
FLANN - Fast Library for Approximate Nearest

Neighbors

User Manual

Marius Muja, mariusm@cs.ubc.ca
David Lowe, lowe@cs.ubc.ca

December 3, 2008

1 Introduction

We can define the nearest neighbor search (NSS) problem in the following way:
given a set of points P = p1, p2, . . . , pn in a metric space X, these points must
be preprocessed in such a way that given a new query point q ∈ X, finding the
point in P that is nearest to q can be done quickly.

The problem of nearest neighbor search is one of major importance in a
variety of applications such as image recognition, data compression, pattern
recognition and classification, machine learning, document retrieval systems,
statistics and data analysis. However, solving this problem in high dimensional
spaces seems to be a very difficult task and there is no algorithm that performs
significantly better than the standard brute-force search. This has lead to an
increasing interest in a class of algorithms that perform approximate nearest
neighbor searches, which have proven to be a good-enough approximation in
most practical applications and in most cases, orders of magnitude faster that
the algorithms performing the exact searches.

FLANN (Fast Library for Approximate Nearest Neighbors) is a library for
performing fast approximate nearest neighbor searches. FLANN is written in
the C++ programming language. FLANN can be easily used in many contexts
through the C, MATLAB and Python bindings provided with the library.

1.1 Quick Start

This section contains small examples of how to use the FLANN library from
different programming languages (C/C++, MATLAB and Python) and from
the command line.

• C/C++

// file flann_example.cc

#include "flann.h"
#include <stdio.h>
#include <assert.h>

// Function that reads a dataset
float* read_points(char* filename, int *rows, int *cols);

int main(int argc, char** argv)
{

int rows,cols;
int t_rows, t_cols;
float speedup;

// read dataset points from file dataset.dat
float* dataset = read_points("dataset.dat", &rows, &cols);
float* testset = read_points("testset.dat", &t_rows, &t_cols);

// points in dataset and testset should have the same dimensionality
assert(cols==t_cols);

// number of nearest neighbors to search
int nn = 3;
// allocate memory for the nearest-neighbors
int* result = new int[t_rows*nn];

1

// initialize the FLANN library
flann_init();
// index parameters are stored here
IndexParameters p;
// want 90% target precision
// the rest of the parameters are automatically computed
p.target_precision = 0.9;
// compute the 3 nearest-neighbors of each point in the testset
flann_find_nearest_neighbors(dataset, rows, cols, testset, t_rows,

result, nn, &p, NULL);

// ...

delete dataset;
delete testset;
delete result;

return 0;
}

• MATLAB

% create random dataset and test set
dataset = single(rand(128,10000));
testset = single(rand(128,1000));

% define index and search parameters
params.algorithm = ’kdtree’;
params.trees = 8;
params.checks = 64;

% perform the nearest-neighbor search
result = flann_search(dataset,testset,5,params);

• Python

from pyflann import *
from numpy import *
from numpy.random import *

dataset = rand(10000, 128)
testset = rand(1000, 128)

flann = FLANN()
result = flann.nn(dataset,testset,5,algorithm="kmeans",

branching=32, iterations=7, checks=16);

• Command line application

$ flann compute_nn --input-file=dataset.dat --test-file=testset.dat
--algorithm=kdtree --trees=8 --checks=64 --nn=5 --output-file=nn.dat
Reading input dataset from dataset.dat
Building index
Building index took: 0.76
Reading test dataset from testset.dat
Searching for nearest neighbors
Searching took 0.06 seconds
Writing matches to nn.dat

2

2 Downloading and compiling FLANN

FLANN can be downloaded from the following address:

http://www.cs.ubc.ca/∼mariusm/flann
After downloading and unpacking, the following files and directories should

be present:

• src: directory containg the source files

• doc: directory containg this documentation

• bin: directory various for scripts and binary files

In addition, the FLANN libary will install itself in the directory build (un-
less overridden by the CMAKE INSTALL PREFIX variable). The build directory
will have the following structure:

• bin: contains the command line application (flann) and other binary files

• lib: contains the compiled libraries (libflann.so and libflann s.a for
linux)

• include: contains the C header files

• matlab: contains the MATLAB wrapper functions and a MEX (Matlab
EXecutable) file

• python: contains the python bindings

To compile the flann library the CMake1 build system is required. Below is
an example of how the FLANN library can be compiled on Linux (replace x.y
with the corresponding version number).

