
Supporting Software History Exploration

Alexander W. J. Bradley Gail C. Murphy
Department of Computer Science

University of British Columbia
{awjb, murphy}@cs.ubc.ca

ABSTRACT
Software developers often confront questions such as “Why was
the code implemented this way”? To answer such questions, de-
velopers make use of information in a software system’s bug and
source repositories. In this paper, we consider two user interfaces
for helping a developer explore information from such repositories.
One user interface, from Holmes and Begel’s Deep Intellisense
tool, exposes historical information across several integrated views,
favouring exploration from a single code element to all of that ele-
ment’s historical information. The second user interface, in a tool
called Rationalizer that we introduce in this paper, integrates histor-
ical information into the source code editor, favouring exploration
from a particular code line to its immediate history. We introduce a
model to express how software repository information is connected
and use this model to compare the two interfaces. Through a lab
experiment, we found that our model can help predict which inter-
face is helpful for a particular kind of historical question. We also
found deficiencies in the interfaces that hindered users in the explo-
ration of historical information. These results can help inform tool
developers who are presenting historical information either directly
from or mined from software repositories.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Integrated environments;
K.6.3 [Software Management]: Software maintenance

General Terms
Design, Human Factors

Keywords
Software repositories, integrated development environment

1. INTRODUCTION
Developers working on large software development teams often

confront the question, “Why was the code implemented this way?”
In a study by Ko and colleagues, this question was found to be

c© ACM, 2011. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in MSR 2011.

amongst the most time-consuming and difficult to satisfy of a num-
ber of information needs faced by developers [17]. In another study,
LaToza and colleagues confirmed that developers faced challenges
in trying to understand the rationale behind code [21]. A third study
conducted by LaToza and Myers further confirmed these findings,
reporting that questions about code history—when, how, by whom
and why was code changed or inserted—were some of the most
frequent questions developers needed to answer [19].

Various existing tools have attempted to assist developers in ex-
ploring a software system’s history to answer such questions. Tools
such as CVS’ “annotate” (or “blame”) feature [5], and graphical in-
terfaces to it such as Mozilla Bonsai [22] and Eclipse’s “show an-
notations” feature [9], display the last user who changed each line
of code in a source file. Tools such as Hipikat [7] and Deep Intel-
lisense [13], which is built on Bridge [24], provide artifacts (e.g.,
bugs, e-mails, or documents) that appear relevant to a piece of code.

These existing tools use one of two basic styles to support a
user in exploring the historical information needed to answer the
questions that frequently confront them. One approach is to inte-
grate the historical information into or near the editor, as is the case
with Eclipse’s “show annotations” feature. This approach tends to
favour displaying a breadth of historical information for large re-
gions of the code at once. The other approach is to use a set of
integrated views that provide related historical information for a
single element out of the context of the editor, as is the case with
Deep Intellisense. This approach tends to favour displaying a depth
of historical information about a single part of the code.

In this paper, we investigate how these different presentation
styles affect how developers explore historical information to an-
swer questions related to why code was implemented as it was.
We introduce a model of how different kinds of software reposi-
tory information, such as bugs and code check-ins, are connected
and we use this model to predict questions for which one interface
style has a significant advantage over the other interface style (Sec-
tion 3). For example, the model can help predict which interface
style is likely to be easier to use for answering a question about
which sections of a source file were affected by a given bug fix
compared to answering the question of which bugs have affected a
given method.

To investigate the usefulness of the model and to understand
more about how users explore software history information, we
conducted a laboratory study in which eleven participants used one
of two prototypes to answer a set of historical questions (Section 4).
The first prototype was a replica of the Deep Intellisense user in-
terface style (Section 2.1). The second prototype is a new interface
we created, called Rationalizer, that integrates historical informa-
tion directly into the background of the source code editor using
semi-transparent columns to directly answer questions about when

code was changed, who last changed it and why it was changed
(Section 2.2). The results of our study confirmed the predictions of
our model and identified deficiencies in each of the tools—for in-
stance, many users found scrolling through the large amounts of in-
formation provided by Rationalizer confusing and error-prone and
requested better filtering, and several users found little use for Deep
Intellisense’s summary views. Tool developers can use the model
we have introduced and what we have learned about user interfaces
conforming to this model to help reason about appropriate interface
designs for tools that expose software history information.

This paper makes three contributions:

• it introduces a new user interface, which we call Rational-
izer, that integrates more historical information into the edi-
tor than previous designs,

• it introduces a model of software repository information and
shows how that model can be used to reason about and pre-
dict the performance of a user interface that supports explo-
ration of software history information, and

• it provides a comparison of two different user interface styles
for exploring historical information.

2. TWO TOOLS FOR SOFTWARE HISTO-
RY EXPLORATION

To support our investigations, we built two prototype tools that
embody the two different user interface styles for exploring soft-
ware history. The first prototype is a replica of Deep Intellisen-
se [13]. The second prototype is a new interface we designed to
expand the historical information presented in a code editor; we
call this user interface approach and the prototype, Rationalizer.

Each of these prototypes accesses the same historical informa-
tion. Each retrieves revision history information for the source code
of interest from a CVS repository. Each scans check-in notes to de-
tect possible bug IDs using simple regular expressions. Each re-
trieves metadata from a Bugzilla bug repository using an Eclipse
Mylyn connector.1 Each prototype caches revision and bug data
to improve performance. Each tool could be generalized to gather
historical information from other kinds of source and bug reposito-
ries.

We describe the user interfaces of each prototype in turn.

