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ABSTRACT 

A new technique is presented tdr usinq context free 
qrammars for the definition of proqramminq lanquaqes. Rather 
than accumulatinq a number of specialized statement formats, 
generalized productions specify the format of all statements. A 
sample unlanquaqe .grammar is presented,-· and the use of this 
qrammar is described. Some · of the difficulties .in parsinq the 
1anquage are described. 
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Unlanquaqe Grammars and Their Uses 

This paper does llQi define another class 
parsing algorithm. It describes a new wav of 
the definition of programminq lanquaqes. A 
c1lqorithm, or even an ad hoc technique, may 
dn Unlanguaqe grammar. 

of qrammars or 
usinq qrammars for 
favorite 'parsinq 

be used to process 

Most proqramminq language definitions are modelled after 
the Algol 60 report [6]. They present a qrammar which defines 
dll statements of the language. After careful consideration, 
the lanquaqe designers have defined a languaqe, written a 
qrammar describing that lanquaqe, and possibly produced a parser 
tor the language using the qrammar and a suitable parser 
~enerator. Unlanquaqes work the other way around: after the 
grammar has been specified and the parser built, the lanquaqe is 
defined. 

Lisp [5] resembles an Unlanquaqe. 
qrammar for Lisp: 

<element>::= <atom> 
( <list> ) 

<list> ::= <EMPTY> 

Here is a simplified 

<list> <element> 

<atom> ::= <word> <number> 

This grammar describes the complete (for our purposes) qrammar 
of Lisp. But it doesn't give any notion about the functions 
available in Lisp; it deals strictly with the lanquaqe 
~tructure. All functions are defined elsewhere. av contrast, 
~lqol 60 1 s grammar contains the names of all legal statements. 

The grammar for Lisp contains two undefined constructs 
<word> and <number>. While we could provide syntactic 
descriptions of these notions, compilers typically recoqnize 
these usinq a scanner rather than a parser. ie mav consider 
these to be "class terminals", because they specify classes of 
~ymbols rather than specific character strings. 

The Lisp grammar is not a "pure" unlanquage grammar, 
because it contains two absolute terminal characters, 11 { 11 aud 
")". The only terminals in a pure Unlanquage qrammar are class 
terminals. This is the oriqin of its name: the grammar defines 
only a structure, but doesn't specify actual statements or other 
language elements. An Unlanguaqe grammar defines pure form with 
no content. 



Before looking at more examples of Unlanguaqe grammars, 
let 1 s consider class terminals in more detail. The grammar 
places no restriction on the symbols ~hich belonq to different 
classes. Two classes (such as <identifier> and <array 
identifier> of the Algol 60 report r61) may contain tokens which 
~re syntactically indistinquishable. Other classes {such as 
<relational operator>) can contain tokens which ha~e a radically 
different syntactic structure (such as"<=" and "LE"). In the 
discussion which follows, we shall never attach any syntactic 
significance to the class terminals. 

The First Dnlanquage 

The First Unlanguaqe (FUNL) grammar describes the structure 
of many programming ldnguages: 

<proqram> 

<expr> 

<expr sequence> 

<expr option> 

<function> 

<fn item> 

<operator> 

<op item> 

<phrase sequence> 

<phrase> 

::= <expr> <expr sequence> 

: : = 

.. -.. -

<function> 
<expr> <operator> 

<EMPTY> 
<expr sequence> <expr> 

: :-= <EMPTY> 
<expr> 

::: <fn item> <phrase sequence> 

::= <FN 1> 
<FN2> 
<FNJ> 
(FN4> 

<expr> 
<expr option> 
<expr sequence> 

::= <op item> (phrase sequence> 

.. -.. -

. --.. -

::= 

(OP1> 
(OP2) 
<OPJ> 
<OP4> 

<EMPTY> 

<expr> 
<expr option> 
<expr sequence> 

<phrase sequence> <phrase> 

<PH1> 
<PH2> 
<PHJ> 
<PH4> 

<expr> 
<expr option> 
<expr s+~quence> 

The symbols <PHi>, <FNi>, and <oPi> are class 
ctethods for dealing with ambiquities in this qrammar 
uiscussed in the section "Disambiguation". The 

terminals. 
shall be 

a pp end ix 

,. 
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describes some extensions which miqht be made to this qrammar. 

