Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Compu	tational A	Analysis of Perfe	ct-Informa	tion
	Po	osition Auctions		

David Robert Martin Thompson and Kevin Leyton-Brown

June 16, 2009

Computation / Position Auctions

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Motivation				

- Position auctions:
 - Billion dollar revenue stream for search engines
 - Auctions evolved in an ad hoc way
 - Auction theorists are catching up: starting to understand how the auctions perform under simplifying assumptions.
 - Performance: putting good ads in good spaces, and generating revenue
 - Which auction performs best?
- Our contribution: computational method for comparing auction performance quantitatively.

向下 イヨト イヨト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

- Position Auctions
- 2 Action Graph Game Representation
- 3 Experimental Setup

向下 イヨト イヨト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

- 1 Position Auctions
- 2 Action Graph Game Representation
- 3 Experimental Setup

Computation / Position Auctions

イロン 不同と 不同と 不同と David Robert Martin Thompson and Kevin Leyton-Brown

- GFP: Yahoo! and Overture 1997-2002
- **uGSP**: Yahoo! 2002-2007
- wGSP: Google, MSN Live, Yahoo! 2007-Present

(4回) (4回) (4回)

3

- GFP: Yahoo! and Overture 1997-2002
- uGSP: Yahoo! 2002-2007
- wGSP: Google, MSN Live, Yahoo! 2007-Present

Question

Is wGSP better than GFP and uGSP?

Computation / Position Auctions

David Robert Martin Thompson and Kevin Leyton-Brown

- 4 回 2 - 4 □ 2 - 4 □

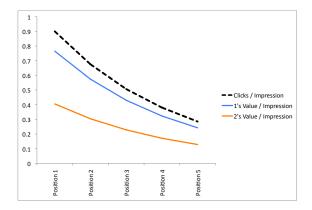
- GFP: Yahoo! and Overture 1997-2002
- uGSP: Yahoo! 2002-2007
- wGSP: Google, MSN Live, Yahoo! 2007-Present

Question

Is wGSP better than GFP and uGSP?

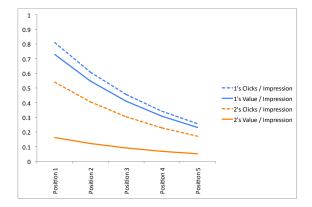
• Better by what metric? Revenue, efficiency

< 同 > < 臣 > < 臣 >


- Terminology:
 - Nash equilibrium: every bidder is acting to maximize her own payoff.
 - Perfect-information game: every bidder knows every other's value / CTR.
 - VCG: a perfectly economically-efficient auction (a common theoretical benchmark)

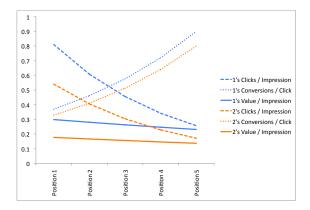
・ 同 ト ・ ヨ ト ・ ヨ ト

- Terminology:
 - Nash equilibrium: every bidder is acting to maximize her own payoff.
 - Perfect-information game: every bidder knows every other's value / CTR.
 - VCG: a perfectly economically-efficient auction (a common theoretical benchmark)
- They also need a structural model of values / CTRs...


(1) マン・ション・

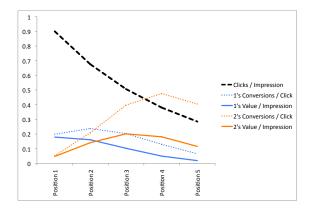
Position AuctionsAGGsExperimental SetupResultsConclusionEdelman, Ostrovsky, Schwarz (2007)

- 4 回 2 - 4 回 2 - 4 回 2


Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Varian (2007)				

Computation / Position Auctions

・ロン ・四と ・ヨン ・ヨン David Robert Martin Thompson and Kevin Leyton-Brown


Position Auctions AGGs **Experimental Setup** Results Conclusion Blumrosen, Hartline, Nong (2008)

Computation / Position Auctions

<ロ> <同> <同> < 同> < 同> < 同> David Robert Martin Thompson and Kevin Leyton-Brown

Position Auctions AGGs **Experimental Setup** Results Conclusion Benisch, Sadeh, Sandholm (2008)

Computation / Position Auctions

イロト イヨト イヨト イヨト David Robert Martin Thompson and Kevin Leyton-Brown

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

4 Results

5 Conclusion

э

- Graphical model like Bayes nets, GAI nets or graphical games
 - Nodes are variables, directed edges denote conditional independence
 - Representation is polynomial for graphs of bounded in-degree
- Nodes represent actions: variable = how many play that action?

