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by 
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There has been a great deal of interest lately in the approximate solution 

of various problems by so-called global methods: that is to find a solution 

of the form 

where the ¢i(x) are given functions. Data fitting problems and boundary value 

problems have both been successfully treated in this way, particularly when 

the basis funcitons {¢i(x)} are piecewise polynomials with support over a small 

region in x. We refer to Schultz [2] and Strang and Fix [3] for a general 

discussion of such methods. 

Of crucial importance in computing with these bases is their condi t i on, 

or "amount of linear dependence". This can be measured by the condition number 

of the Gram matrix (mass matrix in [3]): 

Since G is a positive definite symmetric matrix, the condition number in the 
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12 norm is K(G)=Amax(G)/Amin(G). We shall use this throughout the paper. 

Of course, if the basis functions are orthogonal over the whole x-domain, 

K=l; however when we demand that the support of each basis function be restricted 

to a small region, we no longer have orthogonality and the questions of the 

condition of various bases becomes interesting. 

In this paper we consider the condition of the most common piecewise 

polynomial bases: cubic splines and piecewise cubic Hermite polynomials. 

For the former, this is merely a matter of direct computation; however for the 

latter there is still some choice to be made, and we investigate the problem 

of minimizing the condition. 

2. The General Method 

For a given general set of abscissas in the x-domain, the piecewise 

polynomial basis functionsover these abscissas will vary throughout the 

interval and the Gram matrix, although banded, will have elements varying in 

size depending on the spacing of the abscissas. In order to isolate the effect 

of which basis is chosen, we shall consider only equally spaced abscissas. 

Then, as in [3,pg 209ff], the Gram matrix is Toeplitz, or block Toeplitz, and 

its condition is more readily discernable. Indeed, since the mesh spacing h only 

appears as a common factor, it does not influence the condition, so the 

important consideration is the condition of the doubly infinite Toeplitz (or 

block Toeplitz) Gram matrix. This corresponds to either a doubly infinite 

x-domain with fixed h, or a finite x-domain with h➔O, 

Now let us concentrate on a spline basis; these are piecewise polynomials 

of degree 2n-l, and continuity 2n-2 at the abscissas, with support over 2n 

intervals (see for example deBoor [l]). Since there is one basis function 

for each abscissa, each basis function ~i(x) is a translated scaled copy of 

one basic function S (x), centred at O with support (-n,n). Thus the Gram 
n 

matrix G has the form n 

H = n 

G n 

h 

ao al .•. a2n-l 
0 

= al aO 

(2.1) 



where ai=f sn(x)Sn(x-i)dx, i=0, ••• 2n-1. The spectrum of the doubly infinite 

version of this Toeplitz matrix is well-known: 

2n-1 
SP(Hn) = {p(6)=ao+2 t ajCOSj0L 
p(0) 1 max 

e 
Thus K (~ )= min p (e) and O<K(H )<00 since H is positive definite so p(e)>O. 

n n 
e 

For n=l (piecewise linear functions), s (x) is the familiar roof function; 
n 

as in [3,pg.211] we have ao=4, a1=1, and 

max (4+2cos8) 
K(H) = e = 3. 

l min (4+2cos0) 
e 

For n=2 (cubic splines), s2 (x) is the basic cubic 

[2 ,pg 73]) 

/

~2-x) 3 , l 2_x2_2 

s
2

(x) = 3x 3- 6x2+4, O<x<l 

3 (-x), x<O 

' 

spline (see Schultz 

22 
The corresponding p( 6) has its maximum at e=O: p(0)=3435, and its minimum at 

11 8=IT : p(n) = 3 
35

. Thus 

K(H2 ) = 
3
~; e 10.45, 

Estimates of condition numbers for higher dimensional 

found in de Boor [l]. 

3. The Cubic Hermite Polynomials 

spline bases can be 

The general piecewise Hermite polynomials have degree 2n-1 and continuity 

n-1 at the abscissas; because of this lower continuity, there are more basis 
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functions: n associated with each abscissa. The so-called natural Hermite 

basis, obtained by Hermite interpolation of the delta function at successive 

abscissas, gives the smallest support possible, namely two subintervals, 

For n=2, for equally spaced abscissas, the basis functions are translated 

scaled copies of two functions defined over [-1,1] (see Schultz [2,pg.27]): 

Of course, this is not the only basis with minimal support; we could use 

translatedscaled copies of any linear combination of these functions, say 

(3.2) 

where we have included a scaling factor s as well. 

