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Abstract 

In this paper we discuss some desirable properties of 

linear multistep methods applied to stiff equations. We then 

proceed to produce and examine a class of methods with these 

properties. These schemes are extensions of those discussed 

by Gear (1968), and are of higher order. 





Stiffly Stable Linear Multistep Methods of Extended Order 

1. Introduction 
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For the general initial value problem 

y' = f(x,y), y(o) = y
0 

, 

the general linear k-step method is defined by 

k k 
E aiyj+l • h E ~if(xj+l' Yj+l), j = 0, 1, 2, ••. 

~o ~o 

(1.1) 

(1.2) 

In this paper we shall be concerned with the behavior of (1.2) on 

af stiff equations; that is, problems (1.1) where af < < 0 or, for a system 
ati 

of equations y' = .f(x,y), when the Jacobian matrix bas some 
ayj 

eigenvalues with large negative real parts. 

Much can be seen from the behavior of (1.2) on the simple linear 

homogeneous problem 

y' = AY, y(O) = y 
0 

for Re(A) < O. For this problem, the general solution of (1.2) is 

(assuming no multiple roots) 

(1.3) 



2 

k 
t ci(si(hA))j 

i=l 

where {si(hA)}k are the roots of p(s) - hXo(s) = 0 

k 
rs ~i 

i=O i 

Since the solution of (1.3) decays for Re(A) < O, we would like 

the solution of (1.2) to do so as well; however Dahlquist (1963) has 

shown that this can happen in the whole left half-plane Re(A) < 0 only 

for methods of order two or less. For other methods then, it is of 

interest to define the region of the complex plane where the solution 

of (1.2) applied to (1.3) does decay; this is the region of absolute 

stability: 

s = {w£¢1 all roots si(w) or p(~)-wo(s) = 0 satisfy lsi(w)l<l}. (1.4~ 

As is well known, every useful linear multistep method must be 

strongly stable: i.e., the roots of p(~) = 0 must satisfy 

sl = 1,lsil < 1, 1 < i ~ k. This is equivalent to saying w = 0 

belongs to S, or more precisely, to the boundary of S, since on the 

boundary one or more roots lsi(w)i = 1, and the other lsj(w)I < 1. 

We shall call such a method stable at 0, and assume this holds 

throughout the paper. Moreover, applying (1.2) ot a stiff equation 

(1.3), i.e., Re(A) << 0, h must be chosen so hA £Sin order to get 

any kind of decay in the approximate solution. This places a 



substantial restriction on h unless the region Sis unbounded, i.e., 

unless 00 ES. We call such a method stable at 00 ; of course this is 

equivalent to the roots of o(t) = 0 satisfying ltil < 1. 

Another desirable property of (1.2) for stiff equations can be 

seen as follows: the true solution of (1.3) satisfies 

"" lehAI-+ 0 as hA-+ -oo, 

that is the solution damps more and more over one step as hA-+ - 00 • 

If the same holds for the discrete solution of (1. 3), i.e. , 

Yj+l 
-+ 0 as hA-+ -oo, we say the method is dam2ed a t oo , Also we 

yj 
y j+l (h).) 

define the asymptotic decay lim thus rate as D = hA-+-oo y. (hA) 
J 

the backwards Euler method Yj+l ""yj + hf(xj+l'Yj+l), D = 0 so the 

method is damped at oo, and for the trapezoidal method 

h 
Yj+l = Yj + 2 (f(xj+l'yj) + f(xj+l'Yj+l)), D = 1 (so asymptotically 

there is no damping). 

for 

For further background and discussion of linear multistep methods 

applied to stiff equations, see Gear (1971) or Lambert(l973). In 

this paper, we first discuss properties of any k-step method which is 

stable at 00 • Then we proceed to produce and examine k-step methods 

which are in addition damped at 00 , and are of higher order than any 

previously found. 

