
Seeing Skin in Reduced Coordinates

Debanga R. Neog, Anurag Ranjan, and Dinesh K. Pai
Sensorimotor Systems Laboratory, University of British Columbia, Vancouver, Canada

Abstract—We present a skin tracking and reconstruction
method that uses a monocular camera and a depth sensor to
recover skin sliding motions on the surface of a deforming object.
Such depth cameras are widely available. Our key idea is to
use a reduced coordinate framework that implicitly constrains
skin to conform to the shape of the underlying object when
it slides. The skin configuration in 3D can then be efficiently
reconstructed by tracking two dimensional skin features in video.
This representation is well suited for tracking subtle skin move-
ments in the upper face and on the hand. The reconstructed skin
motions have many uses, including synthesizing and retargeting
animations, recognizing facial expressions, and for learning data-
driven models of skin movement. In our face tracking examples,
we recover subtle but important details of skin movement around
the eyes. We validated the algorithm using a hand gesture
sequence with known skin motion, recovering skin sliding motion
with a low reconstruction error.

I. INTRODUCTION

Technology for reconstructing and tracking 3D shapes is
now widely available, especially due to the availability of
inexpensive sensors such as Microsoft’s Kinect and Intel’s Re-
alSense cameras. In conjunction with template-based motion
tracking [1–4], one can generate a sequence of 3D meshes
that represent the shape of the body. However, these mesh
animations do not accurately capture the motion of skin, since
skin can slide over the body without changing the body’s
shape. For example the skin on the face and hands can stretch,
wrinkle, and slide during natural movements without being
detected by a depth sensor. Here we propose a new method
for capturing the sliding motion of skin over a body using the
color video information that is usually available in addition to
depth.

The key observation is that the skin and muscles of the
face, especially around the eyes, and on the back of the hand,
are very thin and sheet-like [5]. In such regions, skin can be
well approximated as a thin sheet sliding on the surface of
an underlying rigid or articulated rigid body structure, which
we call body. This approximation allows us to represent skin
in a low dimensional space and implicitly constrain it to
always slide on the surface of the body. This is the core
idea of our proposed method, which allows it to efficiently
reconstruct subtle skin sliding motions. Such motions are
small but highly noticeable, especially in the face. Capturing
such skin movements from human subjects can enable the
construction of data driven models of the face [6].

Facial expressions are one of the key components of ef-
fective communication. Emotions such as anger, happiness,
or sadness are accompanied by characteristic facial tissue
deformations. Eye movements are particularly important for

non-verbal communication; in addition to changes in gaze, the
configuration of the skin around the eyes convey significant
information about our mental and physical states that can be
recognized even from single images [7].

Surprisingly, there is very little research that focuses on
tracking and reconstructing skin in the eye region. Recent
work by Bermano, et al. [8] tracked eyelid motions and skin
deformation around the eyes using a complex multiple camera
setup, but reconstructed only simple motions such as blinking.
On the other hand, in some other work eyelid margins are
tracked but detailed skin deformation around the eyes are
ignored [9–11]. Garrido, et al. [12] estimated 3D structure
of the face and refined the shape using photometric and
optical flow constraints using a monocular setup, but ignored
the fine reconstruction of eyelid motions. Currently, to our
knowledge, no method exists to track and reconstruct skin
sliding deformation around the eyes using a simple monocular
camera setup.

Recovering 3D shape from monocular capture is an ill-
posed problem and several constraints are imposed to limit the
range of solutions. Two widely known techniques are non-rigid
structure from motion [13, 14] and shape from template [12,
15]. The Non-rigid Structure from Motion techniques (NRSfM)
[13, 16, 17] are used to recover non-rigid structures from a
sequence of images that captures motion of the object. The
NRSfM offers a model-free formulation but it usually requires
correspondences in a long image sequence. On the other hand,
shape from template techniques use the constraints imposed by
isometric or conformal deformations to reconstruct 3D shape
[12, 15, 18, 19].

Our work is related to shape from template techniques such
as the work of Garrido, et al. [12]. Our proposed reduced co-
ordinate representation of skin allows recovery of skin sliding
motion in the eye region using a monocular image sequence.
Our framework is general and not limited to reconstructing
facial skin; it can be used to reconstruct skin sliding motions
on any deforming body, as long as skin shares the shape of
the body when it slides. For example, we can model skin
deformation on hands when we perform hand gestures. Our
proposed method complements current hand tracking methods
[2, 3, 20] and generates detail skin sliding motions from
already available data from these tracking systems.