It is not obvious how common structures of standard 
programming languaqes are represented by the FUNL grammar. Here 
ar~ some examples: 

Variables 
A simple (unsubscripted) variable lies in the <FN1> 
class. 

~Q!l§tgnts 
Numeric and character constants are also in <FNl>. 

Intix o,eerators 
An infix operator (such as"/") is in <OP2>. 

Suppose that "A", 11 8 11 , and "C" are variables, and that"+", 
11 - 11 , "*", and 11 / 11 are infix operators. The sentence t1A * B + C" 
will be parsed as follows: 

A 
<FN1> 
<fn item> 
<fn item> * 
<fn item> <OP2> 
<function> <OP2> 
<expr> <OP2> 
<expr> <OP2> 
<expr> <OP2> 
<expr> <OP2> 
<expr> <OP2> 

8 
<FN1> 
<PN1> 
<FN1> 

+ 
(01?2> 

• • • 

!ixtl.a!!~.ti2n 
Fcom input 
By definition of variable 

Input 
Definition of infix operator 

Input 
D~finition of variable 
Input 
Infix operator 

<ex pr> 
<expr> 
<expr> 
<expr> 
<.expr> 

<OP2> <expr> <OP2> Several reduction steps 

<expr> 
<expr> 
<ei:pr> 
<expr> 

<op item> <OP2> Disdmbiquation (precedence) 
<operator> <OP2> (Null <phrase sequence>) 
<OP2> 
<OP2> C Input 

<OP2> <expr> 
<op it@m> 
<opera toe> 

. . . 
Several reduction steps 

<.ex pr> <ex pr 
<program> 

sequence> 

~otice that operatocs are combined with theic riqht operand 
uefore be~ng ioined with the left. This is purely a function of 
the context free representation. The parsing mechanism is 
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isolated from the rest of the system: semantic processinq occurs 
only after the completion of <expr> and <proqram> productions. 
such isolation is important from a structured pcoqramminq 
~tandpoint. (Semantic action can occur at each phrase vord, but 
this action is usually reserved for changing name scopes. A 
1-pass compiler could generate code at th8se points.) 

One miqht think that a qenecal qrammar could say absolutely 
nothing. This is not the case. While the above strinqs were 
dCcepted as input, the string below is illeqal: 

A + I * B C 

££g!ix QQ~£~12£§ 
A prefix operator is 

It may seem stranqe to refer to 
But prefix operators have the 
tor parentheses: there is a 
µarameter. The lexical form 
Unlanquaqe pacsinq. 

grgy~ing Parentheses 

in the terminal class <FN2>. 

a prefix operator as a function. 
same format as functions, except 

function name followed by a 
of the name is irrelevant in 

"(" lies in <fN2>. It must be followed by a phrase 
")" having structure <PU1>. 

fhis is our first use of the syntactic structure <phrase 
sequence>. Operators and functions need not consist of a sinqle 
word; they may include reqular expressions of phrases. Reqular 
expressions, together with the recursion provided within the 
<ex pr> structure, a re a de qua te for def ininq most computer 
~anquaqes. This should not be surprising, because reqular 
expressions are used for describing statements in many lanquaqe 
manuals. There will be no attempt to prove that all computer 
languages can be described in this manner, but a survey of a 
~ozen languages, performed by the author, has shown that most 
lanquaqe constructs can be handled by FUNL. (FUNL is intended 
to be a language design tool, so some features of some lanquaqes 
might not fit its structure.) 

Let. "-" be a prefix operator. We shall show the parse of 
the sentence: 



f~I.§Q ~.tE!£f 

' <FN2> 
<FN2> 
<FN2> <FN2> 
<FN 2> <FN2> B 
<FN2> <FN2> <FN1> + . . • 
<FN2.> <FN2> <e x:pr> <OP2> 
<.FN 2> <fn item> <OP2> . . • 
<FN2> <expr> <OP2> 
<.FN2> <expr> <OP2> C 
(FN2> <expr> <OP2> <FN 1> 
<.FN2> <expr> <OP2> <FN1> ) 
<FN2> <expr> <OP2> <FN1> <PH1> 
<FN2> <expr> <op item> <PIil> 
<FN2> <expr> <operator> 

<PN2> <expr> <phrase> 
<fn item> <phrase.> 

<PH1> 
. . . 