3 
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2. Methods which are Stable at 00 

For this analysis, it is more convenient to transform from the 

~-plane to the z-plane via 

~ l+z 
= 1-z • (2.1) 

This maps the unit circle l~I < 1 onto the left half-plane Re(z) < O, 

so that the region of absolute stability is now described as 

S = {wg¢ I all roots z.(w) of r(z) - ws(z) = 0 
i 

satisfy Re(z
1

(w)) < O}. 
(2.2) 

Here r(z) and s(z) are the (polynomial) transforms of p(~) and 

r(z) 
k 
E b.zj 

j=O J 

The final definition we need is that of order of accuracy: as is well 

known, for given r(z), s(z), the method is of order m if 

r(z) 1 (l+z) + O(zm+l). 
s(z) = og 1-z (2.4) 

Notice that for S to include as much of the left half-plane as 

possible, we want the function w(z) =:~:~to map the left half-plane 

l+z onto itself as mach as possible. Since w = log(-1-) does this, we -z 

see from (2.4) that a method of order m maps correctly for lzl small. 

For the trapezoidal rule,:~:~= 2z, which maps perfectly for all z; 

unfortunately higher order stable methods cannot map as well for lzl 
away from 0. 

(2.3) 



.. 

In the z-plane, any strongly stable method has r(z) with one 

root z = 0 and Rez1 
< 0 for i > 1. Hence w = 0 is on the boundary 

1 

of S; and we can plot the locus of the boundary by the curve 

w(x) = 
r(ix} 

' -co < X < 00 If the method is also stable at 00 

s(ix) ' 
s(z) = 0 has all roots with Re z < 0 and the complement of Swill i ' 

be a bounded region, typically with the following form: 

V 

s 

w(ao) 
----------......1~--+------;--------- u 

Clearly, w(o) = O, w(00 ) = 8ic/bk w(-x) = w(x), and for small !xi, 

the curve follows the imaginary axis. In fact, from (2.4) we have 

Thus 

w(x) = r(ix) = log(ll+_iixx) + O(xm+l) 
s(ix) 

Re w(x) m+-1 
'v X ' Im w(x) "' x 

(2.5) 

for !xi small, so the real part stays very close to zero for lxl small, 

and increases sharply as !xi+ l; this accounts for the sudden bend 

in these curves for !xi~ 1 (see for example Gear (1971), page 21~. 

5 
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Since we want w(z) to map the left half-plane onto itself as 

much as possible, we can measure this by, for example, the angle a* 

subtended by the boundary Sat O (as in Widlund (1967), where this 

property is referred to as A(a*) stability) and by u* = min Re(w(x)). 
X 

We shall use these later when discussing particular methods. 

It is tempting to speculate that if the method is stable at 0 

and 00 , w(x) always looks like (2.5); i.e., it crosses the x-axis 

only at x = 0 and x = 00 • This would mean in particular that the 

stability region would include the negative real axis (A(o) - stability). 

However in general this is false: take the method of third order with 

r(z) ~ 2(4z 2 19 s(z) = 4 + z + Sz2 + z3. + z + - z 3) This is stable 3 ' 

at O and oo, but w(ix) crosses the negative real axis at - 8/3 and -6. 

Of course the number and position of such crossings can be 

readily determined: they are the real A such that 

o = r(ix) - As(ix) = (E(-l)ja x2j - AE(-l)jb .x2j) 
2j 2J 

+ ix(E(-l)ja . x2j - AE(-l)jb x2j). 
2J+l 2j+l 

Eliminating A, x2 = y must be a real root of the polynomial 

j j j j (E(-1) a .y )(E(-1) b ·+tY ). 
2J 2] 

(2.6) 

Thus is P(y) has no real positive roots, w(x) has no extra crossings 

of the real axis. In particular, since the constant term in (2.6) 

is 2b 2 > O, we have 
0 



Theorem 2.1: A linear k-step method which is stable at O and= 

is in fact A(a)-stable for some a if the coefficients of the 

polynomial P(y) in (2.6) are all positive. 