Contributions. Our main contribution is the use of a
reduced coordinate representation of skin to track and re-
construct skin sliding during facial expressions and hand
gestures. This representation makes our system efficient and
robust. Our method complements existing face and gesture
tracking techniques by recovering characteristic skin sliding
motions from a sequence of images. The reduced coordinate978-1-5090-4023-0/17/$31.00 c©2017 IEEE

representation automatically constrains skin to slide on the
tracked surface. Furthermore, it is easy to use, with minimal
setup. It can utilize widely available RGB-D cameras and can
use any optical flow technique. Our algorithm can correct two
types of errors: first, tracking drift generated by the optical
flow technique, and second, 3D reconstruction error due to
error in the mappings of reduced coordinate representation to
3D.

The remainder of the paper is organized as follows. We
describe the reduced coordinate representation in Sec. II-A
and tracking details in Sec. II-B. The results are presented in
Sec. III, while the limitations of our method are mentioned in
Sec. III-C. Finally we conclude our paper in Sec. IV.

II. METHODS

A. Representing Skin Motion in Reduced Coordinates

To represent the sliding motion of skin over a deforming
surface and its measurement by a video camera, we use the
reduced coordinate representation of skin introduced by Li,
et al. [5]; however, we discretize the skin instead of the
body, i.e., we use a Lagrangian discretization. See Fig.1. Our
reduced coordinate system has several benefits that makes it
efficient and robust. First, by representing three dimensional
skin in a two-dimensional space we can efficiently compute
skin configuration. Second, by constraining the synthesized
skin movement to always slide tangentially on the underlying
body, our skin reconstruction is robust against bulging and
shrinking and other interpolation artifacts.

Fig. 1. Overview of spaces related to skin tracking.

Since skin is a thin structure that slides on an underlying
body, we need to represent the skin and body separately.
We will assume that the character mesh to be animated is
discretized into a triangular mesh in a reference pose in 3D.
The skin and body meshes are aligned in the reference pose
(top row, Fig.1). The skin is parameterized by a map π, using
an atlas of rectangular coordinate charts.

Following the notation of Li, et al. [5], skin points are
denoted X in 3D and u in 2D chart coordinates. By a small
but common abuse of notation, we will use the same symbols

to denote the set of points corresponding to vertices of the
skin mesh, represented as stacked vectors.

They are related as:

X = π(u). (1)

Each chart may be associated with a texture image I. Such
meshes, parameterization, and textures can all be obtained
from standard RGDB scanning and mesh registration tech-
niques (in our examples we used FaceShift [1]).

As the characters move in 3D, we assume they are imaged
with some RGB-D system which produces a body mesh x̃t

at frame t. It is usually produced by some variant of the ICP
algorithm with point cloud data. However, the key point is
that these meshes capture the body shape but not the sliding
of skin over the body. The true skin mesh, xt, is no longer
aligned with the body mesh x̃t. Our goal is to reconstruct xt.

To this end, the skin is imaged by a camera, with associated
projection matrix P , to produce a color image It. The image
coordinate of the skin vertex xt is denoted ut. Therefore, we
can write:

ut = P (xt). (2)

Note that since we have depth information from the body
mesh x̃t, P is essentially a 3D projective transformation (and
not a projection) and therefore invertible. This inverse is called
the body map Mt, and it maps a skin point in the camera
coordinates on to the body surface.

Finally, note that once we know the locations u of mesh
vertices in an image, we can define a function f in the visible
regions of skin, from the atlas to image, by interpolating the
values between vertices. This function can be used to warp or
transfer pixels from the texture atlas images I to the camera
image.

B. Reduced Coordinate Tracking

Our reduced coordinate skin tracking and reconstruction
algorithm is summarized in Algorithm 1. Here we describe
different components of this algorithm in greater detail.

1) Inputs: Our system requires a sequence of 3D meshes
registered to the motion of a object. We call this sequence a
‘body sequence’ (or x̃t, t = 1 : T). The body sequence can be
obtained by any mesh tracking technique (e.g., [2, 3]). For our
face tracking example (Sec. III-A), we used FaceShift [1] to
generate the body sequence. Any calibrated monocular camera
can used to produce the image sequence.

2) Initialization: To bootstrap the flow computations, we
need u0 and I0. We first estimate the initial body mesh x̃0.
In many cases, it is the same as the reference mesh X; if not,
a registration step is performed to align the two. Then we
project x̃0 using P to obtain u0 in image coordinates. Since
the vertex coordinates for each mesh triangle are known in
both image coordinates and in the texture images I, we can
synthesize I0 by warping each triangle’s pixels from I to I0.