One choice used in practice is a=-3, S=l/3, s=3, which gives the B-spline 

basis: (O) 
B(x)=(l-x) 3 , O<x<l , 

(1) 
B(x)=(x-1) 2 (Sx+l), O<x<l 

=B(l)(-x), -1::_x::_O • B(o)(-x), -1::_x::_O. 

These have the property of being positive throughout the interval of support. 

In what follows we shall discuss the problem of choosing a,S,s to 

minimize the condition number of the Gram matrix. Because of the two basic 

basis functions and the fact that the support is two subintervals, the Gram 

matrix has the block-Toeplitz form 

G=h 

where A and Care 2x2 blocks. (For the general Hermite case, A and Care 

nxn.) The spectrum of the doubly infinite version of this is given by the 

set of eigenvalues of the 2x2 positive definite Hermitian matrix 



Thus K(a,S,s) = 
max Al (P(0)) 

8 

min A2 (P(8)) 
8 

(3. 3) 

First we consider a=S=O; that is, using the natural Hermite basis with 

some scaling of the second function H(l)(x). The basic Gram matrix (with s=l) 

has, after a simple computation with (3.1), 

l (312 0) 
A 420 . 0 8 ' 

1 
c420 

This gives, except for a constant, 

(

156 + 54 cos8 

P(8)= P
0

(8)= 13i sin8 

( 
54 -13) 

+13 -3 

-131 sina) 
4-3 case 

Since we are scaling the second basis function (see(3.2)), and this function 

affects the second row and column of A and C, we obtain 

A(s)=DADT T T , C(s)=DCD , P(s;8)=DP
O

(8)D 

where D•l~ ~) 
Theorem 3.1: The scaled natural cubic Hermite basis (3.1) has condition 

2 2 
K(s).:::_ 7. This minimum is achieved for s 1< s 2<s2 , where s 2"32, sn~96. 

2 1 ~ 

Proof: 

From the above, we have 

P(8;s) =(156 + 54 cos8 

(13i sin8)s 

(-13i sin8)s 

(4-3 cos8) s 2 

\ 
\ 
) 

(3.4) 

Since P(8;s) is positive definite, we can denote the larger by Al (8;s), the 

smaller by A2(8;s) and both are always positive. Since A1(8;s) is larger than 

any diagonal element, and A2 (8;s) is correspondingly smaller, 
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Thus 
max >.. 1(8;s) max (4-3 cos8)s2 

e e 
K(s) > = 7. -

min >.. 2 (e;s) min (4-3 cose)s2 
6 e 

To show the range where this is actually achieved is more difficult, 

We have explicitly 

2>..1(6;s)=F+✓n, 2>..2(0;s)=F-/0:

F=4(39+s2) +3cos0(18-s2) 

D=[4(39-s2) +3cos (18+s2)] 2 + 676s2 sin2e. 

First we compute these eigenvalues at the endpoints 0•0 and TI. 

(Since they are functions of case, we need only consider the range O.::_0..'.::_TI,) 

We have 

2>..1(O)=21O+s2+j210-s2 I , 2>..2(O)=2lo+s2-j210-s2 1 

2>..1(n)=lO2+7s2+l102•7s2 1, 2>..2(n)=1O2t7s2-ll02-7s2 1~ 
Thus 

2>..1(0) = max(42O,2s2), 2>.. 2(0) = min (420,2s2) 

2>..1(n) = max(2O4,14s2), 2>.. 2(n) = min (2O4,14s 2). 

Hence 

max(2>..1(O),2>..1(TI))=42O(=2>..1(O)) for s 2.::_3O 

m14s2(=2>..1(n)) for s 2>3O 

min(2>..2(O),2>..2(n)) = 2s2 (=2>..2(O)) for s 2<1O2 

= 2O4(=2>..2(n)) for s2>1O2 

So we see immediately that for s 2<3O and s2>1O2, 

max >..1(8;s) 
K (s) = e ------

min >..2(8;s) 
e 

> 
max (>..1(O),>..1(TI)) 

min (>..2(O),>..2(TI)) 
> 7. 

However the right-han.dra t io is exactly 7 for 3O2s2.::_1O2, and this will equal 

K(s) if the max and min are achieved at the endpoints. 