Now we wish to investigate limits on the order of a method 

which is stable at O and stable at=. First of all, a necessary 

condition for a polynomial to have all its roots in the left half

plane is that all its coefficients be non-negative; thus we can 

assume that the coefficients {a.} of r(z) and {b.} of s(z) are 
J J 

non-negative. Also a = 0 and a > 0 since O is a simple root of 
0 1 

r(z). From (2.4) we have 

or, 

r(z) - s(z) log (l+z) = O(zm+l) 
1-z 

k k 3 5 m+l Ea zj - 2 (Ebj zj) (z + ~ + ~ + ••• ) = 0 (z ) 
0 j 3 5 

for 

0 

a method of order m. Thus 

a a 
1 ,;:: b 2 = b - ' -

2 
0 

2 1 

a b a 
3 = b + ~ 4 = b - ' -

2 2 3 2 3 

_2 = b + .!.b + .!.b 
j-1 3 j-3 5 j-5 

2 

we have 

b 
+ ..1.. 

3 

+ ... + ! 
1 
jbo' 

1 b 
j - 1 1 

if j odd 

, if j even 

(2. 7) 

(2.8) 

for j ~ min(m,k). k If m ~ k, this defines the {aj}
1 

uniquely in terms 

of the {bj}. If m < k, it defines a ' 
1 

. . . , a • 
m 

7 
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Limits on the order of a method which is stable at O were 

obtained long ago by Dahlquist (1956): 

Theorem 2.2: A linear k-step method is stable at 0 , only for 

m ~ k + 1 (fork odd) and m ~ k + 2 (fork even). Those with 

m = k + 2 are only weakly stable. 

For a proof see Gear (1971), page 197. The proof involves the 

iii f h ffi i i h i f / 1 ( l+z). post v ty o t e coe cents n t e expans on o z og l-z 

In a very similar way we can show 

Theorem 2.3: A linear k-step method is stable at~ only form~ k 

(fork even) and m ~ k + 1 (fork odd). Those with m = k + 1 are 

only weakly stable. 

Proof: k+l 
We ~eed only look at the coefficient of z in (2.7). 

Fork even, this coefficient is 

bk-2 bo 
- 2 (bk + -3- + • • • + k+ 1 ) 

which is strictly negative .since all bj ~ 0 and b
0 

= 

Hence m ~ k. 

Fork odd, this coefficient is 

bk-2 bl 
- 2 (bk + -3- + ••• + k+l ) 

a 
1/2 > o. 

which is certainly less than or equal to zero, and equals zero only 

if b = b = =bk= O. But this in turn implies a = a = 
1 3 2 4 

• ak+l = 0, which means that at best both r(z) and s(z) have roots 

on the imaginary axis, giving a weakly stable method. And of course 

k+2 even for this method, the next coefficient (of z ) is strictly 

negative so the order m ~ k + 1. 

QED. 



This theorem says essentially that the best order we can 

achieve with a useful k-step methodism= k (except for the 

trapezoidal scheme which has k = 1, m = 2). Note that in this 

case the method is completely specified by the coefficients {bj}; 

the {aj} are given by (2.8). An example of such a class of methods 

is the backward differentiation formulas, recently popularized by 

Gear (1968) where s(z) = (z+l)k or cr(~) = ,k. These are obviously 

stable at 00 , and have the further property of being damped at w; 

for the problem y' = AY, as Re(hA) ➔ - 00 , jYn+l/y I ➔ 0, so the n 

damping effect is always greater for larger decay rates. In fact 

these are the only linear k-step methods of order k with this 

property, because with any other cr(~), jYn+l/y I ➔ j,(cr)j, the 
n 1 

biggest root of cr(t). Unfortunately these methods are stable at 

0 only fork~ 6. 