2.1 Deep Intellisense
Deep Intellisense was created as a plugin for the Visual Studio

IDE [13]. As the original plugin is not available for use, we created
a replica of its user interface for our research. This replica is im-
plemented as a plugin for the Eclipse IDE, providing access to his-
torical information about Java code. Like the original plugin, our
replica provides three views that update whenever the user selects
a code element (defined as a method, field, or class declaration) in
an editor (Figure 1):

• The current item view, which gives an overview of the num-
ber of check-ins related to the element, the number of bugs
related to the element, and the number of people responsible
for those check-ins and bugs. For example, in Figure 1, the
doOperation method of the ProjectionViewer class has been
selected in the editor and the current item view (top right)
displays a summary of its history.

1http://wiki.eclipse.org/Mylyn_Bugzilla_Connector, verified March
7, 2011

• The related people view, which provides a list of the people
(represented by usernames) relevant to the element, as well
as the number of related open and closed bugs each person
has submitted and the number of related check-ins they have
committed. For example, in Figure 1, the related people view
(middle right) shows the people who have changed the doOp-
eration method or filed bugs affecting it. (Unlike the original,
we did not provide further information such as job titles or
email addresses for the people in this view.)

• The event history view, which provides an interleaved list of
events (i.e., revisions and bugs) relevant to the element. The
list is initially sorted chronologically, but other sort criteria
can be chosen. A text search can be used to filter the items
displayed. Double-clicking on a revision opens an Eclipse
comparison viewer showing the differences between the se-
lected revision and the revision preceding it; double-clicking
on a bug opens its full Bugzilla report in a web browser.
For example, in Figure 1, the event history view (bottom
right) shows the revisions and bugs affecting the doOpera-
tion method.

Unlike the original plugin, our replica is not backed by the Bridge
database [24] and does not provide other kinds of historical infor-
mation such as e-mails, web pages or documents. This support was
not needed for the investigations we conducted. It also omits the
“thumbs up”/“thumbs down” buttons provided by the original for
rating the usefulness of person and event results.

2.2 Rationalizer
The Rationalizer interface we designed integrates historical in-

formation into the background of a source code editor through three
semi-transparent columns entitled “When?”, “Who?”, and “Why?”.
Clicking a column heading reveals the column at a high level of
transparency (i.e., in the background “underneath” the editor text.)
Clicking the heading a second time reduces the transparency of the
column (i.e., raises it to the foreground “above” the editor text.)
Clicking the heading a third time hides the column again. Figure 2
provides an example of the two different transparency levels: the
“When?” column (left) is at high transparency, while the “Who?”
and “Why?” columns (middle and right) are at low transparency.

For each line of code, the “When?” column gives the date on
which the line was last modified; the “Who?” column gives the
username of the developer who made the modification; and the
“Why?” column provides the check-in note of the last revision that
affected the line (if there is a related bug for the revision, it is dis-
played instead of the revision.) The background of the “When?”
column is coloured to indicate the age of the code (darker entries
are older). In the “Who?” column, each developer is assigned a
colour and these colours are used as the background colours for
the column entries. In the “Why?” column, revision entries are
coloured light blue, closed bugs are coloured grey and open bugs
are coloured red. A text search is available at in the upper left-hand
corner of the editor to filter the items displayed in the columns.

Hovering over column items provides more detailed information
if available. For instance, hovering over a bug in the “Why?” col-
umn shows the title, submitter and last modification date for the
bug. Some column items also have hyperlinks, which can be acti-
vated by Ctrl-clicking on the items. Ctrl-clicking a bug item opens
its full Bugzilla report in a web browser. Ctrl-clicking on a revi-
sion opens an Eclipse comparison viewer showing the differences
between the selected revision and the revision preceding it. The
comparison viewer thus opened also includes the three Rational-
izer columns, allowing the user to explore further into the past.

http://wiki.eclipse.org/Mylyn_Bugzilla_Connector

Figure 1: Deep Intellisense replica. Selecting a code element updates the three Deep Intellisense views (right) with information about
related people and events.

Figure 2: Rationalizer user interface. Columns can be activated by the user with low or high transparency. A text search (top left)
allows filtering of information displayed in the columns.

3. MODELING HISTORY EXPLORATION
When exploring software history to answer a question of inter-

est, a developer must typically traverse linkages between various
pieces of information, such as code lines, code elements, revisions,
and bugs. In Figure 3, we provide a model of this information in
the form of an entity-relationship (ER) diagram [6]; this model cap-
tures how information is conceptually related, not how it is stored
in any particular tool. We have chosen bugs as the principal form of
related historical information in this model; a more detailed model
might include other kinds of related information such as e-mails,
webpages, documents, or Mylyn task contexts [16].

User interfaces of tools to help explore software history differ in
the operations that they provide to view entities and follow relation-
ships between entities. We have identified basic operations in each
prototype by which these linkages are traversed. For example, in
Deep Intellisense, the operation of selecting a code element (SCE)
navigates from the element to a list of related items (revision or bug
references) from its history. In both prototypes, the operation of
opening a new view (ONV) is necessary to navigate from a revision
reference to a display of the changes it introduced, or to navigate
from a bug reference to the full bug report. In Rationalizer, the user

Figure 3: ER model of software history artifacts.

must visually scan (VS) through some number of highlighted lines
of interest to find the information of interest associated with them.
Finally, in both prototypes, a filter application (FA)—i.e., use of the
text search—can limit the historical information displayed to show
only items of interest.

3.1 Predictions
With this model and these basic operations established, we can

predict the simplest strategies a user can employ to perform traver-
sals across the various linkages in the model. We will analyze three
principal cases (Sections 3.1.1–3.1.3): navigating from code to its
immediate history (i.e., the last revision or bug that affected it);
navigating from code to its deep history (i.e., all revisions and bugs
that traceably affected its development); and navigating from his-
torical items (persons or bugs) back to their effects on the current
state of the code. For each of these cases, we consider starting the
navigation both from code lines (as facilitated by Rationalizer) and
from code elements (as facilitated by Deep Intellisense).