(1日) (1日) (日)

- Graphical model like Bayes nets, GAI nets or graphical games
 - Nodes are variables, directed edges denote conditional independence
 - Representation is polynomial for graphs of bounded in-degree
- Nodes represent actions: variable = how many play that action?
- Nodes can also be simple functions (e.g. sum, argmax)

・回 ・ ・ ヨ ・ ・ ヨ ・

- Graphical model like Bayes nets, GAI nets or graphical games
 - Nodes are variables, directed edges denote conditional independence
 - Representation is polynomial for graphs of bounded in-degree
- Nodes represent actions: variable = how many play that action?
- Nodes can also be simple functions (e.g. sum, argmax)
- Expected utility is polynomial in input [Jiang, Leyton-Brown, 2006]
 - Exponential speedup for solvers that use expected utility in inner loop

• n bidders, m bid increments (O(nm) actions)

・ 母 と ・ ヨ と ・ ヨ と

3

Representing GFP as AGG

- n bidders, m bid increments (O(nm) actions)
- For each action, payoff only depends on position
- Sufficient statistic: How many bid the same? How many bid higher? ${\cal O}(n^2)$
 - Easily computed with sum nodes

・ 同 ト ・ ヨ ト ・ ヨ ト

Representing GFP as AGG

- n bidders, m bid increments (O(nm) actions)
- For each action, payoff only depends on position
- Sufficient statistic: How many bid the same? How many bid higher? ${\cal O}(n^2)$
 - Easily computed with sum nodes
- AGG representation $O(n^3m)$ (vs. $O(nm^n)$ in normal form)

・ 同 ト ・ ヨ ト ・ ヨ ト

Representing GSP as AGG

- Additional sufficient statistic: What is the next highest bid? ${\cal O}(nm)$
 - Easily computed with argmax nodes

(4回) (4回) (4回)

Representing GSP as AGG

- Additional sufficient statistic: What is the next highest bid? ${\cal O}(nm)$
 - Easily computed with argmax nodes
- AGG representation ${\cal O}(n^4m^2)$ (vs. ${\cal O}(nm^n)$ in normal form)

・ 同 ト ・ ヨ ト ・ ヨ ト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

4 Results

5 Conclusion

Computation / Position Auctions

David Robert Martin Thompson and Kevin Leyton-Brown

- 4 回 2 - 4 回 2 - 4 回 2 - 4

3

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Problem insta	nces			

- 4 sizes (5-10 bidders, 5-40 increments)
- 4 preference distributions: EOS, V, BHN, BSS (assume uniform distributions where unspecified)
- 100 draws from each distribution, size
 - = 1600 "preference instances"

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Problem insta	nces			

- 4 sizes (5-10 bidders, 5-40 increments)
- 4 preference distributions: EOS, V, BHN, BSS (assume uniform distributions where unspecified)
- 100 draws from each distribution, size = 1600 "preference instances"
- 3 auctions: GFP, uGSP, wGSP
 - = 4800 games

 Remove dominated strategies: bids above an agent's (maximum) value, strategically redundant bids

<回と < 目と < 目と

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Solving games				

- Remove dominated strategies: bids above an agent's (maximum) value, strategically redundant bids
- Two solvers: simpdiv [Scarf, 1967] and gnm [Govindan, Wilson, 2005]
 - implemented in Gambit [McKevley et al, 2006] with AGG dynamic programming optimizations [Jiang, Leyton-Brown, 2006]
 - Run solvers 10 times (with 5 minute cutoff).

(日本) (日本) (日本)

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Equilibrium sel	ection			

• Problem: These games have many equilibria, and equilibrium selection matters. (Enumerating equilibria is infeasible.)

- 4 回 2 - 4 □ 2 - 4 □

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Equilibrium se	lection			

- Problem: These games have many equilibria, and equilibrium selection matters. (Enumerating equilibria is infeasible.)
- We use local search to find (locally) extreme equilibria: min/max revenue/efficiency (4 different objectives).
- SLS algorithm: start from existing equilibria, random improving moves, restart given local optimum.