Various other k-step methods of order k have been derived, with 

the aim of extending the o~der of tho~e stable at O and 00 • Instead 

k k of s(z) = (z+l) as in Gear, Cryer (1973) tried s(z) = (z+d) ; for 

d close to 1, these may still be useful for stiff problems. Cryer 

showed such schemes could be made stable along the negative real 

axis for any k, by taking d small enough. More recently, Jeltsch 

(1974) has shown these methods are actually A(a)-stable for certain 

In fact, this is not difficult to see: since s(z) = (z+d)k, 

9 
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Thus ford small, the roots of r(z) are close to the roots {zj} 

of c(z), which are 

-d 
zj = 

1 
_ e2~ij/k, j = 1, , ,., k - 1, and zk = 0, 

So the method is stable at O ford small enough, and one need only 

show that the roots {zj(A)} of [r(z) + AS(z)] stay in the left 

half-plane for O <A< 00 to ensure A(a)-stability for some a. 

-k Cryer and Jeltsch required~ 2 for stability. This is easily 

seen to be unrealistic when the methods are computed: fork= 10 

the method is stable ford< 0.2; fork= 20, stable ford< 0.1. 

Even so however, these methods are not of practical use: the 

asymptotic decay 

Re(hA) + - 00 , is c 

rate IYn+l/ynl for the model problem y' = AY as 

1-d = l+d which is~ 1/3 ford< 0.5, and approaches 

1 as d + 0. Thus although the region of absolute stability looks 

like (2.5), the decay rate in the whole left half-plane is close 

to 1 if dis close to zero. 

3. k-step Methods of Order m 

Because of the apparent impossibility of obtaining k-step methods 

of order k which are useful for stiff problems and are of order higher 

than 6, it is natural to try methods of degree k and 

More specifically, let us assume the polynomial s(z) 

k and try to determine coefficients {aj}
1 

so that 

order m < k. 
k j 

= Eb.z is given, 
0 J , 



k 
r(z) = lajzj is stable (i.e., all roots in left half-plane) and 

the k-step method thus formed has order m. From (2.8), we see 

that the order requirement determines exactly a, ••• ,a, and 
1 m 

we are free to choose the rest. To ensure stability, we must 

choose these coefficients carefully, and it is not at all clear 

how to do this. Let us examine this problem more closely. 

First of all, a well-known necessary and sufficient stability 
k 

condition for r(z) = Eajzk with all coefficients prescribed, is 
1 --

that the Hurwitz determinants be positive (see e.g. Marden [1966, 

pg. 181]). That is, we form the matrix 

a a a ... 
4 6 8 

a a a ... 
3 5 7 

0 a a a a ... (3.1) 
2 4 6 8 

0 a a a a ... 
1 3 5 7 

•a 
k 

w~ere each aj = 0 for j > k, and take the determinants of the leading 

principal minors; these must all be positive. (Notice that since 

a = O, all our coefficients have subscripts advanced by 1 from the 
0 

normal discussion of stable polynomials.) To put this criterion 

in a more tractable form for computation, we can reduce the matrix 

to upper triangular form by a judicious choice of row eliminations. 

Since this will not change the determinants, the criterion will be 

li 
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equivalent to the diagonal elements of the triangular matrix 

being positive. 

We perform this triangular reduction by first eliminating 

all coefficients a from below the diagonal, then all a 's, etc. 
1 2 

Because of the repetitive form of the rows, if we eliminate a 

by subtracting a multiple of row 1 from row 2, then the same 

multiple of row 3 from row 4, etc., we keep the repetitive pattern 

of the rows, and the even rows become 

via 

(1) (1) 
a , a , 

5 7 

a 

= a2j+l - -
1 

a2j+2' j = 
a2 

In particular, a(l) is the second diagonal element of the triangular 
3 

form. Now we eliminate all a 's by subtracting the proper multiple 
2 

of row 2 from row 3, row 4 from row 5, etc., forming the new odd 

row 

(1) 
a , 

8 

via 
a(l) = a a2 
2j+2 2j+2 - -- a , j = 

( 1 ) 2j+3 1 , ... ' 
a 

3 

Again, the first element so fonned, a(i), is the third diagonal element 
4 

of the reduced triangular form. We continue in this way, eliminating 

in turn all a 1 s, a 1 s, ... , ak 2•s from below the diagonal. The 
3 4 -



entire reduction can be expressed as follows: 

