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Abstract—There has been growing interest in the use of
binary-valued features, such as BRIEF, ORB, and BRISK for
efficient local feature matching. These binary features have
several advantages over vector-based features as they can be
faster to compute, more compact to store, and more efficient
to compare. Although it is fast to compute the Hamming
distance between pairs of binary features, particularly on
modern architectures, it can still be too slow to use linear search
in the case of large datasets. For vector-based features, such
as SIFT and SUREF, the solution has been to use approximate
nearest-neighbor search, but these existing algorithms are not
suitable for binary features. In this paper we introduce a new
algorithm for approximate matching of binary features, based
on priority search of multiple hierarchical clustering trees. We
compare this to existing alternatives, and show that it performs
well for large datasets, both in terms of speed and memory
efficiency.

Keywords-nearest neighbors; feature matching; binary fea-
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I. INTRODUCTION

A number of binary visual descriptors have been recently
proposed in the literature, including BRIEF [1], ORB [2],
and BRISK [3]. These have several advantages over the more
established vector-based descriptors such as SIFT [4] and
SURF [5], as they are cheaper to compute, more compact
to store, and faster to compare with each other.

Binary features are compared using the Hamming dis-
tance, which for binary data can be computed by performing
a bitwise XOR operation followed by a bit count on the
result. This involves only bit manipulation operations which
can be performed quickly, especially on modern computers
where there is hardware support for counting the number of
bits that are set in a word (the POPCNT instruction').

Even though computing the distance between pairs of
binary features can be done efficiently, using linear search
for matching can be practical only for smaller datasets.
For large datasets, linear matching becomes a bottleneck in
most applications. The typical solution in such situations is
to replace the linear search with an approximate matching
algorithm that can offer speedups of several orders of
magnitude over linear search, at the cost that a fraction of
the nearest neighbors returned are approximate neighbors
(but usually close in distance to the exact neighbors).

IWe are referring to the x86_64 architecture, other architectures have
similar instructions for counting the number of bits set.

Many algorithms typically used for approximate matching
in case of vector features, which perform a hierarchical
decomposition of the search space, are not readily suitable
for matching binary features because they assume the fea-
tures exist in a vector space where each dimension of the
features can be continuously averaged. Examples of such
algorithms are the kd-tree algorithm, the vocabulary tree and
the hierarchical k-means tree.

For matching binary features, the approximate nearest
neighbor search algorithms used in the literature are mostly
based on various hashing techniques such as locality sensi-
tive hashing [2], semantic hashing [6] or min-hash [7].

In this paper we introduce a new algorithm for matching
binary features, based on hierarchical decomposition of
the search space. We have implemented this algorithm on
top of the publicly available FLANN open source library
[8]. We compare the performance of this algorithm to
other well know approximate nearest neighbor algorithms
implemented by the FLANN library for both binary and
vector-based features. We show that when compared with
an LSH implementation, which is what is typically used
in the literature for matching binary features, our algorithm
performs comparatively or better and scales favorably for
larger datasets.

II. RELATED WORK

Many algorithms for fast matching typically used for
vector-based descriptors are not suitable for binary descrip-
tors so the methods proposed for matching them have been
either linear search or hashing techniques.

There is also a lot of work published on the topic of
learning short binary codes through Hamming embeddings
from different feature spaces. Salakhutdinov and Hinton [6]
introduce the notion of semantic hashing when they learn a
deep graphical model that maps documents to small binary
codes. When the mapping is performed such that close
features are mapped to close codes (in Hamming space),
the nearest neighbor matching can be efficiently performed
by searching for codes that differ by a few bits from the
query code. A similar approach is used by Torralba et al.
[9] who learn compact binary codes from images with the
goal of performing real-time image recognition on a large
dataset of images using limited memory. Weiss et al. [10]
formalize the requirements for good codes and introduce a



new technique for efficiently computing binary codes. Other
works in which a Hamming embedding is computed from
SIFT visual features are those of Jegou at al. [11] and
Strecha at al. [12].

Performing approximate nearest neighbor search by ex-
amining all the points in a Hamming radius works ef-
ficiently when the distance between the matching codes
is small. When this distance gets larger the number of
points in the Hamming radius gets exponentially larger,
making the method unpractical. This is the case for visual
binary features such as BRIEF or ORB where the minimum
distance between matching features can be larger than 20
bits. In cases such as this other nearest neighbor matching
techniques must be used. Locality Sensitive Hashing (LSH)
[13] is one of the nearest neighbor search techniques that
has been shown to be effective for fast matching of binary
features[2]. Zitnick [7] uses the min-hash technique for the
same purpose.

