTRACT

A new technique is presented for using context free
grammars for the definition of programming lanquages. Rather
than accumulating a number of specialized statement formats,
generalized productions specify the format of all statements. A
sample unlanquage .grammar is presented, - and the use of this
grammar is described. Some of the difficulties in parsing the
iLangunage are described.

Unlanqguage Grammars and Their Uses

This paper does not define another <class of grammars or
parsing alqorithm. It describes a new way of using grammars for
the definition of programming languages. A favorite 'parsing
algorithm, or even an ad hoc technique, may be used to process
an Unlanguage grammar.

Most programming language definitions are modelled after
the Algol 60 report [6]. They present a grammar which defines
all statements of the language, After careful consideration,
the languaqe designers have defined a lanquage, written a
grammar describing that language, and possibly produced a parser
tor the language using the gqrammar and a suitable parser
generator. Unlanquages work the other way around: after the
grammar has bheen specified and the parser built, the language is
defined.

Lisp [5] resembles an Unlanquage, Here 1s a simplified
grammar for Lisp:

<element> ::= <atom>

| (<list>)
<list> 2:= <EMPTY>

| <list> <element>

<atom> ::= <word> | <number>

This grammar describes the complete (for our purposes) qgrammar
of Lisp. But it Joesn't give any notion about the functions
available in Lisp; 1t deals strictly with the lanquage
structure, All functions are defined elsewhere. By contrast,
Algol 60's grammar contains the names of all legal statements.

The qgrammar for Lisp contains two undefined constructs
<word> and <number>. While we could provide syntactic
descriptions of these notions, compilers typically recognize
these using a scanner rather than a parser, We may consider
these to be "class terminals", hecause they specify classes of
symbols rather than specific character strings.

The Lisp grammar 1is not a ®"pure" unlanquage g¢granmac,
because it contains two absolute terminal characters, " (" and
“)", The only terminals in a pure Unlangquage grammar are class
terminals. This is the oriqgin of its name: the grammar defines
only a structure, but doesn't specify actual statements or other
language elements. An Unlanguage grammar defines pure form with
no content.

Before looking at more examples of Unlanquage grammars,
let's consider <class terminals in more detail. The grammar
places no restriction on the symbols which belonq to different
classes, Two classes (such as <Kidentifier> and <array
identifier> of the Algol 60 report [6]) may contain tokens which
are syntactically indistinquishable. Other classes (such as
<relational operator>) can contain tokens which have a radically
different syntactic structure (such as "<=" and "LE"). In the
discussion which follows, we shall never attach any syntactic
significance to the class terminals.

The First OOnlanguage

The First Unlanguage (FUNL) grammar describes the structure
of many programming langqguages:

<{program> s3= <Lexpr> <expr sequence>
<expr> :3= <function>

| <expr> <operator>
<expr sequence>> ::= <EMPTY>

-

<expr sequence> <expr>

<expr option> :3= <EMPTY>

| <expr>
<function> ::= <fn item> <phrase sequence>
<fn item> ::= <FNT>

| <FN2> <expr>

| <FN3> <expr option>

| <FN4> <expr sequence>
{operator> ::= <op item> <phrase sequence>
<op item> sz= <OP1>

<0P2> <Kexpr>
<0P3> <expr option>
<0P4> <expr sequence>

<EMPTY>
<phrase sequence> <phrase>

<phrase sequencea>

[}

<PH 1>

| <PH2> <expr>

| <PH3> <expr option>

| <PHU4> <expr sequence>

<phrase> 2

[T

The symbols <PHi>, <FNi>, and <OPi> are class terminals.
Methods for dealing with ambiquities in this grammar shall be
discussed in the section "Disambiquation”, The appendix

describes some extensions which might be made to this grammar.

It is not obvious how common structures of standard
programming languages are represented by the FUNL grammar. Here
are some examples:

A simple (unsubscripted) variable lies im the <FN1>

meric and character constants are also in <FN1>.

Infix Operators
An infix operator (such as “/") is in <0P2>.