Algorithm 1: Skin Tracking in Reduced Coordinates
Input : Reference mesh X, with a set of reference

texture images I; projection matrix P ; for
t = 1 : T , a sequence of body meshes x̃t and
camera images It

Output: Sequence of skin configuration, xt

1 Initialization: Set u0 and I0, using X and I

2 for t = 1 to T do
3 Generate: body map Mt

4 Compute: dense optical flow wp from It−1 to It
5 Using correspondences between u0 and u∗

t , where
u∗
t = ut−1 +wp, warp I with f to generate I∗t

6 Compute: corrective dense optical flow wc from It to
I∗t to remove drift in flow

7 Update flow: w = wp + wc // Eq. 3
8 Advect: ut = ut−1 + w // Eq. 4
9 Optimize: to improve 3D reconstruction // Eq. 5

xt = argminx(‖Px− ut‖2 + λ ‖x−Mt(ut)‖2)
10 end
11 return xt

3) Flow Computation and Correction: We use a dense
tracker proposed by Brox and Malik [21] to estimate the flow
wp between It−1 and It. We advect the tracked point locations
ut−1 as: u∗

t = ut−1+wp. The error in optical flow produces
drift in the location of the tracked points with time. For longer
sequences, the error quickly grows over frames. Therefore, to
correct this drift we warp the texture images I to the frame It
using Barycentric interpolation based on the locations of the
tracked points (i.e., the function f in Fig.1) to produce I∗t . We
compute a new dense flow wc from It to I∗t . Then we correct
the flow to obtain the final flow w as follows:

w = wp +wc. (3)

Using w we get the final locations of the tracked points by
advecting ut−1:

ut = ut−1 +w. (4)

Our algorithm can accommodate both feature-based or dense
optical flow techniques. We used Large Displacement Optical
Flow in our examples. It is a computationally expensive dense
optical flow technique, but produces very low reconstruction
errors. On the other hand, we also experimented with fast but
less accurate Kanade-Lucas-Tomasi (KLT) feature tracker. The
results are documented in Sec. III.

4) Generating Body Map: As we discussed earlier, we
use a body map Mt to reconstruct 3D skin in the physical
space. To generate this map at t, we project the body mesh
x̃t on the image It using P (cf., Eq. 2) to obtain ũt. Mt

maps ũt to 3D mesh points x̃t, and it is an inverse of the
projective transformation P . We use Matlab’s implementation
of natural neighbor interpolation [22] to generate Mt using
these points. Using this mapping, we can estimate 3D location
corresponding to other query points ũ. Instead of using natural

neighbor interpolation we can also use linear interpolation
techniques, which are faster but result in higher interpolation
errors.

5) 3D Reconstruction.: Now, using Mt we could, in theory,
reconstruct the 3D skin position as xt = Mt(ut). However
this did not give the best results. Recall that the real skin mesh
is not aligned with the body mesh. So the reconstructed skin
point may not lie exactly on the body surface. To correct this,
we also reproject reconstructed skin points onto the image and
try to keep their locations in image coordinates close to that
of the corresponding tracked skin points. This is implemented
as an optimization that weights the two terms:

xt = argmin
x

(‖Px− ut‖2 + λ ‖x−Mt(ut)‖2). (5)

The first term corresponds to minimizing the reprojection
error, while the second term keeps the 3D reconstructed
point close to the approximated body surface. We solve the
optimization problem using a nonlinear Quasi-Newton solver
in Matlab. For a given tracking system, we estimated λ by
cross validating across a few set of examples. This value
of λ is subsequently used for other data obtained from the
same tracking system, and we obtained similar high quality
results. For both face tracking and hand tracking examples we
estimated λ = 0.1.

III. RESULTS

We tested the results using two examples: first, we track
and reconstruct characteristic skin sliding around the eyes, and
second, we reconstruct sliding motions of skin on the hand in
synthetic hand gesture sequences. The second example also
contains ground truth data of skin sliding and we use that
to validate our method. The code is written in Matlab 2015b
(MathWorks, Inc.) and C++ on a desktop with an Intel Core
i7 processor and 64GB of RAM. See our supplementary video
in our project webpage1.