$ cd flann-x.y-src
$ mkdir tmp
$ cd tmp
$ cmake ../src -DCMAKE_BUILD_TYPE=release
$ make install

On windows the steps are similar:

> cd flann-x.y-src
> md tmp
> cd tmp
> cmake ..\src -G ‘‘NMake Makefiles’’ -DCMAKE_BUILD_TYPE=release
> nmake install

1http://www.cmake.org/

3

3 Using FLANN

3.1 Using FLANN from MATLAB

The FLANN library can be used from MATLAB through the following wrap-
per functions: flann build index, flann search and flann free index. The
flann build index function creates a search index from the dataset points,
flann search uses this index to perform nearest-neighbor searches and flann free index
deletes the index and releases the memory it uses.

Note that in the binary distribution of FLANN the MEX file is linked against
the shared version of FLANN (flann.so or flann.dll), so on Linux you must
set the LD LIBRARY PATH environment variable accordingly prior to starting
MATLAB. On Windows is enough to have flann.dll in the same directory
with the MEX file.

The following sections describe in more detail the FLANN matlab wrapper
functions and show examples of how they may be used.

3.1.1 flann build index

This function creates a search index from the initial dataset of points, index
used later for fast nearest-neighbor searches in the dataset.

[index, parameters, speedup] = flann_build_index(dataset,build_params);

The arguments passed to the flann build index function have the following
meaning:

dataset is a d× n matrix containing n d-dimensional points

build params - is a MATLAB structure containing the parameters passed to
the function.

Depending on the contents of the build params structure, the function has
two different behaviors. If the structure contains a field that specifies the index
type to create the function will create an index of that type (using index pa-
rameters which also have to be included in the build params structure). If the
index and index parameters are not specified directly the function will first try
to automatically detect the best index and index parameters to use for nearest
neighbor search in the provided dataset.

Using automatic index and parameter configuration When using au-
tomatic configuration the build params structure must contain the following
fields:

target precision - is a number between 0 and 1 specifying the percentage of
the approximate nearest-neighbor searches that return the exact nearest-
neighbor. Using a higher value for this parameter gives more accurate
results, but the searching takes longer. The optimum value usually de-
pends on the application.

4

build weight - specifies the importance of the index build time reported to
the nearest-neighbor search time. In some applications it’s acceptable for
the index build step to take a long time if the subsequent searches in the
index can be performed very fast. In other applications it’s required that
the index be build as fast as possible even if that leads to slightly longer
search times. (Default value: 0.01)

memory weight - is used to specify the tradeoff between time (index build time
and search time) and memory used by the index. A value less than 1 gives
more importance to the time spent and a value greater than 1 gives more
importance to the memory usage.

Specifying the index type and parameters manually Because the pa-
rameter estimation step is costly, it is possible to skip this step and reuse the
already computed parameters the next time an index is created from similar
data points (coming from the same distribution). To specify the index type and
the index parameters manually, the build params structure must contain the
following fields:

algorithm - the algorithm to use for building the index. The possible values
are: ’linear’, ’kdtree’, ’kmeans’ and ’composite’. The ’linear’
option does not create any index, it uses brute-force search in the orig-
inal dataset points, ’kdtree’ creates one or more randomized kd-trees,
’kmeans’ creates a hierarchical kmeans clustering tree and ’composite’
is a mix of both kdtree and kmeans trees.

trees - the number of randomized kd-trees to create. This parameter is re-
quired only when the algorithm used is ’kdtree’.

branching - the branching factor to use for the hierarchical kmeans tree cre-
ation. While kdtree is always a binary tree, each node in the kmeans tree
may have several branches depending on the value of this parameter. This
parameter is required only when the algorithm used is ’kmeans’.

iterations - the maximum number of iterations to use in the kmeans clustering
stage when building the kmeans tree. A value of -1 used here means
that the kmeans clustering should be performed until convergence. This
parameter is required only when the algorithm used is ’kmeans’.

centers init - the algorithm to use for selecting the initial centers when per-
forming a kmeans clustering step. The possible values are ’random’ (picks
the initial cluster centers randomly), ’gonzales’ (picks the initial centers
using the Gonzales algorithm) and ’kmeanspp’ (picks the initial centers
using thealgorithm suggested in [AV07]). If this parameters is omitted,
the default value is ’random’.