Example

Suppose that "A", "pY, and "C" are variables, and that "+",
#w_w_ ngn and "/" are infix operators. The sentence "A * B ¢+ C"
will be parsed as follows:

Parse Stack Explanation
A From input
<FN1> By definition of variable
<fn item>
<fn item> * Input
<fn item> <OP2> Definition of infix operator

<function> <OP2>
<expr> <0P2>

<expr> <0P2> B Input
<expr> <0P2> <KFNT> Definition of variable
<expr> <O0P2> <KFN1> + Input

<expr> <0P2> <KPN1> <0P2> 1Infix operator

<expr> <0P2> <expr> <0P2> Several reduction steps

<expr> <op item> <OP2> Disambiquation (precedence)
<expr> <operator> <0P2> {Null <phrase sequence>)
<expr> <0P2>

<expr> <0P2> C Input

<expr> <0P2> <expr> Several reduction steps

<expr> <op item>
<expr> <operator>

{expr>
<expr> <expr sequence>
<program>

Nnotice that operators are combined with their rigqht operand
vefore being joined with the left. This is purely a function of
the context free representation, The parsing mechanism is

1solated from the rest of the system: semantic processing occurs
only after the completion of <expr> and <program> productions.
Such 1isolation is important from a structured programming
standpoint. (Semantic action can occur at each phrase word, but
this action is usually reserved for changing name Scopes. A
1-pass compiler could generate code at these points.)

One might think that a general grammar could say abhsolutely
nothing., This is not the case. While the above strings were
accepted as input, the string below is illegal:

A+ /% BC

Prefix Operators
A prefix operator is in the terminal class <FN2>.

it may seem strange to refer to a prefix operator as a function.
But prefix operators have the same format as functions, except
tor parentheses: there 1is a function name followed by a
parameter. The lexical form of the name 1is irrelevant in
unlanquage parsing.

Grouping Parentheses
m(n lies in <FN2>. It must be followed by a phrase
)" having structure <PH1>,

This is our first wuse of the syntactic structure <phrase
sequence>, Operators and functions need not consist of a single
word; they may include reqular expressions of phrases. Reqular
expressions, together with the recursion provided within the
<expr> structure, are adequate for defining most computer
iangquages. This should not be surprising, because reqular
expressions are used for describing statements in many lanquage
manuals, There will be no attempt to prove that all computer
langquages can be described in this manner, but a survey of a
aozen lanqguages, performed by the author, has shown that most
language constructs can be handled by FUNL. (FUNL is intended
to be a language design tool, so some features of some lanquages
might not fit its structure.)

gxample

Let "-" be a prefix operator. #®e shall show the parse of
the sentence:

(-8 +C)

Parse stack Explapation
{ Input
<FN2> Definition
<FN2> - Input
<FN2> <FN2> Definition
<FN2> <FN2> B Input
KFN2> <FN2> <FN1> + Variable def and input
<FN2> <FN2> <expr> <K0P2> Several reduction steps
<FN2> <fn item> <0OP2> Disambiquation {precedence)
<FN2> <expr> <0P2> Several reduction steps
<FN2> <expr> <0P2> C Input
<FN2> <expr> <0P2> <FND> Definition
<FN2> <expr> <0P2> <KFN1>) Input
<FN2> <expr> <0P2> <KFN1> <PH1> Definition
<FN2> <expr> <op item> <PIli1> Disambiquation (precedence)

<PN2> <expr> <operator> <PH1>

<FN2> <Kexpr> <phrase> Several reductions
<fn item> <phrase>

<fn item> <phrase sequence>

<function>

{program> Several reductions

Statements
The regular expression below defines an IF statement:
IF # THEN # [ELIF # THEN &)* [ELSE # 1 EI

The underlined words are <PH2> tokens if they are followed by
wgn and are <PH1> tokens otherwise. An exception to this is IF,
which is a <FN2> token. Square brackets represent optional
phrases or phrase sequences, while "*" jindicates zero or more
repetitions. This definition lanquage shall be used throughout
this paper. (With FUNL, a number of definition lanquages can be
invented for describing statement formats.)

Most statements of most lanquages can be easily defined
using the regular expression notation. There are a number of
minor problems, especially when optional separators appear in
the statement or when expressions may bpDe written without
delimiters. The CASE statement of Pascal (471 1is one of the
least natural for the regular phrase expression notation.

