Computational Analysis of Perfect-Information Position Auctions

David Robert Martin Thompson and Kevin Leyton-Brown

June 16, 2009

Motivation

- Position auctions:
- Billion dollar revenue stream for search engines
- Auctions evolved in an ad hoc way
- Auction theorists are catching up: starting to understand how the auctions perform under simplifying assumptions.
- Performance: putting good ads in good spaces, and generating revenue
- Which auction performs best?
- Our contribution: computational method for comparing auction performance quantitatively.

Outline

(1) Position Auctions
(2) Action Graph Game Representation
(3) Experimental Setup
(4) Results
(5) Conclusion

Outline

(1) Position Auctions

(2) Action Graph Game Representation
(3) Experimental Setup

4 Results
(5) Conclusion

Use of position auctions

- GFP: Yahoo! and Overture 1997-2002
- uGSP: Yahoo! 2002-2007
- wGSP: Google, MSN Live, Yahoo! 2007-Present

Use of position auctions

- GFP: Yahoo! and Overture 1997-2002
- uGSP: Yahoo! 2002-2007
- wGSP: Google, MSN Live, Yahoo! 2007-Present

Question

Is wGSP better than GFP and uGSP?

Use of position auctions

- GFP: Yahoo! and Overture 1997-2002
- uGSP: Yahoo! 2002-2007
- wGSP: Google, MSN Live, Yahoo! 2007-Present

Question

Is wGSP better than GFP and uGSP?

- Better by what metric? Revenue, efficiency

How theorists study position auctions

- Terminology:
- Nash equilibrium: every bidder is acting to maximize her own payoff.
- Perfect-information game: every bidder knows every other's value / CTR.
- VCG: a perfectly economically-efficient auction (a common theoretical benchmark)

How theorists study position auctions

- Terminology:
- Nash equilibrium: every bidder is acting to maximize her own payoff.
- Perfect-information game: every bidder knows every other's value / CTR.
- VCG: a perfectly economically-efficient auction (a common theoretical benchmark)
- They also need a structural model of values / CTRs...

Edelman, Ostrovsky, Schwarz (2007)

Varian (2007)

Blumrosen, Hartline, Nong (2008)

Benisch, Sadeh, Sandholm (2008)

Outline

(1) Position Auctions
(2) Action Graph Game Representation
(3) Experimental Setup

4 Results
(5) Conclusion

Action Graph Games [Bhat, Leyton-Brown, 2004]

- Graphical model like Bayes nets, GAI nets or graphical games
- Nodes are variables, directed edges denote conditional independence
- Representation is polynomial for graphs of bounded in-degree
- Nodes represent actions: variable = how many play that action?

Action Graph Games [Bhat, Leyton-Brown, 2004]

- Graphical model like Bayes nets, GAI nets or graphical games
- Nodes are variables, directed edges denote conditional independence
- Representation is polynomial for graphs of bounded in-degree
- Nodes represent actions: variable = how many play that action?
- Nodes can also be simple functions (e.g. sum, argmax)

Action Graph Games [Bhat, Leyton-Brown, 2004]

- Graphical model like Bayes nets, GAI nets or graphical games
- Nodes are variables, directed edges denote conditional independence
- Representation is polynomial for graphs of bounded in-degree
- Nodes represent actions: variable = how many play that action?
- Nodes can also be simple functions (e.g. sum, argmax)
- Expected utility is polynomial in input [Jiang, Leyton-Brown, 2006]
- Exponential speedup for solvers that use expected utility in inner loop

Representing GFP as AGG

- n bidders, m bid increments ($O(n m)$ actions)

Representing GFP as AGG

- n bidders, m bid increments ($O(n m)$ actions)
- For each action, payoff only depends on position
- Sufficient statistic: How many bid the same? How many bid higher? $O\left(n^{2}\right)$
- Easily computed with sum nodes

Representing GFP as AGG

- n bidders, m bid increments ($O(n m)$ actions)
- For each action, payoff only depends on position
- Sufficient statistic: How many bid the same? How many bid higher? $O\left(n^{2}\right)$
- Easily computed with sum nodes
- AGG representation $O\left(n^{3} m\right)$ (vs. $O\left(n m^{n}\right)$ in normal form)

Representing GSP as AGG

- Additional sufficient statistic: What is the next highest bid? $O(n m)$
- Easily computed with argmax nodes