(1) a 
[k-2] = a2j+l 1 a ' j = 1, .· .. , a2j+l - ·2j+2 2 a 

2 

( 1) 
a 

[k-3] 
a2j+2 = a2j+2 - :TTT a2j+3' j = 1, ... ' 2 

a 1 
3 

(2) {l) 
a(l) 

[k24] = 3 (1) j = 1, • • • I a2j+3 a2j+3 a2j+4 ' "J1T a 
4 
(1) 

(2) = (1) a4 (2) j = 1, ... ' [k25] a2j+4 a2j+4 :12} a2j+5 ' 
a 

5 

This set of recurrence relations provides an O(k2 ) process for 

deciding the stability of a given polynomial. We shall refer to 

the diagonal elements thus obtained (a(l) ,:a(l), a(2 ), a(2 ), ••• ) 
3 4 5 6 

(3. 2) 

= (c, c, ••• , ck 1) as the Hurwitz factors of r(z). Computationally 
3 4 -

this reduction can be carried out using only one array, with the 

Hurwitz factors as the final values obtained by the array. Schem

atically, the reduction can be expressed in a tableau 

a a a a 
1 3 5 7 

a a a a • 
2 4 6 8 

(1) (1) a (1). a a . 
3 5 7 

a 
(1) 

a 
(1) (1) 

a • 
4 6 8 

(2) (2) 
a a • . . 

5 · 7 

a 
(2) (2) 

a • 
6 8 

(3) a • 
7 

(3. 3) 

13 
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Now let us return to the problem posed at the beginning of 

m given r (z) = a z + ... + amz , when and how can 
m 1 

this section: 

we extend this to a polynomial of degree k which is stable? 

Theorem 3.1: A sufficient condition for the existence of a stable 

extension of degree k is that the given polynomial r (z) be stable. 
m 

Proof: We need only show that we can extend r (z) to a stable 
m 

m+l polynomial rm(z) + am+1z of degree m+l; for then we can repeat 

the process up to degree k. But this is surely possible for am+l 

small enough; the Hurwitz determinants (see (3.1)) of the new 

polynomi~l are continuous functions of this last coefficient am+l' 

and are all positive for am+l = 0, so they must remain positive 

for am+l slightly positive as well. QED. 

This seems like a simple straightforward criterion to use; 

however it turns out to be too strong for the polynomials we are 

interested in, so we must seek weaker conditions. To see that this 

criterion is not necessary for a stable extension, consider the 

example with m = 5, k = 6: 

r (z) = z + z2 + ~3 + zt+ + 1 5 
5 ~ 

is unstable; however r (z) = r
5

(z) + j-z6 is stable. 
6 

Theorem 3.2: The following are necessary conditions for the 

existence of a stable extension of degree k: 

Q) the Hurwitz factors c , ••• , c m+Z of rm(z) must be positive. 
3 [-2-J 

the polynomial dm(z) = a
1

z + [~~~-=-f~~---m~(m_-_l ___ )]a
2

z2 + ... 

+ [ (k- m) . • • 1] m b bl ~-----'---- a z must e sta e. 
(k-1) ... m m 



Proof: From the tableau (3.3), the Hurwitz factors of(D are 

precisely those which depend only on the given coefficients 

a, ••• ,a; since they are unaffected by the choice of 
1 m 

am+l' ••• , ak, they must be positive to begin with, 

And, if r(z) is to be stable, all derivatives of r(z) must 

also be stable, since the roots of a derivative lie in the convex 

hull of the roots of the original polynomial (see for example 

Marden (1966; pg 22)). k 1 Similarly the reciprocal polynomial z r(-) 
z 

must also be stable. Thus 

~1 ~2 m]a z + [(k-2) ••• (m-l)]a z + 
1 2 

. . . + [ (k-m) • • • 1] a 
m 

must be stable. But d (z) is merely a constant multiple of the 
m 

reciprocal of this polynomial, so must also be stable. QED. 