In our analysis, we distinguish between references to historical
information (RHI)—e.g., blocks in Rationalizer columns or table
rows in the Deep Intellisense “Event History” view—and the full
descriptions of the historical information—e.g., full Bugzilla bug
reports or comparisons showing the changes introduced by a revi-
sion. For completeness, the procedure for navigating from RHI to
full descriptions is analyzed in Section 3.1.4.

Our predictions, explained in detail below, are summarized in
Table 1. We identify two areas in which our model predicts that
one tool will have a significant advantage over the other (Sections
3.1.2 and 3.1.3); these two predictions are evaluated through a user
study that is described in Section 4.

3.1.1 Finding Immediate History for Code
With Rationalizer, navigating from source lines or code elements

to RHI for the bugs and revisions that last affected them is relatively
straightforward, since these references are immediately available
though Rationalizer’s columns. Finding the last RHI for ` source
lines takes an O(`) visual scan of the column blocks next to the
lines. Finding the last RHI for e code elements takes an O(e) visual
scan of the column blocks next to the elements (the efficiency of
which can be increased by using code folding [8] to collapse the
elements.)

With Deep Intellisense, navigating from code elements to the
last RHI affecting them may be slightly more difficult, requiring the
user to select each element in turn. Formally, finding RHI for e code
elements requires O(e) SCE. Finding the last RHI for specific lines
is somewhat more tricky. If we consider ` lines which are contained
in e code elements (and assume the elements have a maximum of r
related revisions affecting them), the user would need to select each
element in turn, then open a comparison view for every revision
affecting each element to see if it affected the line. This amounts to
O(e) SCE × O(r) ONV.

3.1.2 Finding Deep History for Code
LaToza and Myers [19] noted that developers sometimes wanted

to know the entire history of a piece of code, not just its most recent
change. In Rationalizer, navigating from a source line to the last r
revisions that affected it requires Ctrl-clicking revision hyperlinks
O(r) times to step back through past revisions one at a time. Navi-
gating from a code element to its last r revisions requires a similar
strategy. In either case, O(r) ONV are required.

In Deep Intellisense, navigating from a single code element to
the last r revisions that affected it takes only one code element se-
lection. Navigating from a source line to the last r revisions that

affected it is more complicated, as the user would have to open
a comparison view for each of the past revisions from the “Event
History” view for the enclosing code element and check which re-
visions actually affected the line. Formally, O(r) ONV would be
required.

Based on this analysis, we make our first major prediction:

HYPOTHESIS 3.1. For code elements that have been affected
by many past revisions, Deep Intellisense will have a significant
advantage over Rationalizer for finding those elements’ entire his-
tory.

3.1.3 Finding Related Code for History Item (Person
or Bug)

Sometimes a developer needs to know which code a co-worker
has touched in an object-oriented class. One way to address that
question is to find areas of source affected by a particular co-worker
of interest. (More generally, one could look for areas of source
affected by various persons or bugs of interest.)

In Rationalizer, the most efficient way to find areas of code last
touched by a given user (or affected by a given bug) is to filter the
“Who?” column by that user’s name (or a bug ID) and then per-
form a visual scan of the blocks that remain visible in the columns.
Formally, if the user or bug affected `a lines (or code elements con-
taining `a lines), 1 FA and O(`a) VS are required.

In Deep Intellisense, the most efficient way to find which code
elements in a class were last touched by a given user or affected by
a given bug would be to select every code element in the class in
turn, and for each code element, apply a filter to the “Event His-
tory” view to check if the user or bug affected the element. For-
mally, O(E) SCE and O(E) FA would be required. Finding which
specific lines were last touched by a given user or affected by a
given bug would require more work, as it would require examining
every revision since the user or bug first affected the class to find
all the altered lines and check whether they had been overwritten
by other revisions since they were committed. Formally, if the file
has had R revisions since the user or bug first affected it, O(R) ONV
would be required.

Based on this analysis, we make our second major prediction:

HYPOTHESIS 3.2. Rationalizer has a significant advantage ov-
er Deep Intellisense for finding sections of code affected by persons
or bugs if a large number of code elements or lines are affected
and/or a large number of past revisions directly affect regions of
the current source code.

3.1.4 Following References
Once the user has found a RHI of interest, following that refer-

ence for more information is equally easy in Deep Intellisense and
Rationalizer. In Rationalizer, references to historical items are real-
ized as blocks in the “When?” or “Why?” columns; Ctrl-clicking on
the block for a bug reference opens a browser with the full bug re-
port, while Ctrl-clicking on the block for a revision reference opens
a comparison window showing the changes introduced by that revi-
sion. In Deep Intellisense, references to past revisions or bugs are
realized as table rows in the “Event History” view; double-clicking
on a bug or revision row has the same effect as Ctrl-clicking a bug
or revision block in Rationalizer. In either prototype, following a
historical information reference takes 1 ONV.

3.2 Limitations of Analysis
Our analysis has a number of limitations. First, it models the

ideal path to the right answer taken by a user who is expert at using
each tool and takes no wrong steps. It does not take into account the

difficulty of finding the correct operation to perform at any stage,
or backtracking if an incorrect path is taken. Second, the respec-
tive difficulty of model operations has simply been estimated based
on the elementary actions (mouse clicks/drags or key presses) of
which the operations are composed; no precise weights have been
assigned to each action and the difficulty of individual operations
has not been measured empirically.

4. EVALUATION
We conducted a laboratory study to investigate the two major

predictions of our model (Hypotheses 3.1 and 3.2). We also wanted
to elicit feedback on specific design characteristics of the tools: Do
developers prefer software history information to be tightly inte-
grated into the source code text editor (as in Rationalizer) or pre-
sented in views that are visually separate from the text editor but
linked to it (as in Deep Intellisense)? Do developers prefer soft-
ware history information to be associated with individual lines of
code (as in Rationalizer) or with higher-level code elements, such
as methods and classes (as in Deep Intellisense)?