CASE # OF # [. # 1* : #
ri #70 ., # 7% : # 1* END

The notation is unnatural for a number of reasons. Expressions

(indicated by "&") are associated with "OF" and ";" when they
should really be associated with the phrase ":" which follows.
4 more serious problem is that extra ";"s, included in the
Pascal syntax, cannot be provided for in the reqular notation.
tonsider, for example, the optional ";" which can be placed
pefore the END. This ";" is not followed by an expression, So
1t must be a <PH1> token., However, in a left to right scan we
might encounter the " ;" which starts the optional repetition of
CASE value statements. This ";% is a <PH2> token. Inclusion of
the optional ";" would be ambiqguous, so it is not allowed. On
close examination, the —reader will find other faults in this
implementation of the CASE statement.

There are a number of ways we could improve the CASE
statement representation, New productions could he added to
<phrase> to implement new statement formats, or a different
characterization of statements might be found.

A second alternative 1is to avoid describing the complete
CASE statement in a single reqular expression. We may use the
Lepresentation below:

CASE # OF [#1 Tz [#11% END
The bracketed "#" indicates that the preceding phrase ("OF" or
n:") pelongs to the token class <PH3>., Tokens of this class are
optionally followed by an expression. Between the words "OFY
and "END" we define infix operators ",", and ":" (in order of
decreasing precedence), The "," operator is used to form value
iists, while ":%" attaches a value 1list to a statement.
Operators may easily be defined (or redefined) over a limited
program segment due to the flexible symbol table structure of
fUNL. This structure is described in a later section.

subscripted Variables

Before investiqating the inner structure of the FUNL
compiler, let's examine one more source construct--the
subscripted variable. One implementation of subscripted
variables gives them a complex syntactic structure:

W orLw I % *) 1
1The subscript portion of the variable is optional, so that we

may refer to an entire array if desired, We could share this
definition among all array variables.

An alternate implementation defines the <operator> helow:
£ ¥ [' ® 3)

(In this case, the first symbol is a terminal in <0P2>.) A
subscript is defined as a postfix operator. (This postfix

operator contains some expressions. APL has several operators
with internal expressions.) Of the two techniques, this is
superior Dbecause it allows the subscript to be applied to array
expressions and constants as well as variables,

The Symbol Table

A description of the FUNL symbol table may seem
inappropriate for a discussion of Unlanguage syntax, but it
plays a part in parsing. It serves the obvious qoal of defining
the terminal symbol classes of tokens, and also serves as a
finite-state machine for the parser.

The symbol table structure facilitates the dJdefinition of
wlock structured languages, There are Jdata obijects called
blocks, and each symbol is defined within a specified block.
Normally a symbol has only one definition within a block,

A scope 1is a 1list of blocks. A symbol may have many
definitions within a scope, but the definition in one block has
priority over definitions in later blocks. Scopes resemble the
pnest of blocks within a block-structured lanquage. Like some of
the recent modular languages, there may be many scopes in
existence at a given time. A block may belonqg to any number of
scopes.

For efficient processing, the implementation reverses this
arrangement, All of the symbols are placed in a single table to
facilitate a rapid search algorithm. Each symbol entry vyields a
chain (or tree) of definitions, and each definition is
distinquished by a block identifier., After finding a symbol, we
search for a definition whose block lies in the «current name
scope. The name scope 1is a list of block identifiers, With
this organization, we can also access all definitions of a
synbol when errors occur.

A symbol may have two definitions within a given block.
une definition must be a <function>, while the other 1is an
{operator>. The selection between these definitions 1is
iiscussed under the section "Disambiguation",

Sequencing Through Reqular Expressions

While parsing, there are always two name scopes which are
active, One of these 1is the traditional environment, which
defines the «current functions and operators. The second
contains those phrases.which may currently be recognized. Each
time a new function is entered or a new phrase found, this scope
changes.

Let's consider the "IF" statement defined earlier. After
iinding "IP", we process an expression until "THEN" is found.
While the expression is being parsed, the phrase scope contains
a single block, and that block contains only the symbol "THEN",
After "THEN" has been found in the input, the phrase scope

changes, This new scope contains two blocks. The first
contains the words "ELIP" and ELSE", while the second contains
LD o LU Any of these three words may now appear as a phrase. If

the word M“ELSE" appears, the phrase scope changes again. This
scope contains only the "FI"™ block. After "FI" is found, the
phrase scope for any containing statement is restored.

This process may seem time consuming, but it is equivalent
to a finite state machine. The blocks are the states of the
machine, and scopes with wmultiple blocks correspond to null
transitions. A change in scope is implemented by changing a
single pointer variable. We need no specialized routines for
transition and state selection,

Disambiguation

There are many ambiquities in the mechanism presented
above, This section examines these ambigquities and explains
techniques for resolving then.