The £o]Jowing examples show that neither. of these conditions 

implies the other, and thus neither condition is sufficient for a 

stable extension to exi.st. 

(a) 

(b) 

m = 5, k = 6; r (z) 
5 

d (z) 
5 

= z + z2 + ~3 + z4 
3 

Here(D holds (c 
3 

> 0) but@ doesn't. 

m = 4, k = 5; r (z) 
4 

d (z) 
4 

= z + ~2 + ~3 + 4z4 
3 3 

= z + z2 + 4z3 + z4 

Here@ holds bud]) doesn't (c 
3 

< O). 

15 
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4. Higher Order Methods Damped at~ 

As we mentioned earlier, a particularly useful set of 

multistep methods for stiff equations are those with o(~) = ~k. 

Gear (1968) shows the k-step methods of order k generated this 

way are stable fork~ 6. By reducing the stability requirement 

tom< k, we can find stable methods of higher order. 

Proceding as in Section 3, we 

Then we determine coefficients a, 
1 

the accuracy requirements (2.8). 

a a a 
(k) +.!. 1 = 1, 2 = k, 3 = 

2 2 2 2 3 

a k 1 k 1 k a 
5 = <4) + 3<2) + s<o), 6 = 
2 2 

• • • • • 

t 
( k ) + .!.( k ) + 

a m-1 3 m-3 m = 
2 

(m~ 1) + ~ (m~ 3) + ..• 

prescribe k and 

... , a of r (z) m 

This gives 

a 
(k) +l 4 = 

2 3 3 

s(z) = (z+l)k. 
k 

= r a zj by 
0 j 

k 1 k 1 k 
<s) + 3(3) + s<1)' 

+ .!.(k) 
m 0 ' 

if m odd 

+ _l_(k) 
m-1 1 , if m even. .,/ 

Now we check to see if the polynomial r (z) defined by these 
m 

coefficients has a stable extension to degree k, and then try to 

find suitable coefficients am+l' ••• , ak. 

First, we merely checked the sufficient condition (Theorem 3.1) 

for a stable extension, namely that the polynomial r (z) itself be 
m 

stable; this we did by constructing the Hurwitz factors using (3.2). 

However, this showed a stable extension only form= 7 and 

k = 8, 9, 10 •••• So we switched to the less stringent necessary 

(4.1) 



conditions (Theorem 3.2). 

In fact, the first of the necessary condition is automa

tically satisfied for these polynomials: going back to the 

Hurwitz determinants (3.1), the Hurwitz factors c, •.• , c m+2 3 [- ] 
2 

are determined by the top [~] x [!] block; form= 8 this is 

a a a a 
2 4 6 8 

a a a a 
1 3 5 7 

0 a a a 
2 4 6 

0 a a a 
1 3 5 

Now express these coefficients in terms of the coefficients {bj} 

of s(z) using (4.1) or, more generally, (2.8). By subtracting 

column multiples, it is easy to see that these first [;] Hurwitz 

determinants are the same as those using the coefficients {b }m-l 
j 0 

form• 8 we mean the subdeterminants of 

b b b b 
1 3 5 7 

b b b b 
0 2 4 6 

0 b b b 
1 3 5 

0 b b b 
0 2 4 

And these, of course, are all positive since s(z) is stable. This 

can be stated more formally as 

Lemma 4.1: Given the stable polynomial s(z) of degree k, if we 

demand that the corresponding polynomial r(z) be such that the 

corresponding linear multistep method have order m < k, then 

17 
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the Hurwitz factors c , 
3 