4.1 Study Design
Our study used a within-subjects design; participants were asked

to answer four questions about software history with each tool. Two
“question sets” (designated A and B) of four questions each were
prepared for this purpose. These question sets may be found in
the appendix of the first author’s master’s thesis [2]. Participants
were randomly assigned to one of four groups, spanning the four
possible orderings of tools and question sets.

Before working with a tool, participants were given a paper tu-
torial describing the features of the tool they were about to use.
Participants then worked on the question set they were assigned for
that tool; they were allowed a maximum of seven minutes per ques-
tion. Participants were allowed to refer back to the tutorial while
working on a task. After each task, participants were asked to rate
the tools on a 1–5 scale, where 1 meant “not helpful at all” and 5
meant “did everything I wanted”.

After a participant had finished both question sets, 15 minutes
were allocated for a follow-up discussion, in which the interviewer
(the first author of this paper) asked about participant preferences
between the tools and the kinds of software history information
desired by the participants.

To test the predictions of our model, we ensured that each ques-
tion set contained at least one “deep history” question (which Hy-
pothesis 3.1 predicts to be harder in Rationalizer) and at least one
“history to related source” question (which Hypothesis 3.2 predicts
to be harder in Deep Intellisense.) Specific questions are shown in
Table 2. For each question, we recorded the total time taken, and
the experimenter noted the participant’s major actions, with partic-
ular attention to the operations described in Section 3. As a backup
to the experimenter notes, the prototypes were instrumented to log
view opens, filter applications, and code element selections. Par-
ticipant answers to the questions were later scored for correctness.
We expected that for the questions in Table 2, users might produce
less correct answers and report lower levels of satisfaction with the
tool that we predicted would be at a disadvantage.

The question sets were based on code drawn from the open source
Eclipse Graphical Editing Framework (GEF) codebase2 and bugs
drawn from the associated Eclipse Bugzilla database3. This code-
base was chosen because it was compatible with our tool and we

2http://www.eclipse.org/gef/, verified March 25, 2011
3http://bugs.eclipse.org/bugs/, verified March 25, 2011

Table 3: Participant experience with version control and issue
tracking systems.

Experience type Experience (years)
< 1 1–2 3–4 5–6 6–7 ≥ 10

Version control 2 4 1 2 2
Bug tracking 3 3 2 2 1

believed it would be relatively easy to understand, even if the par-
ticipant did not have an Eclipse development background.

4.2 Participants
We recruited 11 participants from the membership of the Van-

couver Java User Group and from the UBC undergraduate and grad-
uate student populations, focusing on students studying Computer
Science or Electrical and Computer Engineering. Participants were
required to have experience programming in Java using Eclipse
(e.g., at least one university course project, or professional experi-
ence), and to have experience using version control and issue track-
ing systems for software development. Participants were compen-
sated with a $20 gift card for a 90-minute session.

Participants were asked to fill out an initial online questionnaire
that requested demographic data and information about their back-
ground with IDEs, version control systems, and issue tracking sys-
tems. Of our participants, ten were male and one was female; six
were aged 19–29, three were aged 30–39 and two were aged 40–
49. Four were undergraduate students, six were graduate students,
four were commercial software developers, three were open source
developers, one was a software tester, and one was a web devel-
oper. The “student” and “developer” categories were not mutually
exclusive. Participants’ reported experience with version control
and bug tracking systems is shown in Table 3.

4.3 Results

4.3.1 Model Predictions
To validate our model predictions, we reviewed the experiment

notes and logs to see how each participant answered each ques-
tion in Table 2. We used the notes to form the sequence of basic
operations (filter applications, view opens, and code element selec-
tions) a participant performed, and used the logs to verify operation
counts. We then compared the participant’s sequence of operations
to those in the strategy predicted by our model (Section 3) for that
question and tool. In cases where the participant seemed to have
difficulty even forming a strategy and never arrived at a correct an-
swer, as was sometimes the case, we considered the question to
be as hard as predicted. We found that the strategies employed by
participants were, for all question-tool combinations except one, at
least as hard as our model predicted. Table 4 provides a summary
of how well user strategies conformed to our predictions for the
five model validation tasks. In the table, the notation “4/6” means
that 4 out of 6 participants used a strategy that was as hard as our
predicted strategy.

The results diverged from our expectations in two particular cases.
In the case of question B1, we had expected that Rationalizer users
would have to go back two revisions from the current revision to
find the change of interest, but two Rationalizer users used filter
criteria that we had not anticipated, discovered a line outside the
target method that had been affected by the correct bug, and were
therefore able to reach the correct revision in one step.

In the case of the “history to source” questions (A2 and B3), our
statement that all users’ strategies were at least as hard as predicted
requires some qualification. For these questions, most Deep Intel-

http://www.eclipse.org/gef/
http://bugs.eclipse.org/bugs/

Table 1: Different types of navigation tasks and their predicted complexity under Rationalizer and Deep Intellisense.
History exploration task Rationalizer Deep Intellisense
Finding immediate history for code (cf. Section 3.1.1)
` source lines (contained in e CEs with r related revisions) → last related revisions and
associated RHI

O(`) VS O(e) SCE ×O(r) ONV†

e CEs→ last related revisions and associated RHI O(e) VS O(e) SCE

Finding deep history for code (cf. Section 3.1.2 and Hypothesis 3.1)
Source line→ r last related revisions and associated RHI O(r) ONV O(r) ONV†
CE→ r last related revisions and associated RHI O(r) ONV 1 SCE
Finding related code for history item (person or bug) (cf. Section 3.1.3 and Hypothesis 3.2)
Reference to author or bug→ all `a source lines in file affected by same reference (where
file has had R revisions since first affected by given author or bug)

1 FA + O(`a) VS O(R) ONV

Reference to author, bug→ all CEs (of E total) affected by same reference in file (where
affected CEs contain `a source lines)

1 FA + O(`a) VS O(E) SCE + O(E) FA

Following references (cf. Section 3.1.4)
RHI→ previous source revision 1 ONV 1 ONV
RHI→ full bug report 1 ONV 1 ONV
Acronyms: CE: code element (method, field, class); FA: filter application; ONV: opening(s) of new view(s); RHI: reference(s) to historical

information; SCE: selection(s) of code element(s); VS: visual scan through highlighted code in editor, possibly involving scrolling.
Bold font is used to indicate situations where we predict that one tool will have an advantage over the other.