Syntactic Ambiguity

The most obvious ambiquities lie in the FUNL qrammar. A
construct

<expr> <0P2> <expr> <0P2> <expr>
or
A+ 3 +C

could be parsed in two distinct ways. We wuse the traditional
notion of precedence to resolve the ambiquity, In our
tormulation, each operator has two precedence levels: one as
seen from the left, the other as seen from the right. For
standard operators these levels are +the sane, A riqght
associative operator has its riqht level slightly lower than its
left.

In FUNL, functions and phrases need levels as well.
Consider this segment of code:

if B then A := C; C := D

This code could have bheen extracted from either an Algol 60
program or an Alqol 68 proqram [7]. In Algol 60 the "3m
terminates the if statement, so that "C := D" is always
performed. 1In Algol 68, the if statement must he terminated by

£i. Therefore the second assignment must still be a part of the

af.

Let us assume that ";" is defined as an operator. A fairly
natural extension may be made to the concept of operator
precedence: we can define "operand" precedence. For both types
of if the ";" has a lower precedence than ":=", s0 the
assignment statement is properly grouped together. For Algol
60, the precedence of ";" is also lower than that of thepn. The
entire if statement becomes the left operand of ";v, For the
nlgol 68 if statement, the precedence of ";" is higher than the
precedence of "then", so it binds together the two assignment
statements within the then portion of the if statement.

Parentheses illustrate a situation where the left and right
precedence of a token are guite different. From the inside, the
parentheses have a 1low precedence, permitting operators of
nigher precedence to reside within, But from the outside, the
parentheses must remain as a unit, so they have a very high
precedence. This allows them to be operands for operators of
lower precedence.

Symbolic Ambiguity

Symbolic ambiquity is more difficult to deal with than
syntactic ambiguity was. Symbolic ambiquities arise when a word
has several definitions., One of these must be chosen for the
current instance of the word. At times, name sScoping is
inadequate for making this selection. '

We begin by making the simplifying assumptions that:
- No tokens are in the classes <0P3>, <0OPU4>, <FN3>, etc.

- The construct <expr sequence> always matches the empty
string.

As a result of these changes, FUNL parses only operator
precedence languages. This is the "safe" subset of FUNL.

Two major ambiguities arise in this subset. One of these
1S the selection between an operator and a function defined in a
single block; the second is the choice between a phrase and an
operator having the same name.

The beauty of the subset language is that we always know
whether we need a function or an operator. Grammar analysis
shows that <FNi> and <OPi> never occur in the same state. When
there are functions and operators of the same name (such as "="
and "(") which lie in the same state, we interrogate the grammar
state to find out which one <can be usead. The appropriate
definition is selected.

10

Phrase names and operators, on the other hand, can occur in
the same state. If a given word has active definitions as both
an operator and a phrase, FUNL always chooses the phrase
definition. One way that we may ijustify this approach 1is to
regard the statement as implicitly declaring its phrase words in
a mnew inner block. The phrase word hides any previous
uefinitions. Another view is that the phrase words should have
been reserved, The ability to use phrase words as identifiers
1s strictly a convenience; it is the user's responsibility to
see that no conflict occurs.

The FUNL system includes two capabilities for preventing
user confusion which miqht result from the arbitrary preference

towards phrases, The first is a standard reserved word
technique. This c¢ould be applied to operators only, or to
tunctions and operators. This 1is viewad as an undesirabple

solution, because a ne2w lanquage module needed for one portion
of a program might invalidate the variable names used in another
portion. The second choice is to check each usaqe of a word for
ambiquity, and only flag those places where ambiquity has
actually occurred, This method requires a little more time
during symbol lookup, but seems more —realistic than the
traditional reserved word technique.

Consider the <complete FUNL grammar. The concepts <expr
sequence> and <expr option> were added to the basic grammar to
provide additional flexibility. Along with this flexibility
comes additional ambiquity. Can we justify this loss of safety?
we think so. A number of lanquages, such as SIMSCRIPT II.5 [2],
COBOL [3], and LISP [5] use lists without separators and
occasionally have optional expressions, They also make sure
that the use of such constructs 1is unambiguous. {Infix
operators are not allowed if there 1is an identical prefix
operator.) Including the constructs in FUNL enables us to
investigate further the TrTequirements for safe use of the
constructs., They may be excluded at the definition lanquage
level vhen safety is desired.