<fn item> <phrase sequence> 
<function> 

. . . 
<proqram> 

~tatements 

Ex.Qlanation 
Input 
Definition 
I.nput 
Definition 
Input 
Variable def and input 

Several reduction steps 
Disambiquation (pr9cedence) 

Several reduction steps 
Input 
Definition 
Input 
Definition 
Disambiquation (precedence) 

Several reductions 

Several reductions 

The regular expression below defines an IF statement: 

5 

The underlined words dre <PH2> tokens if they are followed by 
n #" and are <PH 1 > tokens otherwise. An exception to this is IF, 
which is a <FN2> token. Square brackets represent optional 
phrases or phrase sequences, vhi le 11 *" indicates zero or more 
~epetitions. This definition lanquage shall be used throughout 
this paper. (With FUNL, a number of definition lanquaqes can be 
invented for describing statement formats.) 

Most statements of most languages can be easily defined 
using the regular expression notation. There ace a number of 
minor problems, especially when optional separators appear in 
the ~tatement or when expres sions may oe written without 
~elimiters. The CASE statement of Pascal [41 is one of the 
least natural for the regular phrase expression notation. 

Q.E # 
r ..i.. 

r .i. 

• r 
t l* _;_ t 
~ # l* . . # l* 

Tb~ notation is unnatural for a number of reasons. Expressions 
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(indicated by 11 # 11 ) are associated with "OF" and";" when thev 
should really be associated with the phrase 0 : 11 which follows. 
A more serious problem is that extra "; "s, included in the 
~ascal syntax, cannot be provided for in the ceqular notation. 
consider, tor example, the optional ";" which can be placed 
Defore the END. This";" is not followed by an expression, so 
1.t must b~ a <PH1> token. However, in a left to riqht scan we 
wight encounter the "; 11 which sti:trts the optional cepetition of 
~ASE value statements. This";" is a <PH2> token. Inclusion of 
the optional 11 ;" would be ambiguous, so it is not alloved. On 
~lose examination, the reader will find other faults in this 
implementation of the CASE statement. 

'T'hec-e are a nurnbec of w.-1ys we could 
~tatement representation. New productions 
<phrase> to implement new statement formats, 
characterization of statements raiqht be found. 

improve the Cl'\SE 
could he added to 
or a different 

A second alternative is to avoid describing the complete 
~ASE statement in a sinqle regular expression. We may use the 
Lepresentation below: 

The bracketed 11 # 11 indicates that the prece11inq phrase ("OF" or 
":") belongs to the token class <PU3>. Tokens of this class are 
optionally followed by an expression. Between the words "OF" 
and "END" we define infix- operators",", and 11 : 11 (in order of 
uecreasinq precedence). The"," operator is used to form value 
lists, while 11 : 11 attaches a value list to a statement. 
operators may easily be defined (or redefined) over a limited 
µroqram segment due to the flexible symbol table structure of 
iUNL. This structure is described in a later section. 

Before investigating 
(;Ompiler, let's ex:a.mine 
subscripted var iahl P.. One 

the inner structure of the FUNL 
one more soucce construct--the 

implementation of subscripted 
syntactic structure: variables gives them a complex 

R f 1 it r .a. # l* l l 

the subscript portion of the variable 
may refer to an entire array if des ired. 
definition among all array variables. 

is opt iona 1, so that we 
We could share this 

An alternate implementation defines the <operator> below: 

1 # r L • l* 1 

(In this case, the first 
subscript is defined as a 

symbol is a terminal in <OP2> .. ) A 
postfix operator.. (This postfix 
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uparator contains some expressions. APL has several operators 
with internal expressions.) Of the two techniques, this is 
superior because it allows the subscript to be applied to array 
expressions and constants as well as variables. 

The Symbol Table 

A description of the FUNL symbol table may seem 
inappropriate for a discussion of Unlanquaqe syntax, but it 
plays a part in parsing. It serves the obvious qoal of defininq 
the terminal symbol classes of tokens, and also serves as a 
finite-state machine for the parser. 