A. Face Tracking

The face tracking example shows how using a simple
monocular camera setup we can recover detailed motions of
skin around the eyes. Here we briefly describe the experimen-
tal setup. The setup is shown in Fig. 2(a). We used a single
Grasshopper32 camera, that can capture up to 120 fps with
image resolution of 1960×1200 pixels. The actor sits on a
chair and faces the camera with the head rested on a chin
rest. The scene was lit by a DC powered LED light source3

to overcome the flickering due to aliasing effects of an AC
light source on a high frame rate capture. We used polarizing
filters with the cameras to reduce specularity. We calibrated the
camera using Matlab’s Computer Vision System Toolbox. We
used FaceShift [1] technology with a Kinect RGB-D camera to
obtain the body mesh. This process took less than 15 minutes
per actor.

1http://www.cs.ubc.ca/research/seeingskininreducedcoordinates
2Point Grey Research, Vancouver, Canada
3https://www.superbrightleds.com

Fig. 2. We use a monocular capture setup (a) to capture subjects. Using a body (b) and skin tracked in an image sequence (c:top). These information along
with the input image, we can reconstruct 3D skin (c:bottom). The whole sequence assumes a fixed body. See the video for the complete sequence.

For faces, a single chart and texture image is sufficient, and
matches the common practice. In our algorithm we use dense
flow to track skin features in the image but tracking the eyelid
margins is challenging because of occlusions that occur due
to eyelashes and eyelid folds. Therefore, we tracked eyelid
margins separately using an artificial neural network (ANN).
We use a feed forward network (using Matlab fitnet) with
5 neurons in the hidden layer. To generate the features, we
crop the eyelid region from the input RGB images and reduce
it to 110 dimensions using PCA. The output of the model is
the locations of 20 control points (manually annotated) that
represent the shapes of the eyelid margins. For training we
used 98 frames from a video of 2335 frames. Eyelid margins
are manually annotated. We cross-validated the model output
with the manually annotated data set, and obtained an error
(RMSE) of 1.2 pixels per eyelid marker on average per image
frame.

The results of skin reconstruction around the eyes for a
sequence where the subject looks around is shown in Fig. 2(c).
In this example, the eyelid margin produces complex shapes
and eyelid skin slides over the skull and globe surface. This
makes it a perfect example to demonstrate the applicability
of our reduced coordinate representation of skin as discussed
in Sec. II-A. Our result shows recovering the characteristic
deformation of eyelids can greatly enhance the expressiveness;
as humans are very sensitive to even subtle skin motions
in the eye region. We approximate skull and globe as one
rigid structure on which eyelid skin slides. Therefore, we
combined the face reconstructed by FaceShift with a globe
model to generate a body mesh that approximates the body
mesh on which skin slides. See Fig. 2(b). We also show skin
reconstruction of a blink sequence in Fig. 3. In this example
our reconstruction can also recover medial motion of lower
eyelid skin, which is normally observed in human blinks.

B. Hand Tracking

To validate our algorithm with ground truth data for which
the true skin movement was known, we used a hand tracking
example with two artist generated animations of body motion.
In the first animation the little finger is flexed, and in the
second animation all the fingers are flexed to produce a

Fig. 3. Skin motion reconstruction in a blink sequence. Top row shows
tracking points (red mesh) on input images. Bottom row shows 3D skin
reconstructions.

hand grasping gesture. To the generate ground truth data we
simulated skin sliding on the body using the skin simulation
software Vital Skin4. The skin was then rendered using Au-
todesk’s Maya software to generate an image sequence (1k
× 1k resolution). The original animation and rendered image
sequences are used as input to our algorithm.

We tracked and reconstructed 3D skin using our algorithm
and compared against the ground truth skin movement to
evaluate reconstruction error. The results of tracking are shown
in Fig. 6. As expected, the projection of the body meshes
shows large error from the ground truth as skin sliding motions
are missing, whereas the error of our motion tracking remains
low. In Fig. 6(b), the root mean squared error (RMSE) is
plotted against the frame number, and the result of our tracking
without motion refinement (shown in black) is also included.
Without motion refinement the error gradually increases due to
drift in optical flow (shown in black), but the refinement step
reduces the drift (in blue) which shows 52.57% reduction in
error in the last frame of the hand tracking sequence. Note that
the accuracy of tracking would vary depending on the tracking
algorithm used. For example, in the last frame of the finger
flexing example, dense LDOF algorithm performs better with
RMSE tracking error of 0.44 ± 0.12 pixels than feature-based
KLT algorithm with RMSE error of 1.01 ± 0.29 pixels.