The full FOUONL grammar has places where a function,
operator, or phrase might be 1legal. We need to select one
aefinition of the input word. There may also be several choices
as to where the resulting expression should be used in the
grammar, The general principle used 1in rTesolving these
ambiguities is: wuse the <closest location at hand. This
principle shall be illustrated below.

Some languaqe might like to allow lists (such as parameter
lists) in which the separating character (such as ",") is
optional. This could be acconplished with the <expr sequence>
construct.

(A -B (I+J) *C)

This exawmple shows how such a list might appear in a general

11

purpose language, Because such a lanquage does not have the
syntactic safequards, we miqht interpret the above list as:

(A-B (IL+J) *C)

lecause our lanquage processing ability does not currently allow
subtle spacing information to take part in parsing, we must live
with separator characters, rigid spacing rules, restricted
operator ability, or potential ambhiquity.

The choice of closest meaning we interpret, in this case,
to require that an infix operator in the current expression be
preferred to beginning a new expression in the list. For the
example above, the net result of this decision would be the
single expression interpretation instead of the list. For those
languages such as COBOL or SIMSCRIPT II.5 which use such lists,
infix operators could be removed from the current scops to
permit the 1list interpretation. If the subscript operator
remains, it will automatically be chosen over the use of
parentheses for grouping.

Earlier we saw that phrase definitions were preferred to
operator definitions. Likewise, they are preferred to function
def initions when an expression is optional. Suppose that "ELSE"
is a variable name 1in a language having an ALGOL 60 "IF"
statement. Compare the statements below:

IF B THEN ELSE A :=C
IF B THEN ELSE := C

Because FUNL decides upon definitions without the use of
look-ahead, we must decide upon the definition of "ELSE"™ with
Ldentical information. Our preference for phrases makes us
accept the first and reject the second.

Another exanple arises from the interaction between
expression options and lists. Suppose that "iw is a postfix
operator which may optionally take a second parameter. If we
use it in a list which has no separators, we find that

(Al B)

has two possible interpretations: the B can qo with "!" or can
pecome a separate expression.

One situation avoids the simplistic disambiquation which we
nave used so far. Consider the Algol 68 [7] expression

begin a :=b ; - c end
As before, we regqgard ";" as having an optional second parameter.

The trained human eye will immediately see that "= ¢" is the
second operand of ";", But the naive machine might be tempted

12

to say that ";" has only a left operand, and "a := b ;" is the
left operand of the infix operator "-", We could use our rcule
of M"closeness"™ to choose the prefix definition of "-", and we
would make the proper choice in this case. But suppose that "-#
nas a lower precedence than "!", Shouldn't the interpretation
of "B! - C" be (B!)-C? oOur rule, on the other hand, would
produce "B! (=C)", This latter interpretation could be illegal
in some implementations. It suggests that precedence is an
iLmportant consideration for disambiguation.

A precedence check would ascertain that the selected
operator or function has precedence levels compatible with its
environment. If the usual choice 1is not <compatible, the
alternate is used.

snvironment Ambiguity

As mentioned earlier, the FUNL system has the capability of
changing the current naming environment at any symbol of the
input. Fortunately, the semantics routines can restrict the use
of this facility., We still must be sure that changes 1in the
name scoping produce no bad effects while parsing. So far, only
one rather obscure difficultv has been discovered. Let us
assume that our language has a structure resembling the class of
Simula 67, but allowing the definition of arbitrary operators.
Let us further assume that there is a statement resembling the
Simula inspect statemaent, which opens the class name space on
top of the current environment. The change in name scope is
effected within a when phrase, which contains a single
statement. The low-precedence operator ";" is normally used to
terminate the inspect statement.

Suppose that in our class we define an operator "%" having
the same precedence as ";"., Within some inspect statement, wve
open up the enviroanment of the clauss. On finding the operator
ngn, we must terminate the inspect statement (since "%" has the
same precedence as ";"). But now that the inspect has been
terminated, "%" is no longer defined. Should we issue an error
message? How can we recover from such an error, since the
inspect has already been terminated? If "%" was already defined
in the outer environment, should we use this definition or the
class definition? What if the outside operator has a precedence
high enough that the inspect should not have been terminated?
Wwe avoid the problem by making the convention that a token's
first definition is used, and we never look for another, While
we could get some strange effects 1in this obscure case, a
aefinition lanquage could check for changes of scope in an open
statement.