• • • t are positive • 

Our algorithm for finding stable extensions then proceeded 

as follows: given k and m, we first formed and checked the 

stability of the polynomial d (z) in Theorem 3.2. If stable, we 
m 

then integrated d (z) (k-m) times, at each step finding one new 
m 

suitable coefficient (am+l' then am+2 , ••• , ak) so the integrated 

polynomial was still stable (since each of these integrated 

polynomials is a derivative of the final polynomial r(z), each 

must be stable). Finally, we locally optimize the choice of 

coefficients am+l' ••• , ak by using a search routine in these 

(k-m) dimensions. 

First we optimized by minimizing the modulus of the subdominant 

root I~ I of p(~) = O, so the method could be "as stable as possiqle 
2 

at O". However the methods so found did not have the largest 

possible regions of absolute stability, and were not even A(O)

stable necessarily. So we instead optimized by maximizing the angle 

a* of (2.5) for the method. 

We present here the methods obtained in this way of orders 

6, 7, and 8. k 
We give only the coefficients {aj}l of r(z), and 

these only to at most 5 significant figures. Coefficients a, ••• , a 
1 m 

can be found as accurately as desired from (4.1) and the accuracy 

of the remaining coefficients am+l' ••• , ak is not crucial. 



m k 

6 7 

7 9 

8 10 

8 11 

coefficients a
1

, ••• , ak 

2.0, 14.0, 42.667, 74.667, 

84.4, 68.133, 15.52 

u* 

29.18° -3.9 

2.0, 18.0, 72.667, 174.0, 29.5° -11.2 

276.4, 311.6, 266.69, 113.32, 

50.25 

2.0, 20.0, 90.667, 246.67, -20.8° -29.0 

450.4, 588.0, 578.28, 458.86 

186.79, 90.0 

2.0, 22.0, 110.67, 337.33 1.8° -15.4 

697.06, 1038.4, 1166.3, 

1037.1, 520.0, 270.0, 24.5 

I~ co) I 
2 

.84 

.88 

.99 

• 97 

In Figures 1-4, we plot the top half of the stability regions 

for these methods. All were A(a)-stable for a= a* given in the 

Table, except for the third method (m = 8, k = 10), where the 

boundary of S cuts the negative real axis. When we added an extra 

degree of freedom (k = 11), we again found an A(a)-stable method. 

These are not necessarily the best possible for a given m and k, 

since we could only perform a local search. The method of order 6 

is given to show how the stability region can be improved by 

extending k to 7 from 6 (for the case k = 6, m = 6, see Gear (1971), 

page 216). 

We shall examine the performance of these methods on some 

specific stiff problems in a later paper. 

. 19 



20 

References 

1. C. W. Cryer (1973), A new class of highly stable methods: 

A -stable methods. BIT Q, pg. 153-159. 
0 

2. G. Dahlquist (1956), Numerical integration of ordinary 

differential equations. Math. Scand. !t,, pg. 33-50. 

3. G. Dahlquist (1963), A special stability problem for linear 

multistep methods. BIT l, pg. 27-43. 

4. C. W. Gear (1968), The automatic integration of stiff 

ordinary differential equations. Proceedings IFIP 68, 

North-Holland Pub. pg. 187-193. 

5. C. W. Gear (1971), Numerical Initial Value Problems in 

Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs. 

6. R. Jeltsch (1974), Stiff Stability and Its Relation to A
0 

and 

A(o)-Stability. Submitted to SINUM. 

7 . J. D. Lambert (1973), Computational Methods in Ordinary 

Differential Equations. John Wiley & Sons, London. 

8. M. Marden (1966), The Geometry of Polynomials. American Math 

Society, Providence, R. I. 

9. 0. Widlund (1967), A note on unconditionally stable linear 

multistep methods. BIT]_, pg. 65-70. 

' 

.-