Brin [14] proposes a nearest neighbor search data struc-
ture called GNAT (Geometric Near-Neighbor Access Tree)
which does a hierarchical decomposition of the search space
to accelerate the search and works for any metric distance.
We have used the GNAT tree and the results in that paper
to guide us in the design of the algorithm presented below.

III. MATCHING BINARY FEATURES

In this section we introduce a new data structure and algo-
rithm which we have found to be very effective at matching
binary features, including the recently introduced BRIEF
[1] and ORB [2]. The algorithm performs a hierarchical
decomposition of the search space by successively clustering
the input dataset and constructing a tree in which every non-
leaf node contains a cluster center and the leaf nodes contain
the input points that are to be matched.

A. Building the tree

The tree building process (presented in Algorithm 1) starts
with all the points in the dataset and divides them into K
clusters, where K is a parameter of the algorithm, called the
branching factor. The clusters are formed by first selecting K
points at random as the cluster centers followed by assigning
to each center the points closer to that center than to any of
the other centers. The algorithm is repeated recursively for
each of the resulting clusters until the number of points in
each cluster is below a certain threshold (the maximum leaf
size), in which case that node becomes a leaf node.

The decomposition described above is similar to that of
k-medoids clustering (k-medoids is an adaptation of the k-
means algorithm in which each cluster center is chosen as
one of the input data points instead of being the mean of the
cluster elements). However, we are not trying to minimize
the squared error (the distance between the cluster centers
and their elements) as in the case of k-medoids. Instead
we are simply selecting the cluster centers randomly from

the input points, which results in a much simpler and more
efficient algorithm for building the tree and gives improved
independence when using multiple trees as described below.
We have experimented with minimizing the squared error
and with choosing the cluster centers using the greedy
approach used in the GNAT tree [14] and neither brought
improvements for the nearest neighbor search performance.

Algorithm 1 Building one hierarchical clustering tree

Input: features dataset D

Output: hierarchical clustering tree

Parameters: branching factor K, maximum leaf size Sy,

1: if size of D < S then

2:  create leaf node with the points in D

3: else

4. P <« select K points at random from D

5 C < cluster the points in D around nearest centers
P

6: for each cluster C; € C do

7: create non-leaf node with center P;

8 recursively apply the algorithm to the points in C;

9:  end for

10: end if

We found that building multiple trees and using them in
parallel during the search results in significant improvements
for the search performance. The approach of using multiple
randomized trees is known to work well for randomized
kd-trees [15], however the authors of [16] reported that it
was not effective for hierarchical k-means trees. The fact
that using multiple randomized trees is effective for the
algorithm we propose is likely due to the fact that we are
choosing the cluster centers randomly and perform no further
iterations to obtain a better clustering (as in the case of the
hierarchical k-means tree). When using hierarchical space
decompositions for nearest neighbor search, the hard cases
occur when the closest neighbor to the query point lies just
across a boundary from the domain explored, and the search
needs to backtrack to reach the correct domain. The benefit
of using multiple randomized trees comes from the fact that
they are different enough such that, when exploring them
in parallel, the closest neighbor probably lies in different
domains in different trees, increasing the likelihood of the
search reaching a correct domain quickly.

B. Searching for nearest neighbors using parallel hierarchi-
cal clustering trees

The process of searching multiple hierarchical clustering
trees in parallel is presented in Algorithm 2. The search
starts with a single traverse of each of the trees, during
which the algorithm always picks the node closest to the
query point and recursively explores it, while adding the
unexplored nodes to a priority queue. When reaching the leaf
node all the points contained within are linearly searched.



After each of the trees has been explored once, the search is
continued by extracting from the priority queue the closest
node to the query point and resuming the tree traversal from
there.