The symbol table structure facilitates the Jefinition of 
Dlock structured languages. There are Jata obiects called 
Qlo£t§, and each symbol is defined within a specified block. 
Normally a symbol has only one definition within a block. 

A 2gQ~~ is a list of blocks. A symbol may have many 
definitions within a scope, but the definition in one block has 
µriority over definitions in later blocks. Scopes resemble the 
aest of blocks within a block-structured language. Like some of 
the recent. modular languages, there may be many scopes in 
existence at a given time. A block may belong to any number of 
scopes. 

For efficient processing, thB implem~ntation reverses this 
arrangement. All of the symbols are placed in a single table to 
facilitate a rapid search algorithm. Each symbol entry yields a 
chain (or tree) of definitions, and each definition is 
distinguished by a block identifier. After finding a symbol, we 
search for a definition whose block lies in the current name 
scope. The name scope is a list of block identifiers. With 
this orqanization, we can also access all definitions of a 
symbol when errors occur. 

A symbol may 
Une definition must 
<opP.rator>. The 
Jiscussed under the 

hdve two definitions within a given block. 
be a <function>, while the other is an 
selection between these definitions is 

section "Disambiguation". 

Sequencing Through Reqular Expressions 

While parsing, there are always two name scopes which are 
dCtive. One of these is the traditional environment. which 
defines the current functions and operators. The second 
contains those phrases.which mav currently be recognized. Each 
time a new function is entered or a new phrase found, this scope 
changes. 



Let 1 s consider the "IF" statement. defined earlier. After 
Lindinq "IP", we process an expression until "THEN" is found. 
While the expression is being parsed, the phrase scope contains 
ii single block, and thdt block contains only the symbol "THEN". 
After "THEN" has been founrl in the input, the phrase scope 
~hanges. This ll@.W scope contains two blocks. The first 
contains the words "ELIP" and ELSE", while the second contains 
11 FI "• Any of these three words may now appear as a phrase. If 
the word "ELSE" appears, the phrase scope chanqes aqain. This 
scope contains only the "PI" block. After "FI" is found, the 
µhrase scope for any containing statement is restored. 

This process may seem time consuming, but it is equivalent 
to a finite state machine. The blocks are the states of the 
machine, and scopes with multiple blocks correspond to null 
transitions. A chanqe in scope is implemented by chanqinq a 
single pointer variable. we need no specialized routines for 
transition and state selection. 

Disamhiquation 

There are manv ambiguities 
above. This section examines 
techniques for resolving them. 

in the mechanism presented 
these ambiquities and explains 

The most obvious ambiquit ies lie in the FUNL qrammar. A 
construct 

<expr> <OP2> <expr> <OP2> <expr> 
or 

A + 8 + C 

could be parsed in two distinct ways. We use the traditional 
notion of precedence to resolve the ambiquity. In our 
tormulation, each operator has 1~2 precedence levels: one as 
seen from the left, the other as seen from the riqht. For 
.:ita ndard opera toes these levels are the same. A riqh t 
dSsociative operator has its riqht level slightly lower than its 
left. 

In FUNL, functions and phcases need levels as well. 
Consider this seqment of code: 

if B th.fill. A:= C; C := D 

'£his code coul t1 have been ex tr acted f.com either an Alqol 60 
program or an Algol 68 proqram ( 7 l. In Alqol 60 the " . " • 
terminates the if statement, so that "C •-.- D" is always 
µecformed. In Algol 68, the it statement must be terminated by 
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fi. Therefore the second assiqnment must still be a part of the 
il• 

Let us assume that";" is defined as an operator. A fairly 
uatural extension may be made to the concept of operator 
µrecedence: we can define 11 oper:'an,l" precedence. For both types 
of if the ";" has a lower precedence than ":=", so the 
assignment statement is properly qrouped toqether. For Alqol 
oO., the precedence of 11 : 11 is also lower than that of !lt~U!• The 
entire if statement becomes the left operand of ";". For the 
hlqol 68 if statement, the precedence o.f 11 ; 11 is hiqher than the 
i,receaence of 11!:_he.n", so it bin!'.ls toqet her the two assiq nmen t 
statements within the ihfil! portion of the .i{ statement. 