As discussed in Sec. II-B, we reconstruct 3D skin meshes
sliding on the hand in physical space. The reconstructed skin
meshes are very similar to the ground truth as we can see
quantitatively in Fig. 7. The heatmaps depict the errors of
each mesh vertex is measured as a distance (in cm) from the

4http://www.vitalmechanics.com/

Fig. 4. Hand Tracking: Reconstruction of 3D skin for three frames in a hand movement sequence. The sliding motion of skin is produced by the flexion of
the small finger. In the top row, the input body and image sequence is shown. In the bottom row, we show the 3D reconstruction of skin along with a zoomed
in version to illustrate skin sliding. The red arrow in the last frame shows an approximate direction of skin sliding. See supplementary video to visualize the
motion.

Fig. 5. Skin Reconstruction in a hand grasping gesture.

Fig. 6. Skin tracking error in image coordinates for hand tracking experiment.
in (a) the errors are measured as ∞-norm between the tracked points and
corresponding ground truth, in pixels. The body mesh is expected to produce
high error (red) as it does not include skin sliding. In (b) we show that our
algorithm produces low RMSE error with drift correction (blue: with drift
correction, black: without drift correction).

ground truth mesh for three frames (with interpolation), while
the plot shows the ∞-norm of the overall mesh vertices for
all the frames. A qualitative comparison is shown in Fig. 8. In
our unoptimized Matlab implementation, on average, it takes
185s to compute the flow (with motion refinement) between

Fig. 7. Reconstruction error (in cm) of body sequence (top) and reconstructed
skin (middle) from ground truth is shown in heatmaps on a rest pose. In bottom
row, the errors (in∞-norm) are plotted for all 25 frames in the hand tracking
experiment.

two images (of size 1k square), 0.0078s to generate body map,
and 7.54s to correct 3D skin reconstruction. We listed the
reconstruction errors in mm in Table. I. The table includes
result of both finger flexing and hand grasping sequences. See
Fig. 5. In this case the hand grasping example has slightly
high error as the motion is more extreme. Finally in Fig. 4,
we show our reconstructed skin with texturing. The motion of
the tattoo in the bottom row of Fig. 4 emphasizes the sliding
of skin. Here skin can be thought of as the texture sliding on
the body surface. To see the complete reconstruction sequence,
please refer to our supplementary video.

Fig. 8. Comparison of reconstructed 3D skin (blue) and ground truth (red)
in hand tracking experiment.

TABLE I
SKIN RECONSTRUCTION ERROR IN HAND TRACKING EXPERIMENT

Type Error(mm) Frame 5 Frame 15 Frame 25
Finger ∞-norm 1.02 1.56 1.41
Flexing RMSE 0.3 ± 0.16 0.33 ± 0.19 0.41 ± 0.2
Hand ∞-norm 1.29 1.54 2.63

Grasping RMSE 0.51 ± 0.25 0.79 ± 0.33 0.81 ± 0.42

C. Limitations

Our system has a few limitations. It requires the tracked
skin features to be visible in entire image sequence to make
sure that the skin points are not lost during tracking due to
occlusions. Another situation where reconstruction error is
high is when tracked points reaches the border of the visible
skin region. There are two reasons for this: first, in the border
body maps could be generated by extrapolation which is often
unreliable due to noise, and second, when the surface normal
is not well aligned with the camera axis, 3D reconstruction is
very sensitive to small error in tracking. Another limitation is
that our reduced representation of skin cannot model out-of-
plane deformations of skin, such as wrinkles. But fortunately,
in our pipeline, these effects can be easily added by using
normal or displacement maps.

IV. CONCLUSION

We proposed an efficient skin tracking and reconstruction
algorithm that uses a reduced coordinate representation of skin.
Using this representation, our method efficiently recovers 3D
skin sliding motion by tracking 2D skin features in an image
sequence. Most of the current face and gesture tracking and
reconstruction methods ignore skin sliding, but our examples
show that by recovering skin sliding we can add realism to an
existing animation. Although we only showed applications of
our method in facial expression and hand gesture examples,
our method is very general and can be easily applied to other
deforming objects with sliding surfaces.

V. ACKNOWLEDGMENTS

This work was supported in part by grants from NSERC,
Canada Foundation for Innovation, MITACS, and the Canada

Research Chairs Program. We thank Vital Mechanics Research
for providing the hand model and software.

REFERENCES

[1] S. Bouaziz, Y. Wang, and M. Pauly, “Online modeling for realtime facial
animation,” ACM Trans. on Graphics (TOG), vol. 32, no. 4, p. 40, 2013.