The above parameters have a big impact on the performance of the new
search index (nearest-neighbor search time) and on the time and memory re-
quired to build the index. The optimum parameter values depend on the dataset

5

characteristics (number of dimensions, distribution of points in the dataset) and
on the application domain (desired precision for the approximate nearest neigh-
bor searches).

The flann build index function returns the newly created index, the parameters
used for creating the index and, if automatic configuration was used, an esti-
mation of the speedup over linear search that is achieved when searching the
index.

3.1.2 flann search

This function performs nearest-neighbor searches using the index already cre-
ated:

result = flann_search(index, testset, k, parameters);

The arguments required by this function are:

index - the index returned by the flann build index function

testset - a d×m matrix containing m test points whose k-nearest-neighbors
need to be found

k - the number of nearest neighbors to be returned for each point from testset

parameters - structure containing the search parameters. Currently it has
only one member, parameters.checks, denoting the number of times the
tree(s) in the index should be recursively traversed. A higher value for this
parameter would give better search precision, but also take more time. If
automatic configuration was used when the index was created, the number
of checks required to achieve the specified precision is also computed. In
such case, the parameters structure returned by the flann build index
function can be passed directly to the flann search function.

The function returns a matrix of size k×m in which each column contains the
indexes (in the dataset matrix) of the k nearest neighbors of the corresponding
point from testset.

For the case where a single search will be performed with each index, the
flann search function accepts the dataset instead of the index as first argu-
ment, in which case the index is created searched and then deleted in one step.
In this case the parameters structure passed to the flann search function must
also contain the fields of the build params structure that would normally be
passed to the flann build index function if the index was build separately.

result = flann_search(dataset, testset, k, parameters);

3.1.3 flann free index

This function must be called to delete an index and release all the memory used
by it:

flann_free_index(index);

6

3.1.4 Examples

Let’s look at a few examples showing how the functions described above are
used:

Example 1: In this example the index is constructed using automatic pa-
rameter estimation, requesting 90% as desired precision and using the default
values for the build time and memory usage factors. The index is then used to
search for the nearest-neighbors of the points in the testset matrix and finally
the index is deleted.

dataset = single(rand(128,10000));

testset = single(rand(128,1000));

build_params.target_precision = 0.9;

build_params.build_weight = 0.01;

build_params.memory_weight = 0;

[index, parameters] = flann_build_index(dataset, build_params);

result = flann_search(index,testset,5,parameters);

flann_free_index(index);

Example 2: In this example the index constructed with the parameters spec-
ified manually.

dataset = single(rand(128,10000));

testset = single(rand(128,1000));

index = flann_build_index(dataset,struct(’algorithm’,’kdtree’,’trees’,8));

result = flann_search(index,testset,5,struct(’checks’,128));

flann_free_index(index);

Example 3: In this example the index creation, searching and deletion are
all performed in one step:

dataset = single(rand(128,10000));

testset = single(rand(128,1000));

result = flann_search(dataset,testset,5,struct(’checks’,128,’algorithm’,...