Parentheses illustrate a situation where the left and riqht 
precedence of a token are quite different. From the inside, the 
~arentheses have a low precedence, permittinq operators of 
uighec precedence to reside within. But fcom the outside, the 
parentheses must remain as a unit, so they have a very hiqh 
precedence. This allows them to be operands for operators of 
lower precedence. 

Symbolic ambiguity is more difficult to 
syntactic ambiguity was. Symbolic ambiguities 
bas several definitions. One of these must be 
cur:rent instance of the vord. At times, 
inadequate for making this selection. 

deal with than 
arise when a word 

chosen for the 
name scopinq is 

we begin by making the simplifyinq dSsumptions that: 

No tokens are in the classes <OP3>., <OP4>., <FNJ>, etc. 

The construct <expr sequence> alwavs matches the empty 
strinq. 

As a result of these changes, FUNL parses only operator 
precedence languaqes. This is the "safe" subset of FUNL. 

Two ma;or ambiguities arise in this subset. One of these 
is the selection between an operator and a function defined in a 
single block; the second is the choice between a phrase and an 
operator having the same name. 

The beauty of the subset lanquaqe is that we always know 
whether we need a function or an operator. Grammar analysis 
shows that <FNi> and <OPi> never occtir in the same state. When 
there are functions and operators of the same name (such as "-" 
and"(") which lie in the same state., we intercoqate the grammar 
state to find out which one can be usad. The appropriate 
definition is selected. 
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Phrase names and operators, on the other hand, can occur in 
the same state. If a given word has active definitions as both 
an operator and a phrase, FUNL always chooses the phrase 
aefinition. one way that we may iustifv this approach is to 
cegard the statement as implicitly declarinq its phrase words in 
a new inner block. The phrase word hides any previous 
uefinitions. Another view is that the phrase words should have 
been reserved. The ability to use phrase words as identifiers 
is strictly a convenience; it is the user's responsibility to 
see that no conflict occurs. 

The FUNL system includes two capabilities for preventinq 
user confusion which might result from the arbitrary prefere nce 
towards phrases. The first is a standard reser ved word 
technique. This could be applied to operators only, or to 
tunctions and operators. This is viewed as an undesirdnle 
solution, because a new lanquaqe module needed for one portion 
of a program might invalidate the variable names used in another 
portion. The second choice is to check each usaqe of a word for 
dmbiquity, and only flag those places where ambiguity has 
dCtuallv occurrea. ~his method requires a little more time 
durinq s ymbol lookup, but seems more realistic than the 
traditional reserved word technique. 

Consider the complete FUNL qrammar. The concepts <expr 
~equencP.> and <expr option> were added to the basic grammar to 
provide additional flexibility. Along with this flexibility 
comes additional ambiguity. Can we ;ustify this loss of safety? 
~e think so. A number of laoquaqes, such as SIMSCRIPT II.5 f2l. 
COBOL f 31, and LISP f 1 use lists without separators and 
occasionally have optional ex pressions. They also make sure 
tbdt the use of such con5tructs is unambiquous. (Infix 
operators are not allowed if there is an identical prefix 
operator.) Including the constructs in FUNL enables us to 
investiqate further the requirements for safe use of the 
constructs. They may be excluded at the definition lanquaqe 
lP.vel when safety is desired. 

The full FUNL grammar has places where d function, 
operator, or phrase might be legal. We need to select one 
definition of the input word. There may also be several choices 
dS to where the resulting expression should be used in the 
4rammar. The qeneral principle used in resolvinq these 
dmbiguities is: use the clos~st location at hand. This 
principle shall be illustrated balow. 

Some 
lists) in 
optional. 
construct. 

language might like to allow lists (such as parameter 
which the separating character (such as ",") is 

This could be accomplished with the <expr sequence> 

-B (I+J}*C) 

this example shows how such a list miqht appear in a qeneral 
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purpose language. Because such a lanquaqe does not have the 
~vntactic safeguards, we miqht interpret the above list as: 

( A- B (I ♦ J) *C) 

uecause our language processing ability does not currently allow 
subtle spacing information to take part in parsing, we must live 
with separator characters, rigid spacing rules, restricted 
operator ability, or potential ambiguity. 