Algorithm 2 Searching parallel hierarchical clustering trees
Input: hierarchical clustering trees T;, query point ()
Output: K nearest approximate neighbors of query point
Parameters: max number of points to examine L4
1: L < 0 {L = number of points searched}
PQ <« empty priority queue
R < empty priority queue
for each tree T; do
call TRAVERSETREE(T;, PQ,R)
end for
while PQ not empty and L < L4, do
N «+ top of PQ
call TRAVERSETREE(N,PQ,R)
end while
11: return K fop points from R
procedure TRAVERSETREE(N,PQ,R)
1: if node N is a leaf node then
2:  search all the points in N and add them to R
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4: else

5. C < child nodes of N

6:  Cy < closest node of C' to query Q
7. Cp — C\Cq

8: add all nodes in C, to PQ

9:  call TRAVERSETREE(C,, PQ,R)
10: end if

The search ends when the number of points examined
exceeds a maximum limit given as a parameter to the search
algorithm. This limit specifies the degree of approximation
desired from the algorithm. The higher the limit the more
exact neighbors are found, but the search is more expensive.
In practice it is often useful to express the degree of
approximation as search precision, the percentage of exact
neighbors found in the total neighbors returned. The relation
between the search precision and the maximum point limit
parameter can be experimentally determined for each dataset
using a cross-validation approach.

IV. EVALUATION

We use the Winder/Brown patch dataset [17] to evaluate
the performance of the algorithm described in section III.
These patches were obtained from consumer images of
known landmarks. We first investigate how the different
parameters influence the performance of the algorithm and
then compare it to other approximate nearest neighbor algo-
rithms described in [16] and implemented by the FLANN
library [8]. We also implemented the hierarchical clustering
algorithm on top of the open source FLANN library in order

to take advantage of the parameter auto-tuning framework
provided by the library. To show the scalability of the
algorithm we use the 80 million tiny images dataset of [18].

A. Algorithm parameters

The behavior of the algorithm presented in section III
is influenced by three parameters: the number of parallel
trees built, the branching factor and the maximum size of
the leaf nodes for each tree. In this section we evaluate the
impact of each of these parameters on the performance of
the algorithm by analyzing the speedup over linear search
with respect to the search precision for different values of the
parameters. Speedup over linear search is used both because
it is an intuitive measure of the algorithm’s performance and
because it’s relatively independent of the hardware on which
the algorithm is run.

For the experiments in this section we constructed a
dataset of approximately 310,000 BRIEF features extracted
from all the patch datasets of [17] combined (the Trevi,
Halfdome and Notredame datasets).
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Figure 2.  Speedup over linear search for different number of parallel

randomized trees used by the index

Figure 2 shows how the algorithm’s performance depends
on the number of parallel trees used. It can be seen that
there’s a significant benefit in using more than a single tree
and that the performance generally increases as more trees
are used. The optimum number of trees depends on the
desired precision, for example, for search precisions below
70% there is no benefit in using more than two parallel
trees, however for precisions above 85% a higher number
(between 4 and 8 trees) gives better results. Obviously more
trees implies more memory and a longer tree build time, so
in practice the optimum number of trees depends on multiple
factors such as the desired search precision, the available
memory and constraints on the tree build time.
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Figure 1.

The branching factor also has an impact on the search
performance, as figure 3 shows. Higher branching factors
perform better for high precisions (above 80%), but there is
little gain for branching factors above 16 or 32. Also very
large branching factors perform worse for lower precisions
and have a higher tree build time.

10°

102

branching 2
10" | ¥ branching 4
<+— branching 8
>—> branching 16
~— branching 32
branching 64

Speedup over linear search

0 ‘ ‘ ‘

1005 0.6 07 08 0.9 10
Search Precision(%)

Figure 3. Speedup over linear search for different branching factors

The last parameter we examine is the maximum leaf size.
From figure 4 we can see that a maximum leaf size of 150
performs better than a small leaf size (16, which is equal to
the branching factor) or a large leaf size (500). This can be
explained by the fact that computing the distance between
binary features is an efficient operation, and for small leaf
sizes the overhead of traversing the tree to examine more
leaves is greater than the cost of comparing the query feature
to all the features in a larger leaf. If the leaves are very large
however, the cost of linearly examining all the features in
the leaves ends up being greater than the cost of traversing
the tree.

The above experiments show that the best parameters to

Random sample of query patches and the first three nearest neighbors returned when using different feature types
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Figure 4. Speedup over linear search for different number leaf node sizes
(branching factor = 16)

choose depend on several factors and are often a trade-
off between memory usage/tree build time and search per-
formance. A similar cross-validation approach to the one
proposed in [16] can be used for choosing the optimum
parameters for a particular application.