13

guman Ambiguity

The most interesting form of ambiquity is human ambiquity:
ianguage constructs which 1lead the programmer into writing
syntactically correct programs for which his interpretation
d@iffers from that of the compiler. The classic statement of
this sort is the Algol 60 if statement [1]. While the original
syntax of this statement is ambiguous, an unambiquous syntax may
ve written (using constructs <closed statement> and <open
statement>). The npatural definition of the Aalgqol 60 if
statement in FUNL will associate else with the innermost if.
But while the ambiguity can be eliminated technically,
programmers may occasionally write an else clausa for the
outermost if without thinking about the nested if. Although the
lanquage is unambiquous, it has not provided the redundancy
needed to dctect the author?s incorrect interpretation. FUNL
nas the capability of flagging ambiquous occurrences of the
phrase words 1like else, but the lanquage designer should be
warned when specifying such a statement. The definition
language may easily check for this situation.

Do we really need to warn the language designers? Hasn't
the Algol 60 if problem been around long enough that the error
1S no longer made? The answer is "“NO"! For example, the
designers of Simula 67 [3]1 eliminated the if problem by
torbidding the use of an if statement following then. But they
went on to produce another statement -- the inpspect statement --
which has identical problems, If the when clause of one inspect
has another inspect contained within, additional when and a

concluding otherwise dre absorbed by this inner jipnspect.

Are there other constructs which are syntactically
unambiguous but lead to human error? If so, then when they are
discovered they may be dincorporated into the definition
languages without requiring a change to the 0Unlanguage system.

The lUse of FIINL

The FUNL parser is intended to be part of a larger systen
-- the PFUNL Unlanquage system. This system has mechanisms for
defining the semantics as well as the syntax of a language.
This semantics model is common to all FUNL implementations.

The Unlanguage system organization can be compared to
micro-coded computars: the syntactic constructs (macro commands)
must be implemented in terms of a given semantic model (the
micro instructions). Through source code, the user <can access
only those semantic primitives which have been given a syntax by
the language designer. A "GO TO" semantic primitive could be
provided for implementation of control structures, but the
ilanquage designer might not provide a direct syntactic access to
this primitive,

14

Just as separately written library packages can be used by
a single program, a lanquage processor will consist of
separately coded modules. The modules will generally contain a
syntax definition and a semantics definition. The semantics
will generally transform the source concepts into semantic
primitives, though 1in some cases they may invoke routines fronm
gther modules. When several lanquages share a numnber of
sepantic notions, purely semantic modules may be generated to
provide a higher-level model for these lanquages.

A language inmplemented wunder FUNL <can be extended by
building a new module which contains the extensions and
including it with the o0ld compiler. This 1is analogous to
extending the instruction set of a computer by adding micro
code, Unlike current macro or preprocessor systenms, the
extensions need not be defined in terms of existing lanquage
constructs. They are defined in terms of Unlanquage semantic
wodel concepts, As these concepts are generally at a lower
level than those of the source lanquage, the implementation can
often be more efficient. With the Unlanquage approach, a module
of the existing lanquage could be phased out by providing a
replacément module, This module would need to provide the
semantic procedures need2d by other modules, but could have a
reworked syntax.

Consider Fortran., It has been around for a long time. One
teature which has aided Fortran's longevity is the library
racility. Ry getting a library developed elsewhere, one is
providing a semantic extension to Fortran. But syntactically
#ortran 1is static, Even surface changes, such as replacing
" LT," by "<" are not possible. If some installation made such
a change to its compiler, the user programs would no longer be
transportable to other installations, Many people dislike
Fortran because 1its syntactic structure 1is archaic. This
structure cannot be easily changed. Syntactic extensions cannot
e added wusirg 1library packages. With languages implemented
under FUNL, this will not be true. FUNL lanquages will be able
to evolve, Learning a new lanquage feature will be like
learning a new library package. Programmers don?’t want to leave
Fortran because it means learning a nev lanquage and destroying
their old programs. With the FUNL system, 4 programmer would
only need to learn a new module rather than a new lanquage. His
old programs are still useable as long as the old modules remain
in the librarvy.