The choice of closest meaning we interpret, in this case, 
co require that an infix operator in the current expression be 
µreferred to beginning a new expression in the list. For the 
~xample above, the net result of this decision would be the 
~ingle expression interpretation instead of the list. For those 
~anquaqes such as COBOL or SIMSCRIPT II.5 which use such lists, 
infix operators could be removed from the current scope to 
permit the list interpretation. If the subscript operator 
remains, it will automatically be chosen over the use of 
~arentheses for grouping. 

Earlier we saw that phrase definitions were preferred to 
operator definitions. Likewise, they are preferred to function 
def in it ions when an expression is optional. Suppose that "ELSE" 
is a variable name in a lanquaqe havinq an ALGOL 60 "IF" 
statement. Compare thR statements below: 

IF B THEN ELSE A:: C 

IF B THEN ELSE:= C 

iiecause FUNL decides upon definitions without the use of 
look-ahead, we must decide upon the definition of "ELSE" with 
identical information. our preference for phrases makes us 
dccept the first and reiect the second. 

Another example arises from the interaction between 
~xpression options and lists. Suppose that "I" is a postfix 
operator which may optionally take a second parameter. If we 
~se it in a list which has no separators, we find that 

( A 1 D ) 

has tvo possible interpretations: the B can qo with"!" or can 
~ecome a separate expression. 

one situation avoids the simplistic disambiquation which we 
nave used so far. Consider the Alqol 68 [7] expression 

a ·-.- b ; - c 

As before, we regard";" as having an optional second parameter. 
The trained human eye will immediat~lv see that"- c" is the 
second operand of";". But the naive machine miqht be tempted 
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to say that";" has only a left operand, and "a:= b ;" is the 
left operand of the infix operator"-". We could use our rule 
of 11 closeness11 t.o choose the prefix definition of "-", and we 
would make the proper choice in this case. But suppose that"-" 
nas a lower pcecedence than 11 !". Shouldn't the interpretation 
o.f "B! - C" be (B!)-C? our rule, on th~ other hand, would 
produce "B! (-C) "• This latter interpretation could be illegal 
in some implementations. It suqqests that precedence is an 
important consideration for disambiguation. 

A precedence check would ascertain that the selected 
operator or function has precedence levels compatible with its 
environment. If the usual choice is not compatible, the 
dlternate is used. 

~nvironment AmbiSIYit_y 

As mentioned earlier, the FUNL system has the capability of 
changing the current naminq environment at any symbol of the 
input. Fortunately, the semantics routines can restrict the use 
of this facility. We still must be sure that chanqes in the 
name scoping produce no bad effects while parsing. So far~ onlv 
onA rather obscure difficulty has been discovered. Le t us 
c1ssume that our lanquage has a structure resemblinq the £la§§ of 
Simula 67, but allowinq the definition of arbitrary operators. 
~et us furth~r assume that there is a statement resembling the 
Simula in~Eg£! statemant, which opens the class name space on 
top of the current environment. The chanqe in name scope is 
effected within a ~hgn phrase, which contains a sinqle 
statement. The low-precedence operator";" is normally used to 
terminate the in.fil!gct statement. 

Suppose that in our class we define an operator"%" havinq 
the same preced,~nce as ";". Within some i!!.§1!.££.!: statement, ve 
open up the environment of the cldss. On finding the operator 
"%", we must terminate the in!B!£! statement (since"%" has the 
same precedence as "; "). But nov that the !!l§J2~Ct has been 
terminated, "%" is no longer d~fined. Should we issue an error 
message? How can we recover from such an error, since the 
.rua.E?.,gct has already been terminated? If "% 11 was already defined 
in the outer environment, should we use this definition or the 
class definition? What if the outside operator has a precedence 
hiq h enouqh that the in§E!£! should not hd ve been terminated? 
~e avoid the problem by making the convention that a token's 
iirst definition is used, and we never look for another. While 
we could get some stranqe effects in this obscure case, a 
aefinition language could check for changes ot scope in an open 
tita temen t. 
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,!juman Ambiguit,1 