Representing GSP as AGG

- Additional sufficient statistic: What is the next highest bid? $O(n m)$
- Easily computed with argmax nodes
- AGG representation $O\left(n^{4} m^{2}\right)$ (vs. $O\left(n m^{n}\right)$ in normal form)

Outline

(1) Position Auctions
(2) Action Graph Game Representation
(3) Experimental Setup

4 Results
(5) Conclusion

Problem instances

- 4 sizes (5-10 bidders, 5-40 increments)
- 4 preference distributions: EOS, V, BHN, BSS (assume uniform distributions where unspecified)
- 100 draws from each distribution, size $=1600$ "preference instances"

Problem instances

- 4 sizes (5-10 bidders, 5-40 increments)
- 4 preference distributions: EOS, V, BHN, BSS (assume uniform distributions where unspecified)
- 100 draws from each distribution, size = 1600 "preference instances"
- 3 auctions: GFP, uGSP, wGSP $=4800$ games

Solving games

- Remove dominated strategies: bids above an agent's (maximum) value, strategically redundant bids

Solving games

- Remove dominated strategies: bids above an agent's (maximum) value, strategically redundant bids
- Two solvers: simpdiv [Scarf, 1967] and gnm [Govindan, Wilson, 2005]
- implemented in Gambit [McKevley et al, 2006] with AGG dynamic programming optimizations [Jiang, Leyton-Brown, 2006]
- Run solvers 10 times (with 5 minute cutoff).

Equilibrium selection

- Problem: These games have many equilibria, and equilibrium selection matters. (Enumerating equilibria is infeasible.)

Equilibrium selection

- Problem: These games have many equilibria, and equilibrium selection matters. (Enumerating equilibria is infeasible.)
- We use local search to find (locally) extreme equilibria: $\mathrm{min} / \mathrm{max}$ revenue/efficiency (4 different objectives).
- SLS algorithm: start from existing equilibria, random improving moves, restart given local optimum.

Statistical methods

- Blocking, means-of-means, bootstrapping test (across a pair of auctions)
- Non-parametric confidence interval on mean difference
- Significant if entire $1-\alpha$ confidence interval ≥ 0

Statistical methods

- Blocking, means-of-means, bootstrapping test (across a pair of auctions)
- Non-parametric confidence interval on mean difference
- Significant if entire $1-\alpha$ confidence interval ≥ 0
- Used Bonferroni correction (divide by number of tests, $|T|=80)$
- * denotes significant for $\alpha=0.05 /|T|$
- ** denotes significant for $\alpha=0.01 /|T|$

Outline

(1) Position Auctions

(2) Action Graph Game Representation
(3) Experimental Setup
(4) Results
(5) Conclusion

Efficiency: (simplified) theoretical predictions

- In EOS and V models, wGSP is efficient in every "envy-free" Nash equilibrium [Edelman, et al., 2007; Varian, 2007].
- There are cases in BHN and BSS models, wGSP is not efficient in any Nash equilibrium [Blumrosen, et al., 2008; Benisch, et al., 2008].

Worst-case efficiency

- (uGSP,GFP) $\leq \mathrm{wGSP} \leq$ discrete VCG \leq VCG $^{* *}$

Revenue: (simplified) theoretical predictions

- In EOS and V models, wGSP beats VCG in every "envy-free" Nash equilibrium Edelman, et al., 2007; Varian, 2007].

V: revenue range

V: best-case revenue

V: best-case revenue

Outline

(1) Position Auctions
(2) Action Graph Game Representation
(3) Experimental Setup

4 Results
(5) Conclusion

Conclusion

- This approach is possible and yields real economic insights!
- Efficiency: wGSP is more efficient (even in difficult models) and very robust to equilibrium selection.
- Revenue: Ranking is unclear. Equilibrium selection and instance details have large impact.
- Code and data are available at: http://www.cs.ubc.ca/research/position_auctions/

Future work

- Learning distributions from data
- Generalize representation to other models (e.g. with externalities)
- Better game solving techniques (e.g. provable bounds on revenue and welfare)
- Theoretical implications of results

The Quest for assets

- Our algorithm needs complete knowledge of advertisers' CTRs and values...

The Quest for assets

- Our algorithm needs complete knowledge of advertisers' CTRs and values...
- The Good: Lots of data on clicks and impressions
- The Bad: No data on bids or weights
- The Wanted: Data on conversions (or ideally, values)