Many of the claims being made for Unlanquages are identical
to those made for UNCOL's. 1I1INCOL's are impossible because they
require universality. An Unlanquage makes no such claim: if
your source language or target machine finds the semantic or
syntactic model wunusable, then invent another. The resulting
Unlanquage must be implemented on various machines in order to
allow transportability, much as a new langquage must be
Loplemented now, If the new Unlanquage is a minor modification
of the o0ld, transporting source 1langquage to the new systen

15

should be gquite easy.

Proliferation of Unlanquages should be much less than the
proliferation of lanquages is today. WNew lanquages are invented
when the notation of an existing lanquage is cumbersome for the
problem at hand. But an Unlanguage will only change when the
implementation of lanquages becomes too inefficient within its
semantic model, or new hardvware features cannot be accommodated.
Language experts cannot rid themselves of Fortran, but an
archaic Unlanquage can always be replaced by rewriting the
definition modules to produce code within the new semantic
model., Most users would not need to know of the change.

Proliferation of lanquages is another matter. Everyone can
vecome a language writer. But this should pose no real problenm.
After the novelty wears off, cerrtain language modules will
become standard. These will tend to be used by everyone. A
lanquage designer will tend to use existing modules for most of
his language so that he is free to write his changes to other
aspects of the old 1language, Extension modules for special
applications should be no worse than a new 1library package 1is
today, even though new syntax is introduced. (This assumes that
the extension lanquage imposes suitable structure on these
extensions so that they bear some resemblance to the original
language.)

Appendix: Extended FUNL grammar

The grammar described in this paper has a number of
limitations, This appendix describes extensions which might be
made to allow more efficient implementation of constructs found
in current programming langquages,

1'
COBOL has two basic forms of MOVE statements:
MOVE A TO B.
and
MOVE CORRESPONDING A TO B.

ihe MOVE statement may be expressed by the syntax:

MOVE [#) T CORRESPONDING #1 TQO #

This does not describe the COBOL syntax precisely, since it
allows the statement:

MOVE A CORRESPONDING B TO C,

A semantic check can be used to detect this error.

16

The FUNL grammar can be augmented to make a precise
definition of the MOVE statement syntax, A new lexical class
<MOD> can be created, and a sequence of <MOD>s can be permitted
after a phrase (or function) identifier and before its
corresponding expression. The word "CORRESPONDING" is defined
to be a <MOD>. The MOVE statement definition becomes:

MOVE CORRESPONDING # TO #

2

A number of lanquages, such as COBOL and SIMSCRIPT, allow
noise words to be inserted at arbitrary locations in a progranm.
These words may wusually be treated as operators, optional
phrases, or modifiers, In certain cases, it is convenient to
eliminate such words in the scanner or permit them explicitly in
the grammar between any two existing constructs.

3.

The COBOL relational operators may be described most easily
by creating the class <FUNCTOR>. A functor takes an operator as

its parameter, and produces a new operator as the result. The
word NOT 1is a functor: it operates on the "=" gperator to
produce a new operator which checks for inequality. "IS" is the

identity functor., Without the <functor> concept, a description

of relational operators requires substantially more space.
<operator> =::= <op itenm> <phrase sequence>

f <PUNCTOR1> <operator>

| <0Pi> <FUNCTOR2> <operator> (i>"1

(L

(2]

(31

(4]

(5]

[61

7]

Bibliography

17

Ahrahams, DP., "A Final Solution to the Danqgling else
of ALGOL 60 and Related Languages"”, CACM, 9:9,
679-682 (1966).

CACI, Simscript II.S5 Referepce Handhook, CACI, Los
Angeles, 1973.

IBM, DOS Full American National Standard COBOL, IBM
Corporation, GC28-6394-4, 1973,

Jensen, K. and N, Wirth, Pascal User Manual and
Report, Sprinqger-Verlag, New York, 1976.

McCarthy, J. et al., LISP 1.5 Programmecs Mapual, 2nd
edition, MIT Press, Cambridge, Mass., 1965,

Naur, P. ed., "Revised Report on the Algorithmic

Lanquage Algol 60%", CACM, 6:1 (1973).

van Wijngaarden, A. et al., o &

Algorithmic Languags Al

New York, 1976.

Revised Report on
gol 68

ey
ol

the

. Springer-vVerlagq,