[2] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz, M. Botsch, and
M. Pauly, “Robust articulated-icp for real-time hand tracking,” vol. 34,
no. 5. Wiley Online Library, 2015, pp. 101–114.

[3] J. Taylor et al., “Efficient and precise interactive hand tracking through
joint, continuous optimization of pose and correspondences,” ACM
Trans. on Graphics (TOG), vol. 35, no. 4, p. 143, 2016.

[4] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J.
Black, “Keep it SMPL: Automatic estimation of 3D human pose and
shape from a single image,” Computer Vision – ECCV 2016, Oct. 2016.

[5] D. Li, S. Sueda, D. R. Neog, and D. K. Pai, “Thin skin elastodynamics,”
ACM Trans. on Graphics (TOG), vol. 32, no. 4, p. 49, 2013.

[6] D. R. Neog, J. a. L. Cardoso, A. Ranjan, and D. K. Pai, “Interactive
gaze driven animation of the eye region,” Proceedings of the 21st
International Conference on Web3D Technology, pp. 51–59, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2945292.2945298

[7] Baron-Cohen et al., “The “reading the mind in the eyes” test revised
version: A study with normal adults, and adults with asperger syndrome
or high-functioning autism,” Jour. of child psychology and psychiatry,
vol. 42, no. 2, pp. 241–251, 2001.

[8] A. Bermano, T. Beeler, Y. Kozlov, D. Bradley, B. Bickel, and M. Gross,
“Detailed spatio-temporal reconstruction of eyelids,” ACM Trans. on
Graphics (TOG), vol. 34, no. 4, p. 44, 2015.

[9] T. Moriyama, T. Kanade, J. Xiao, and J. F. Cohn, “Meticulously detailed
eye region model and its application to analysis of facial images,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp.
738–752, 2006.

[10] J. Orozco, O. Rudovic, J. Gonzàlez, and M. Pantic, “Hierarchical on-line
appearance-based tracking for 3d head pose, eyebrows, lips, eyelids and
irises,” Image and vision computing, vol. 31, no. 4, pp. 322–340, 2013.

[11] T. F. Cootes and C. J. Taylor, “On representing edge structure for model
matching,” Computer Vision and Pattern Recognition, IEEE Conference
on, vol. 1, pp. I–1114, 2001.

[12] P. Garrido, L. Valgaerts, C. Wu, and C. Theobalt, “Reconstructing
detailed dynamic face geometry from monocular video.” ACM Trans.
Graph., vol. 32, no. 6, pp. 158–1, 2013.

[13] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid 3d
shape from image streams,” Computer Vision and Pattern Recognition,
IEEE Conference on, vol. 2, pp. 690–696, 2000.

[14] Y. Dai, H. Li, and M. He, “A simple prior-free method for non-rigid
structure-from-motion factorization,” International Journal of Computer
Vision, vol. 107, no. 2, pp. 101–122, 2014.

[15] A. Bartoli et al., “On template-based reconstruction from a single
view: Analytical solutions and proofs of well-posedness for developable,
isometric and conformal surfaces,” Computer Vision and Pattern Recog-
nition, IEEE Conference on, pp. 2026–2033, 2012.

[16] A. Del Bue, “A factorization approach to structure from motion with
shape priors,” Computer Vision and Pattern Recognition, IEEE Confer-
ence on, pp. 1–8, 2008.

[17] P. F. Gotardo and A. M. Martinez, “Computing smooth time trajecto-
ries for camera and deformable shape in structure from motion with
occlusion,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 33, no. 10, pp. 2051–2065, 2011.

[18] A. Malti, R. Hartley, A. Bartoli, and J.-H. Kim, “Monocular template-
based 3d reconstruction of extensible surfaces with local linear elastic-
ity,” Computer Vision and Pattern Recognition, IEEE Conference on,
pp. 1522–1529, 2013.

[19] M. Salzmann, F. Moreno-Noguer, V. Lepetit, and P. Fua, “Closed-form
solution to non-rigid 3d surface registration,” European conference on
computer vision, pp. 581–594, 2008.

[20] M. Oberweger, P. Wohlhart, and V. Lepetit, “Training a feedback
loop for hand pose estimation,” Proceedings of the IEEE International
Conference on Computer Vision, pp. 3316–3324, 2015.

[21] T. Brox and J. Malik, “Large displacement optical flow: descriptor
matching in variational motion estimation,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 33, no. 3, pp. 500–513, 2011.

[22] R. Sibson et al., “A brief description of natural neighbour interpolation,”
Interpreting multivariate data, vol. 21, pp. 21–36, 1981.