† It would be necessary to check every related revision for the enclosing CE(s) to see if it modified the line(s).

Table 2: Questions predicted to be harder with a particular tool.
Task Hypothesis Question
A1 3.1 Consider the assignment “figure = getLayoutContainer()” in the isHorizontal method of FlowLayoutEditPolicy (line

171). Was a different method call used to obtain the layout container in the past? If so, please specify (1) What
was the old method call? (2) Which bug, if any, led to the change? (3) Who committed the change, and what was
the revision ID?

A2 3.2 Which methods of LayoutEditPolicy were last modified by anyssen?
A3 3.1 What sections of FlyoutPaletteComposite were changed by the fix for bug 71525? (1) What method(s) were

changed? (2) What revision made the fix? (3) Briefly describe the nature of the change(s).
B1 3.1 What bug led to the introduction of the “editpart != null” check in the setActiveTool method of PaletteViewer?

Please specify (1) the bug number; (2) the revision in which the bug was fixed; (3) who committed the revision.
B3 3.2 Which methods of ConstrainedLayoutEditPolicy were last modified by anyssen?

Table 4: Conformity of observed strategies to predicted diffi-
culty level.

Task Hypothesis Hard as predicted?
Deep Intellisense Rationalizer

A1 3.1 All All
A2 3.2 All* All
A3 3.1 All All
B1 3.1 All 4/6
B3 3.2 All* All

* See discussion in Section 4.3.1.

lisense users (4 of 6 participants for question A2 and 4 of 5 partici-
pants for question B3) employed a different strategy than predicted:
instead of selecting each method in turn, they used the “event his-
tory” view to identify the past revisions by anyssen (there were two
for A2 and three for B3) and opened comparison views to examine
the changes introduced by these revisions. We do not believe this
strategy is easier than our predicted strategy as it requires exam-
ining many methods in multiple revisions and is more error-prone
(some users identified methods that no longer existed as “modified”
based on revisions earlier than the current one.)

We also validated the predictions of our model by comparing
the user satisfaction ratings and answer correctness scores for Ra-

tionalizer and Deep Intellisense. For these comparisons, we used a
rank-based non-parametric statistical analysis since the results were
not always normally distributed. Tables 5 and 6 report our com-
parisons of the median satisfaction ratings and correctness scores,
respectively, using the Wilcoxon-Mann-Whitney test to assess sig-
nificance. In both tables, n is the number of participants using a
given tool for a given question, U is the Wilcoxon-Mann-Whitney
U-statistic; in cases where the medians differ, the higher median is
bolded, and statistically significant differences (p < 0.05) are high-
lighted in light grey. Figures 4 and 5 provide boxplot summaries of
satisfaction ratings and correctness scores, respectively.

For the “deep history” questions (A1, A3, and B1), median user
satisfaction was equal or higher with Deep Intellisense (signifi-
cantly higher for B1, equal for the other two tasks); median cor-
rectness was also equal or higher (significantly higher for A1 and
A3, equal for B1). For the “history to source” tasks (A2 and B3),
median user satisfaction was higher with Rationalizer (significantly
so for A2, not significantly so for B3); median correctness was also
higher, but not significantly so for either question. These results are
consistent with our predictions in Table 2.

4.3.2 Design Characteristics
In answer to our questions about specific design characteristics,

participant opinion was almost evenly split on both characteristics.
Four participants (IDs 6, 7, 13, 14) preferred the separate views

Table 5: Differences in median participant satisfaction ratings.

Task Rationalizer Deep Intellisense U pn Median n Median
A1 5 4 6 4
A2 5 5 6 2.5 24 0.02
A3 5 3 6 3
B1 6 3 5 4 43 0.01
B3 6 4 5 3 27 0.6

Table 6: Differences in median participant correctness scores.

Task Rationalizer Deep Intellisense U pn Median n Median
A1 5 0% 6 87.5% 50.5 0.006
A2 5 100% 6 60% 30 0.3
A3 5 0% 6 75% 51 0.002
B1 6 100% 5 100%
B3 6 80% 5 60% 29 0.9

provided by Deep Intellisense, as opposed to six (IDs 4, 8, 9, 10,
11, 12) who preferred Rationalizer-style integration and one (ID 5)
whose preference depended on the type of question. Five partici-
pants (IDs 4, 6, 8, 11, 12) preferred the line-by-line interface style,
five (IDs 7, 9, 10, 13, 14) preferred to start their code search from
code elements, and two (IDs 5, 13) said their preference depended
on the type of question (participant 13, as noted, leaned towards
element-based exploration.)

4.3.3 Tool Preferences
In response to the query “How likely would you be to use each

prototype for your own code?”, four users said they would be more
likely to use Deep Intellisense (IDs 4, 6, 10, 13), four said they
would be more likely to use Rationalizer (IDs 5, 8, 11, 12), and
three (IDs 7, 9, 14) indicated they would be likely to use both with-
out expressing a preference either way.