The most interesting form of ambiquity is human ambiquitv: 
.1.anquage constructs which lead the proqr:am mer in to wr itiuq 
syntactically correct proqrams for which his interpretation 
uiffers from that of the compiler. The classic statement of 
this sort is the Algol 60 if statement f11. While the oriqinal 
syntax of this statement is ambiguous, an unambiquous syntax mav 
~e written (usinq constructs <closed statement> and <open 
~tatement>). The natural definition of the Algol 60 i1 
~tatement in FUNL will associate gl§B with the innermost if ■ 
Hut while the ambiguity can be eliminated technically, 
µroqrammers may occasionally write an ~l§~ clause for the 
outermost i! without thinking about the nested it• Althouqh the 
language is unambiguous, it has not provided the redundancy 
needed ~o detect the author's incorrect interpretation. FUNL 
bas the capability of flaqqinq ambiquous occurrences of the 
phrase words like ~l~, but the lanquaqe desiqner should be 
warned when specifyinq such a statement. The definition 
languaqe may easily check for this situation. 

Do we really need to warn the lanquaqe desiqners? Hasn't 
the Algol 60 11 problem been around lonq enouqh that the error 
is no longer made? The answer is "NO"! Foe example, the 
designers of Simula 67 f 11 elimindted the ir problem by 
torbiddinq the usP. of an .i! statement followinq !hg.n. But they 
.ent on to produce another stat.ement -- the ill§.l2~~t statement -
which has identical problems. If the ~!urn. clause of one .i.n.fil2~£! 
has another i.!l§.QB£! contained within, additional l!hg!! and a 
concludinq Qth~!..!i.2~ dre a .bsorbed by this inner ill§.1?~~1-

Are there other constructs which are syntactically 
unambiquous but lead to human error? If so, then when they are 
discovered they may be incorporated into the definition 
Languages without requirinq a chanqe to the Onlanguaqe system. 

The Use of FTJ NL 

The FUNL parser is intended to be part of a larger system 
the PUNL Unlanguaqe syste~. This system has mechanisms for 

aefininq the semantics as well as the syntax of a lanquaqe. 
this semantics model is common to all FUNL implementations. 

The Unlanquaqe svstam organization can be compared to 
micro-coded computers: the syntactic constructs {macro commands) 
must be implemented in terms of a given semantic model (the 
micro instructions). Through source code, the user can access 
only those semantic primitives which have been qiven a syntax by 
the language desiqner. · A "GO TO" semantic primitive could be 
µrovided for implementation of control structures, but the 
~anquaqe designer miqht not provide a direct syntactic access to 
this primitive. 
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Just as separately written librarv packages can be used by 
~ single program, a languaqe processor will consist of 
tieparately coded modules. ThP. modules will qenecally contain a 
~yntax definition and a semantics definition~ The semantics 
will generally transform the source concepts into semantic 
primitives, though in some cases they may invoke routines from 
~ther modules. When several lanquaqes share a number of 
semantic notions, pucely semantic modules may be qenerated to 
provide a hiqher-level model for these languages. 

A lanquage implemented under FUNL can be extended by 
building a new module which cont~ins the extensions and 
including it with the old compiler. This is analogous to 
extending the instruction set of a computer by addinq micro 
code. Unlike current macro or preprocessor systems, the 
extensions need not be defined in terms of existinq lanquaqe 
constructs. They are defined in terms _ of Unlanquaqe semantic 
wodel concepts. As these concepts are qenerally at a lower 
level than those of the source lanquage, the implementation can 
often be more efficient. with the Unlanquaqe approach, a module 
of the existing ldnquaqe could be phased out by providinq a 
replac~ment module. This module would need to provide the 
semantic procedures needad by other modules, but could have a 
reworked syntax. 

Consider Fortran. It has been around for a long time. One 
teature which has aided Fortran!s longevity is the library 
iacility. By gettinq a library d~veloped elsewhere, one is 
providing a semantic extension to Fortran. But syntactically 
fort ran is ., static. Even surf ace changes, such as replacing 
u.LT. 11 by "<" are not possible. If some instdllation made such 
d change to its compiler, the user proqrams would no lonqer be 
transportahle to other installations. Many people dislike 
Fortran because its syritactic structure is archaic. This 
structure cannot be easily changed. Syntactic extensions cannot 
~e added usinq library packages. With languages implemented 
under FUNL, this will not be true. FUNL lanquaqes will be able 
to evolve. Learning a new lanquaqe feature will be like 
learning a new library package. Programmecs don•t want to leave 
Fortran because it means learning a new language and destroyinq 
their old programs. with the FUNL system, a programmer would 
unly need to learn a new module rather than a new lanquaqe. His 
old programs are still useable as lo~q as the old modules remain 
.1.n the library. 