B. Comparison to other approximate nearest neighbor al-
gorithms

We compare the nearest neighbor search performance of
the hierarchical clustering algorithm introduced in section
IIT to that of the nearest neighbor search algorithms im-
plemented by the publicly available FLANN library. For
comparison we use a combination of different features
types, both vector features such as SIFT, SURF and NCC
(normalized cross correlation) and binary features such as
BRIEF and ORB. In the case of normalized cross correlation
we downscaled the patches to 16x16 pixels. Figure 1 shows
a random sample of 5 query patches and the first three
neighbor patches returned when using each of the descriptors



mentioned above.
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Figure 5 shows the nearest neighbor search speedup for
different feature types. Each point on the graph is taken
as the best performing algorithm for that particular feature
type (randomized kd-trees or hierarchical k-means for SIFT,
SURF, NCC and the hierarchical clustering algorithm intro-
duced in section III for BRIEF and ORB). In each case the
optimum choice of parameters that maximizes the speedup
for a given precision is used.
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Figure 6. Absolute search time for different popular features types (both
binary and vector)

Examining figure 5 it can be seen that the hierarchical
clustering tree gives significant speedups over linear search
ranging between one and two orders of magnitude for search
precisions in the range 50-99%. This is less impressive than

the search speedups obtained for the vector features, but
this is because the linear search is much more efficient for
binary features and all the speedups are computed relative
to the linear search time for that particular feature. To
better compare the efficiency of the nearest neighbor search
between different features types, we show in figure 6 the
same results, but this time using the absolute search time
instead of search speedup. It can be seen that the search
time for binary features (BRIEF, ORB) is similar to that of
vector features (SIFT, SURF) for high search precisions.

In figure 7 we compare the hierarchical clustering tree
with a multi-probe locality sensitive hashing implementation
[19], also available in FLANN. For the comparison we used
datasets of BRIEF and ORB features extracted from the
Winder/Brown datasets and from the recognition benchmark
images dataset of [20]. The first dataset contains approxi-
mately 100,000 features, while the second contains close to
5 million features. It can be seen that for the first dataset
the hierarchical clustering tree performs better for high
search precisions (> 80%), while the LSH implementation
performs better for lower search precisions (< 80%), while
for the second dataset the hierarchical tree is faster than
LSH for all precisions. This also shows that the algorithm
proposed scales well with respect to the dataset size.

Another thing to note is that the LSH implementation
requires significantly more memory compared to the hier-
archical clustering trees for when high precision is required,
as it needs to allocate a large number of hash tables to
achieve the high search precision. In the experiments from
figure 7 LSH required 6 times more memory than the
hierarchical search in case of the larger dataset. Having both
LSH and the hierarchical clustering trees implementations
in FLANN makes it possible to use the automatic algorithm
configuration from FLANN, which takes into account both
memory constraints as well as computation time to select
the optimal algorithm for a specific dataset.

C. Algorithm scalability for large datasets

We use the 80 million tiny images dataset of [18] to
demonstrate the scalability of the algorithm presented in
this paper. Figure 8 shows the search speedup for a dataset
of 80 million BRIEF features extracted from the images
in the dataset. We use the MPI?-based search framework
from FLANN to run the experiment on a computing cluster
and show the resulting speedups with respect to the search
precision for different number of parallel processes. It can
be seen that the search performance scales well with the
dataset size and it benefits considerably from using multiple
parallel processes.

In addition to the improved search performance, using
multiple parallel processes on a compute cluster has the

2MPI (Message Passing Interface) is a standardized library specification
designed for implementing parallel systems
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Comparison between the hierarchical clustering index and LSH for the Winder/Brown dataset of about 100,000 features(left) and the

Nister/Stewenius recognition benchmark images dataset of about 5 million features(right)

additional benefit that the size of the dataset is not limited
by the memory available on a single machine. Even though
binary features are generally more compact in than vector-
based features, for very large datasets the memory available
on a single machine can quickly become a limiting factor.
The distributed search framework from FLANN uses a map-
reduce algorithm to run the search on multiple machines by
splitting the input dataset among the different machines in
the compute cluster, running the search on each machine on
a fraction of the dataset and merging the search results at
the end.
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Figure 8. Scaling binary feature matching using a compute cluster (80

million BRIEF features)

V. CONCLUSIONS

In this paper we introduced a new algorithm for fast
approximate matching of binary features using parallel
searching of randomized hierarchical trees. We implemented
this algorithm on top of the publicly available FLANN open
source library.

We have shown that the proposed algorithm, although
simple to implement and efficient to run, is very effective at
finding nearest neighbors of binary features. We have also
shown that the performance of the algorithm is on par or
better with that of LSH, the algorithm most often used at
present for binary feature matching, and that it scales well
for large datasets.
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