4.3.4 General Comments
We recorded general feedback from participants in a number of

areas.
Participants expressed appreciation for various aspects of the

tools. Nine liked having a Deep Intellisense-style list of all changes
to a method (IDs 4, 5, 6, 7, 8, 9, 10, 13, 14), while seven liked Ra-
tionalizer’s integration with the editor (IDs 4, 5, 8, 9, 10, 11, 12).
One participant (ID 14) said Deep Intellisense had a “traditional”
user interface that felt more familiar to them.

A few participants showed general enthusiasm about the tools.
One said that Rationalizer had a more “intelligent” user interface
than Deep Intellisense (ID 12). One participant had not been aware
these kind of tools existed and found them exciting (ID 7); an-
other volunteered that they seemed “a hundred times better” than
the tools that participant currently used (ID 14).

Some participants wanted to extend or integrate the tools. Five
expressed a desire to bring some features of Rationalizer into Deep
Intellisense, or vice versa (IDs 4, 5, 7, 8, 10). One participant
wanted to adopt the tools and customize them for their own needs
(ID 10).

Participants identified various problems with the tools and made
suggestions for improvement. Five wanted linkages between bugs
and changesets to be more clearly indicated (IDs 5, 7, 9, 11, 14).
Six participants expressed confusion with scrolling through large
volumes of column information in Rationalizer (e.g., participant 7

remarked that they “could miss something”) and/or desired more
powerful filtering (IDs 5, 7, 9, 10, 12, 14). Similarly, one partic-
ipant found Rationalizer’s columns to be too “busy” and cluttered
(ID 14); however, another thought the columns could fit more infor-
mation (ID 11). Two participants stated that the user interface for
navigating back to past history in Rationalizer was hard to use (IDs
5, 10). Four participants found Deep Intellisense’s summary views
(“current item” and “related people”) to be unintuitive or not use-
ful (IDs 4, 5, 8, 12). Finally, four participants expressed concerns
about the interfaces intruding into their regular work, or the easi-
ness of turning the interface on and off. Two of these found Deep
Intellisense more intrusive (IDs 4, 8), while the other two found
Rationalizer more intrusive (IDs 6, 14).

4.4 Threats to Validity
The generalizability of our results is threatened by two factors.

First, our study involved only eight software history investigation
questions related to a system unfamiliar to the participants. These
questions may not be representative of participant behaviour on
software history questions encountered in the wild. However, we
believe this risk is mitigated by the facts that participants gener-
ally showed good comprehension of what the questions were ask-
ing and several participants mentioned real-world experience with
similar types of questions. Second, we do not know how represen-
tative the 11 participants in our study are of the general developer
population. As the majority of the participants had over a year’s
experience with bug and with source repositories, we believe the
participants had sufficient background to represent non-novice de-
velopers.

5. DISCUSSION
Historical information about a software system is accessible thr-

ough a structured, but non-trivial, web of information from multi-
ple, inter-connected repositories, as shown in Figure 3. Through the
study we conducted, we showed that the difficulty of performing
certain kinds of software history investigation tasks with a tool de-
pends partly upon the number of user interface operations required
to answer the question in that tool. These results raise the ques-
tion of what kind of user interface is best for supporting software
history investigations. The answer rests in which kinds of tasks de-
velopers frequently perform. Gaining this frequency information
requires more in-depth studies of developers at work.

Even before general interfaces are designed for supporting soft-
ware history investigations, the results of our study provide useful
input to researchers creating mining and other tools that display
software history information as part of their results. Researchers
can use the model we have introduced to help gauge which infor-
mation is most likely to be needed by users of their tool and thus
which style of interface is most likely to support the users best.

Future investigations may also consider how the contrasting user
interface approaches we have studied through our two tools (breadth
vs. depth, editor integration vs. separate views, line-based vs. code
element-based searches) could be combined in different ways. New
history exploration tools could merge the strengths of both of our
tools. For instance, clicking on a revision in a Deep Intellisense-
style events view could (as requested by some users) highlight the
lines changed by that revision in the editor. Another possibility
would be to make a Deep Intellisense-style events view available
on demand from a Rationalizer-style breadth-first interface so that
users could explore a line’s history more deeply if desired.

Our model of task difficulty, based as it is on operation counts,
assumes that users know the right steps to take and that the diffi-
culty of a task is proportional to the number of steps. However, in

DI.A1 R.A1 DI.A2 R.A2 DI.A3 R.A3 DI.A4 R.A4 DI.B1 R.B1 DI.B2 R.B2 DI.B3 R.B3 DI.B4 R.B4

1
2

3
4

5

User Satisfaction Rating

Tool and Question

R
a

ti
n

g
 (

1
 w

o
rs

t,
 5

 b
e

s
t)

Figure 4: User satisfaction ratings.

our observation of participant interaction with the tools, we found
that long delays and failures to complete tasks usually resulted from
taking wrong steps or having difficulty in finding the next correct
step. Some of these episodes of user disorientation occurred be-
cause particular users were still learning how to use the tools and
were not aware of some of their features (e.g., they did not real-
ize it was possible to access past revisions through hyperlinks in
Rationalizer); these arguably might occur less for users who were
experts with the tools. However, some types of disorientation might
affect even a user who was experienced with the tools; for instance,
they might form mistaken hypotheses about code rationale based
on bugs that seem relevant at first glance, then realize their mistake
and backtrack. These observations suggest that an improved model
of software history exploration should attempt to take into account
potential sources of user mistakes and confusion. For example, it
might consider how many paths are available at each step and es-
timate how many wrong paths the user might take before finding a
correct one and how long it might take the user to recover from a
wrong decision.