Many of the claims beinq made for ~nlanquages are identical 
to those made for UNCOL's. TINCOL's are impossible because they 
~equire universality. An Unlanquaqe makes no such claim: if 
your source languaqe or tarqet machine finds the semantic or 
syntactic model unusable, then invent another. The resultinq 
unl anguaqe must be implemented on various ,machines in order to 
4llow tcansport~bility, much as a new lanquaqe must be 
Lmplemented now. If the new Unlanquaqe is a minor modification 
of th@ old, transporting source lanquaqe to the new system 

I . 
I 
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should be quite easy. 

Proliferation of Unlanquaqes should be much less than the 
proliferation of lanquaqes is today. New lanquaqes are invented 
when the notation of an existing lanquaqe is cumbersome foe the 
problem at hand. But an Unlanquaqe will only change when the 
implementation of languages becomes too inefficient within its 
~emantic model, or new hardware features cannot be accommodated. 
Language experts cannot rid themselves of Fortran, but an 
archaic Unlanquaqe can always be repl~ced hv rewriting the 
aefinition mod~les to produce code within the new semantic 
model. Most users would not need to know of the chanqe. 

Proliferation of lanquaqes is another matter. Everyone can 
oecome a language writer. But this should pose no real problem. 
After the novelty wears off, cerrtain lanquaqe modules will 
become standard. These will tend to be used by everyone. A 
language designer will tend to use existinq ~odules for most of 
his language so that he is free to write his chanqes to other 
aspects of the old language. Extension modules for special 
applications should be no worse than a new libracv packaqe is 
today, even thouqh neY syntax is introduced. (This assumes that 
the extension language imposes suitable structure on these 
extensions so that they bear some resemblance to the oriqinal 
language.) 

Appendix: Extended PUNL qr~mmar 

The qrammar described in this paper has a number of 
limitations. This appendix describes extensions which miqbt be 
made to allow more efficient i~plementation of constructs found 
in current programming languages. 

1 .. 

COBOL has two basic forms of MOVE statements: 

HOVE A TO B. 
c1nd 

MOVE CORRESPONDING A TO B. 

1he ~OVE statement may be expressed by the syntax: 

l10VE r # 1 r CQ!!RES.l?ONDING # 1 IQ # 

this does not describe the COBOL svntax precisely, since it 
allows the statement: 

MOVE A CORRESPONDING B TO C. 

A semantic check can be used to ~etect this erroc. 
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The FUNL grammar can be augmented to make a precise 
Jefinition of the MOVE statement syntax. A new lexical class 
<MOD> can be created, and a sequence of <MOD>s can be permitted 
after a phrase (or function) identifier and before its 
corresponding f'Xpression. The word "CORRESPONDING" is defined 
to be a <MOD>. The MOVE statement definition becomes: 

M01E CORRESPONDING# IQ# 

A number of languages, such as COBOL and SIMSCRIPT. allow 
noise words to be inserted at arbitrary locations in a proqram. 
rhese words may usually be treated : as operators, optional 
phrases, or modifiers. In certain cases, it is convenient to 
~liminate such words in the scanner or permit them explicitly in 
the grammar between any two existing constructs. 

3. 

The COBOL relational operators may be described most easilv 
oy creatinq the class <FUNCTOR>. A functor takes an operator as 
its parameterr and produces a new operator as the result. The 
word NOT is a functor: it operates on the 0 .: 11 opera tor to 
produce a new operator which checks for inequality. "IS" is the 
identity functor. Without th~ <functor> conceptr a description 
of relational operators requires substantially more space. 

<operator> ::= <op item> <phrase sequence> 
<PUNCTOR1> <operator> 
<OPi> <FUNCTOR2> <operator> ( i> 1) 
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