To examine this, rewrite Das a function of case: 

D = a cos 2 e + 2b case+ c, 

with a= 16(39-s2) 2+26 2s 2 , b=l2(18+s2)(39-s2), c=9(18+s2) 2 -262s 2 • 

So as functions of case, for fixed s, 
,. D' ,. 

A1 = F'+ ½ vD A2 = 

,.,. -¾ D" 
A1 2 = ± D (D -

2 

F' -

Computing this term in parentheses, we find 
3/2 

A1 2 (cose) = ± n-/' (ac-b2). 
' 

So the signs of A 1 , A2 are fixed for all e, and they are opposite. In 

other words, for each fixed s, one eigenvalue is a convex function of case 

and the other is concave. And a brief computation gives 

Thus when the quadratic in s 2 is negative (which occurs for s 2<s 2 <s2 , 
1- - 2 

s 2 = 64-21259 .;;: 32, s 2 =64+21259- E; 96), A1 (case) is convex and A (case) is 
1 2 2 

concave; thus in this region the max of A1 and min of A2 must occur and the 

endpoints (e=O or TT), 

K (s) = 
max(A

1
(0),A (TT)) 

min(A2(0),A (TT)) 
2 

= 
A ( TT) 
.........:..1-=7. QED 
A

2
(0) 

Now we consider the general basis (3.2). Because of the way this is 

formed, the corresponding P-matrix 

and the problem now is to find 

min K(P) = 
a,S,s 

min 
a,S,s 

max 
e (3.5) 
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Theorem 3,2: 

For the general cubic Hermite basis (3,2), the condition number K(P)~7. 

Proof: First we decompose S into QR factors (Q orthogonal, R upper triangular), 

so that P=QRP
0

RTQT, and we can reduce the problem to 

min 
a,e,s 

since this matrix has the same eigenvalues as P. In face, 

R• (: : ) • --;✓1=+=a:::;!=s 2;:-( 1+~

282 

:::: 1~ . 

we have 

Clearly there is a one to one relationship between the triples (a,S,s) and 

(p,q,r), providing we keep p_;:l. So we can reformulate our problem (3.5) as 

min 1 0 (3.6) t
max ;\ (RP 'RT) 

R min;\ (RP R) 
e 2 o 

* Now we decompose P (9) into triangular factors P (9)=UU • 
0 0 

From the definition of P (0), this gives 
0 

1 
=----

✓8-6cose 

Thus RP RT~(RU)(RU)* , with 
0 

RU =(px rz+ipy) 
0 qz • 

Now max ;\ 1 (RP RT) = max I 1Rull 2 .::_ max (qz(0)) 2 

e O e 2 e 
and min ;\z(RP RT)= min I I (RU)-11 l-2

2 
~ min (qz(0)) 2 

e O e e 

- 13isin0 

4-3cose 



Thus minK (P) 
R 

max (z(0)) 2 max (4-3cos6) 
> e = e min (z (0) )2 -m"""i-n----r-(4,...._...,3,,_c_o_s_e_) 

e e 
= 7. 

This minimum condition of 7 is in fact attained for other choices of 

9 

QED 

a ,6, and s. Suppose a and 6 are of opposite sign and we choose s 2=s2 =-a/S(>0). 
0 

Then the of Theorem 3,2 is 

and the corresponding condition number K is the same as that for the diagonally 

scaled matrix 

which is P(0;s) in (3.4). Thus from Theorem 3.1, if s 2<s 2=- a/S<s 2 , this 
O 1 0 2 

scaling produces a matrix with K=7. 

Finally, we return to the B-spline basis (a=-3,S=l/3,s=3). It is fairly 

easy to check that this value of s does give the minimal condition for this 

choice of a and 6 (the two basic basis functions B(0 {x) B<~i) are then mirror 

images). And since s 2=-a/S, this condition number is the same as the diagonally 

scaled matrix P(8;3) in (3.4). From the proof of Theorem 3.1, the eigenvalues 

of this are 

where 

F=l92+27 case 

D+(l20+81 cose) 2 + 782sin2e~ 

A brief computation shows that A1 (6;3) is maximized at6=0 and A2(8;3) is 

minimized at 6=0, giving 
70 

K (P ( 6 ; 3) ) = ) , 
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Thus the condition of the B-spline basis is higher than the scaled natural cubic 

Hermite basis. 
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