’kmeans’,’branching’,64,’iterations’,5));

7

3.2 Using FLANN from C/C++

FLANN can be easily used in C/C++ programs through the C bindings pro-
vided with the library. To use the C bindings, the library header file flann.h
(located in the build/include directory) must be included. Also the compiler
must be told where to look for that file, by adding the build/include directory
to the compiler include path (all the paths in this document are specified rela-
tive to the library main directory). The directory can be added to the compiler
include path using the -I compiler flag (on most Unix/Linux systems). When
linking the C/C++ application the libflann s.a (for linking statically) or the
libflann.so (for linking dynamically) libraries must be linked in. This is done
using the -l compiler flag followed by the library name (eg. -lflann) and by
specifying the library search path (build/lib) with the -L flag. The entire
compile command that must be used will look like this:

g++ flann_example.cc -I build/include -L build/lib -o flann_example -lflann

The following section describes the C bindings offered by the FLANN library:

flann build index()

FLANN_INDEX flann_build_index(float* dataset, int rows, int cols,float* speedup,

IndexParameters* index_params, FLANNParameters* flann_params);

This function builds an index and return a reference to it. The arguments
expected by this function are as follows:

dataset, rows and cols - are used to specify the input dataset of points:
dataset is a pointer to a rows× cols matrix stored in row-major order.

speedup - is used to return the approximate speedup over linear search achieved
when using the automatic index and parameter configuration (see section
3.1.1)

index params - is a structure containing the parameters passed to the func-
tion. This structure is defined as follows:

struct IndexParameters {

int algorithm;

int checks;

int trees;

int branching;

int iterations;

int centers_init;

float target_precision;

float build_weight;

float memory_weight;

};

The algorithm and centers init fields can take the following values:

8

const int LINEAR = 0;

const int KDTREE = 1;

const int KMEANS = 2;

const int COMPOSITE = 3;

const int CENTERS_RANDOM = 0;

const int CENTERS_GONZALES = 1;

const int CENTERS_KMEANSPP = 2;

The algorithm field is used to manually select the type of index used.
The centers init field specifies how to choose the invital cluster centers
when performing the hierarchical k-means clustering (in case the algorithm
used is k-means): CENTERS RANDOM chooses the initial centers randomly,
CENTERS GONZALES chooses the initial centers to be spaced apart from
each other by using Gonzales’ algorithm and CENTERS KMEANSPP chooses
the initial centers using the algorithm proposed in [AV07].

The rest of the fields of the IndexParameters structure have the same
meaning as described in 3.1.1.

flann params - is a structure containing parameters that influence the be-
havior of the FLANN library functions. If a NULL value is passed, this
argument is ignored.

struct FLANNParameters {

int log_level;

char* log_destination;

long random_seed;

};

random seed - contains the random seed to use to initialize the random
number generator.

log level - specifies the amount of messages generated by the FLANN
library functions It can take the following values:
const int LOG_NONE = 0;

const int LOG_FATAL = 1;

const int LOG_ERROR = 2;

const int LOG_WARN = 3;

const int LOG_INFO = 4;

log destination - contains the name of a file where these messages should
be generated or NULL for the console.

flann find nearest neighbors index()

int flann_find_nearest_neighbors_index(FLANN_INDEX index_id, float* testset,

int tcount, int* result, int nn, int checks, FLANNParameters* flann_params);

This function searches for the nearest neighbors of the testset points using
an index already build and referenced by index id. The testset is a ma-
trix stored in row-major format with tcount rows and the same number of

9

columns as the dimensionality of the points used to build the index. The func-
tion computes nn nearest neighbors for each point in the testset and stores
them in the result matrix (which is a tcount× nn matrix stored in row-major
format). The memory for the result matrix must be allocated before the
flann find nearest neighbors index() function is called. The checks pa-
rameter specifies how many tree traversals should be performed during the
search.

flann find nearest neighbors()

int flann_find_nearest_neighbors(float* dataset, int count, int length,

float* testset, int tcount, int* result, int nn,

IndexParameters* index_params, FLANNParameters* flann_params);

This function is similar to the flann find nearest neighbors index() func-
tion, but instread of using a previously constructed index, it constructs the
index, does the nearest neighbor search and deletes the index in one step.

flann free index()

void flann_free_index(FLANN_INDEX index_id, FLANNParameters* flann_params);

This function deletes a previously constructed index and frees all the memory
used by it.

See section 1.1 for an example of how to use the C/C++ bindings.