6. RELATED WORK
A number of recent studies have considered the information nee-

ds of software developers. Sillito and colleagues [23] focused on
eliciting the questions programmers ask as they work on software
evolution tasks. LaToza et al. [21] found that many developer prob-
lems arose from expending effort trying to reconstruct an appropri-
ate mental model for their code. Ko et al. [17] observed work-
ing developers to identify their information needs, and found that
questions about why code was implemented a certain way were fre-
quent but often difficult to answer, and that developers sometimes
used revision histories and bug reports to attempt to answer such
questions. LaToza and Myers [19] conducted a large survey of pro-
fessional developers and identified 21 categories of questions the
developers found hard to answer; their most frequently reported
categories dealt with the intent and rationale behind code. In this
paper, we have investigated how different user interfaces may sup-
port a subset of these questions related to software history.

Previous work in software history mining has proposed mod-

els for the entities and relationships involved in software history.
Hipikat [7] provided an artifact linkages schema which is similar
to our ER model (Figure 3), but incorporates other types of his-
torical artifacts such as project documents and forum messages.
Bridge [24] modeled software-related artifacts from multiple repos-
itories as a directed multi-graph, and attempted to discover relation-
ships between artifacts using textual allusions.

LaToza and Myers [20] argue that understanding the strategies
that software developers choose and modeling how they decide
between strategies is an important way to identify challenges that
should be addressed by tools; they call for a theory of coding ac-
tivity that could, among other things, help designers identify as-
sumptions made by tools. Our modeling of software history navi-
gation in terms of basic operations attempts to predict the simplest
strategy possible under particular tool designs, although it does not
attempt to predict how developers might choose between different
possible strategies. Our operation model has some resemblance to
the classic GOMS model introduced by Card et al. [3, 4]; however,
it does not attempt to model operation sequences at the level of
fine-grained detail found in classical GOMS analyses and does not
attempt to predict precise task execution times. It shares a key lim-
itation of GOMS, in that it postulates an expert user who knows the
correct sequence of operations to perform for any task, and does not
take into account learning, user errors, mental workload or fatigue.

As mentioned in the introduction, a number of common tools,
such as CVS’ “annotate” feature, provide developers with access to
historical information in current IDEs. IBM Rational Team Con-
cert [14] takes these tools a step further by augmenting the Eclipse
“annotate” feature with references to work items. As these ref-
erences are provided only at the margin of the editor in minimal
space, they must be traversed one-by-one to extract their full in-
formation. The Rationalizer user interface introduced in this paper
is similar to the tools just described, but attempts to provide more
information in an immediately visible manner to the user.

A number of research software visualization systems have as-
signed colours to code lines for various purposes. The early SeeSoft
system created by Ball and Eick [1] showed large codebases in a
condensed graphical representation; files were shown as tall, thin

DI.A1 R.A1 DI.A2 R.A2 DI.A3 R.A3 DI.A4 R.A4 DI.B1 R.B1 DI.B2 R.B2 DI.B3 R.B3 DI.B4 R.B4

0
2

0
4

0
6

0
8

0
1

0
0

User Answer Correctness

Tool and Question

%
 s

c
o

re
d
 c

o
rr

e
c
t

Figure 5: User answer correctness scores.

rectangles wherein each code line was represented by a thin colour-
ed horizontal line. The colouring could represent code age or indi-
cate where bug fixes had affected files. Subsequent systems such as
Augur [11] and Tarantula [15] built on this idea. Tarantula showed
codebases coloured according to test suite coverage. Augur showed
multiple code files coloured according to properties such as code
age, and allowed users to explore changes in the code over time
using a slider. Voinea and colleagues [25, 26] explored the do-
main of software evolution visualization extensively and produced
a variety of visualization techniques for exploring the history of
source code files and entire codebases. All of these tools focus on
providing large-scale overview visualizations of files, modules or
projects. By contrast, the tools we have evaluated in this paper fo-
cus on helping developers answer questions about particular lines
and code elements in the context of a file editor.

Grammel et al. [12] argue that software engineering research
tools are insufficiently customizable and inadequately grounded in
the practices of real developers. They suggest a style of software
analysis tool that works like a web mashup to integrate different
sources of information. They recognize Deep Intellisense as a step
towards leveraging multiple sources of information but note that its
interface is not highly customizable. They cite Fritz and Murphy’s
“information fragments” tool [10] as an example of the more flex-
ible kind of information composition they advocate. They believe
the “conceptual workspace” of Ko et al. [18] also realizes their vi-
sion because of its support for “collecting task-related information
fragments” so they can be seen “side-by-side”. We believe the Ra-
tionalizer style of interface may provide a step towards aspects of
their vision, as it could in principle be extended to support show-
ing many kinds of information in resizable background columns
side-by-side with code on demand.

7. SUMMARY
Developers frequently ask questions that require software history

information to answer. Many approaches and tools have been de-
veloped to mine software history and present access to interesting
historical information. However, little research has been devoted to
finding the best style of user interface with which to present such

information. In this paper, we have introduced a model of soft-
ware history information and shown how it can be used to reason
about the difficulty of performing historical investigations with dif-
ferent styles of user interfaces. We have shown that this model
can be used to predict how the difficulty of performing different
types of historical exploration tasks varies between different inter-
face styles. Further investigation will be necessary to determine
the relative frequency in real-world development of the types of
historical questions we identified. The results of our study can give
tool developers insight into how their user interface design choices
impact the efficiency of history exploration tasks.

8. ACKNOWLEDGMENTS
We thank Thomas Fritz for his comments on an earlier version of

this paper. Our thanks also go to Andrew Begel, Arie van Deursen,
and attendees of the June 2010 Vancouver Eclipse Demo Camp for
their feedback on early versions of our tools, and to all of our study
participants for their time and feedback. We thank the anonymous
reviewers for their helpful comments. This work was partially sup-
ported by NSERC and the Institute for Computing, Information and
Cognitive Systems (ICICS) at UBC.