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Statistical me	thods			

- Blocking, means-of-means, bootstrapping test (across a pair of auctions)
- Non-parametric confidence interval on mean difference
 - Significant if entire $1-\alpha$ confidence interval ≥ 0

(1) マン・ション・

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Statistical me	thods			

- Blocking, means-of-means, bootstrapping test (across a pair of auctions)
- Non-parametric confidence interval on mean difference
 - Significant if entire $1-\alpha$ confidence interval ≥ 0
- Used Bonferroni correction (divide by number of tests, |T| = 80)
- * denotes significant for $\alpha=0.05/|T|$
- ** denotes significant for $\alpha=0.01/|T|$

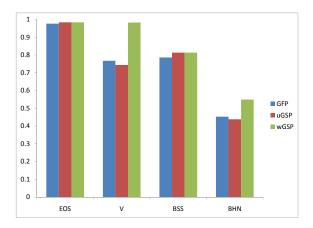
・ 同 ト ・ ヨ ト ・ ヨ ト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup



5 Conclusion

- In EOS and V models, wGSP is efficient in every "envy-free" Nash equilibrium [Edelman, et al., 2007; Varian, 2007].
- There are cases in BHN and BSS models, wGSP is not efficient in any Nash equilibrium [Blumrosen, et al., 2008; Benisch, et al., 2008].

・ 同 ト ・ ヨ ト ・ ヨ ト

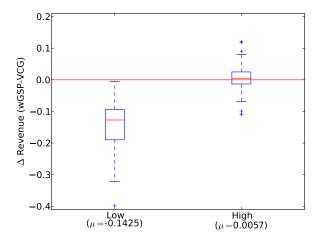
Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Worst-case ef	ficiency			

• $(\mathsf{uGSP},\mathsf{GFP}) \leq \mathsf{wGSP} \leq \mathsf{discrete} \ \mathsf{VCG} \leq \mathsf{VCG}^{**} \in \mathsf{WCG}^{*}$

Computation / Position Auctions

David Robert Martin Thompson and Kevin Leyton-Brown

з

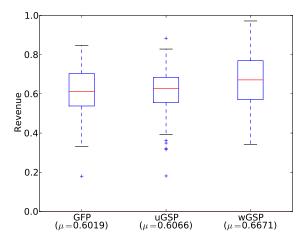

 Position Auctions
 AGGs
 Experimental Setup
 Results
 Conclusion

 Revenue:
 (simplified) theoretical predictions
 Conclusion
 Conclusion
 Conclusion

• In EOS and V models, wGSP beats VCG in every "envy-free" Nash equilibrium Edelman, et al., 2007; Varian, 2007].

向下 イヨト イヨト

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
V: revenue rai	nge			


く注♪

æ

< 🗗 >

Position Auctions	AGGs	Experimental Setup	Results	Conclusion

V: best-case revenue


Computation / Position Auctions

- 4 回 > - 4 回 > David Robert Martin Thompson and Kevin Leyton-Brown

< ∃→

Position Auctions	AGGs	Experimental Setup	Results	Conclusion

V: best-case revenue

Computation / Position Auctions

David Robert Martin Thompson and Kevin Leyton-Brown

<ロ> (四) (四) (注) (注) (三)

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Outline				

Position Auctions

2 Action Graph Game Representation

3 Experimental Setup

4 Results

Computation / Position Auctions

David Robert Martin Thompson and Kevin Leyton-Brown

- 4 回 2 - 4 回 2 - 4 回 2 - 4

э

Position Auctions	AGGs	Experimental Setup	Results	Conclusion
Conclusion				

- This approach is possible and yields real economic insights!
- Efficiency: wGSP is more efficient (even in difficult models) and very robust to equilibrium selection.
- Revenue: Ranking is unclear. Equilibrium selection and instance details have large impact.
- Code and data are available at: http://www.cs.ubc.ca/research/position_auctions/

向下 イヨト イヨト

- Learning distributions from data
- Generalize representation to other models (e.g. with externalities)
- Better game solving techniques (e.g. provable bounds on revenue and welfare)
- Theoretical implications of results

・ 同 ト ・ ヨ ト ・ ヨ ト

• Our algorithm needs complete knowledge of advertisers' CTRs and values...

- 4 回 2 - 4 □ 2 - 4 □

3

- Our algorithm needs complete knowledge of advertisers' CTRs and values...
 - The Good: Lots of data on clicks and impressions
 - The Bad: No data on bids or weights
 - The Wanted: Data on conversions (or ideally, values)

・ 同 ト ・ ヨ ト ・ ヨ ト