3.3 Using FLANN from python

FLANN can be used from python programs using the python bindings dis-
tributed with the library. The python bindings can be installed on a system
using the distutils script provided (setup.py), by running the following com-
mand in the build/python directory:

$ python setup.py install

The python bindings also require the numpy package to be installed.
To use the python FLANN bindings the package pyflann must be imported

(see the python example in section 1.1). This package contains a class called
FLANN that handles the nearest-neighbor search operations. This class con-
taing the following methods:

def build index(self, dataset, **kwargs) :
This method builds and internally stores an index to be used for future
nearest neighbor matchings. It erases any previously stored index, so in
order to work with multiple indexes, multiple instances of the FLANN
class must be used. The dataset argument must be a 2D numpy array or

10

a matrix. The rest of the arguments that can be passed to the method are
the same as those used in the build params structure from section 3.1.1.
Similar to the MATLAB version, the index can be created using manually
specified parameters or the parameters can be automatically computed
(by specifying the target precision, build weight and memory weight ar-
guments).

The method returns a dictionary containing the parameters used to con-
struct the index. In case automatic parameter selection is used, the dictio-
nary will also contain the number of checks required to achieve the desired
target precision and an estimation of the speedup over linear search that
the library will provide.

def nn index(self, testset, num neighbors = 1, **kwargs) :
This method searches for the num neighbors nearest neighbors of each
point in testset using the index computed by build index. Additionally,
a parameter called checks, denoting the number of times the index tree(s)
should be recursivelly searched, must be given.

Example:

from pyflann import *
from numpy import *
from numpy.random import *

dataset = rand(10000, 128)
testset = rand(1000, 128)

flann = FLANN()
params = flann.build_index(dataset, target_precision=0.9, log_level = "info");
print params

result = flann.nn_index(testset,5, checks=params["checks"]);

def nn(self, dataset, testset, num neighbors = 1, **kwargs) :
This method builds the index, performs the nearest neighbor search and
deleted the index, all in one step.

def delete index(self, **kwargs) :
This method deletes the current index and all the data associated with it.
It should be called to free all the memory used by the index.

See section 1.1 for an example of how to use the Python bindings.

3.4 Using the flann command line application

The FLANN distribution also contains a command line application that can be
used to perform nearest-neighbor searches using datasets stored in files. The
application can read datasets stored in CSV format, space-separated values or
raw binary format.

The command line application takes a command name as the first argument
and then the arguments for that command:

11

$ flann

Usage: flann.py [command commans_args]

Comamnds:

generate_random

compute_gt

compute_nn

autotune

sample_dataset

cluster

run_test

For command specific help type: flann.py <command> -h

To see the possible arguments for each command, use flann help <command>.
For example:

$ flann run_test -h

Usage: flann.py [command command_args]

Options:

-h, --help show this help message and exit

-i FILE, --input-file=FILE

Name of file with input dataset

-a ALGORITHM, --algorithm=ALGORITHM

The algorithm to use when constructing the index

(kdtree, kmeans...)

-r TREES, --trees=TREES

Number of parallel trees to use (where available, for

example kdtree)

-b BRANCHING, --branching=BRANCHING

Branching factor (where applicable, for example

kmeans) (default: 2)

-C CENTERS_INIT, --centers-init=CENTERS_INIT

How to choose the initial cluster centers for kmeans

(random, gonzales) (default: random)

-M MAX_ITERATIONS, --max-iterations=MAX_ITERATIONS

Max iterations to perform for kmeans (default: until

convergence)

-l LOG_LEVEL, --log-level=LOG_LEVEL

Log level (none < fatal < error < warning < info)

(Default: info)

-t FILE, --test-file=FILE

Name of file with test dataset

-m FILE, --match-file=FILE

File with ground truth matches

-n NN, --nn=NN Number of nearest neighbors to search for

-c CHECKS, --checks=CHECKS

Number of times to restart search (in best-bin-first

manner)

-P PRECISION, --precision=PRECISION

Run the test until reaching this precision

-K NUM, --skip-matches=NUM

Skip the first NUM matches at test phase

12

4 Acknowledgments

Many thanks to Hoyt Koepke for his initial work on the python bindings.

References

[AV07] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics Philadelphia, PA, USA, 2007.

13