9. REFERENCES
[1] T. Ball and S. G. Eick. Software visualization in the large.

Computer, 29(4):33–43, 1996.
[2] A. W. J. Bradley. Supporting software history exploration.

Master’s thesis, University of British Columbia, expected
April 2011.

[3] S. K. Card, T. P. Moran, and A. Newell. Computer
text-editing: An information-processing analysis of a routine
cognitive skill. Cognitive Psychology, 12(1):32–74, 1980.

[4] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level
model for user performance time with interactive systems.
Commun. ACM, 23:396–410, July 1980.

[5] P. Cederqvist et al. Version Management with CVS (release
1.11.23), May 2008. Cf. appendix A.8: http://ximbiot.com/
cvs/manual/cvs-1.11.23/cvs_16.html#SEC126.

[6] P. P.-S. Chen. The entity-relationship model—toward a
unified view of data. ACM Trans. Database Syst., 1:9–36,
March 1976.

[7] D. Čubranić and G. C. Murphy. Hipikat: recommending
pertinent software development artifacts. In ICSE ’03:
Proceedings of the 25th International Conference on
Software Engineering, pages 408–418, Washington, DC,
USA, 2003. IEEE Computer Society.

[8] P. Deva. Folding in Eclipse text editors. Eclipse Corner
article, Mar. 2005. http://www.eclipse.org/articles/Article-
Folding-in-Eclipse-Text-Editors/folding.html.

[9] The Eclipse Foundation. Determining who last modified a
line with the Annotate command (Eclipse documentation),
2010. http://help.eclipse.org/helios/index.jsp?topic=/org.e-
clipse.platform.doc.user/tasks/tasks-cvs-annotate.htm.

[10] T. Fritz and G. C. Murphy. Using information fragments to
answer the questions developers ask. In Proceedings of the
32nd International Conference on Software Engineering,
ICSE ’10, pages 175–184, New York, NY, USA, 2010. ACM.

[11] J. Froehlich and P. Dourish. Unifying artifacts and activities
in a visual tool for distributed software development teams.
In Proceedings of the 26th International Conference on
Software Engineering, ICSE ’04, pages 387–396,
Washington, DC, USA, 2004. IEEE Computer Society.

[12] L. Grammel, C. Treude, and M.-A. Storey. Mashup
environments in software engineering. In Proceedings of the
1st Workshop on Web 2.0 for Software Engineering, Web2SE
’10, pages 24–25, New York, NY, USA, 2010. ACM.

[13] R. Holmes and A. Begel. Deep Intellisense: a tool for
rehydrating evaporated information. In Proceedings of the
2008 International Working Conference on Mining Software
Repositories, pages 23–26, Leipzig, Germany, 2008. ACM.

[14] IBM Corporation. Viewing annotations (IBM Rational Team
Concert 2.0.0.2 online help), 2009.
http://publib.boulder.ibm.com/infocenter/rtc/v2r0m0/topic/
com.ibm.team.scm.doc/topics/t_annotate.html.

[15] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the
24th International Conference on Software Engineering,
ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

[16] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT ’06/FSE-14, pages 1–11,

New York, NY, USA, 2006. ACM.
[17] A. J. Ko, R. DeLine, and G. Venolia. Information needs in

collocated software development teams. In ICSE ’07:
Proceedings of the 29th International Conference on
Software Engineering, pages 344–353, Washington, DC,
USA, 2007. IEEE Computer Society.

[18] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks.
IEEE Trans. Softw. Eng., 32(12):971–987, December 2006.

[19] T. D. LaToza and B. A. Myers. Hard-to-answer questions
about code. In Evaluation and Usability of Programming
Languages and Tools, PLATEAU ’10, pages 8:1–8:6, New
York, NY, USA, 2010. ACM.

[20] T. D. LaToza and B. A. Myers. On the importance of
understanding the strategies that developers use. In CHASE
’10: Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering,
pages 72–75, New York, NY, USA, 2010. ACM.

[21] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In ICSE
’06: Proceedings of the 28th International Conference on
Software Engineering, pages 492–501, New York, NY, USA,
2006. ACM.

[22] Mozilla Developer Centre. Hacking with Bonsai, May 2009.
https://developer.mozilla.org/en/Hacking_with_Bonsai.

[23] J. Sillito, G. C. Murphy, and K. De Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
SIGSOFT ’06/FSE-14, pages 23–34, New York, NY, USA,
2006. ACM.

[24] G. Venolia. Textual allusions to artifacts in software-related
repositories. In MSR ’06: Proceedings of the 2006
International Workshop on Mining Software Repositories,
pages 151–154, New York, NY, USA, 2006. ACM.

[25] L. Voinea and A. Telea. Visual querying and analysis of large
software repositories. Empirical Softw. Engg.,
14(3):316–340, June 2009.

[26] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan:
visualization of code evolution. In SoftVis ’05: Proceedings
of the 2005 ACM Symposium on Software Visualization,
pages 47–56, New York, NY, USA, 2005. ACM.

	1 Introduction
	2 Two Tools for Software History Exploration
	2.1 Deep Intellisense
	2.2 Rationalizer

	3 Modeling History Exploration
	3.1 Predictions
	3.1.1 Finding Immediate History for Code
	3.1.2 Finding Deep History for Code
	3.1.3 Finding Related Code for History Item (Person or Bug)
	3.1.4 Following References

	3.2 Limitations of Analysis

	4 Evaluation
	4.1 Study Design
	4.2 Participants
	4.3 Results
	4.3.1 Model Predictions
	4.3.2 Design Characteristics
	4.3.3 Tool Preferences
	4.3.4 General Comments

	4.4 Threats to Validity

	5 Discussion
	6 Related Work
	7 Summary
	8 Acknowledgments
	9 References

