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Abstract—To use hockey broadcast videos for automatic
game analysis, we need to compensate for camera viewpoint
and motion. This can be done by using features on the rink
to estimate the homography between the observed rink and a
geometric model of the rink, as specified in the appropriate
rule book (top down view of the rink). However, player
occlusion, wide range of camera motion, and frames with few
reliable key-points all pose significant challenges for robustness
and accuracy of the solution. In this work, we describe a
new method to use line and ellipse features along with key-
point based matches to estimate the homography. We combine
domain knowledge (i.e., rink geometry) with an appearance
model of the rink to detect these features accurately. This
overdetermines the homography estimation to make the system
more robust. We show this approach is applicable to real world
data and demonstrate the ability to track long sequences on
the order of 1,000 frames.

Keywords-Homography; Rectification; Sports; Videos; Geo-
metric error

I. INTRODUCTION

Automated sports video analysis is an active and chal-

lenging research area in computer vision. One of the im-

portant problems in this domain is to automatically estimate

player locations and velocities relative to the ground. This

information can be used to analyze [1] or even predict [2]

game play. The problem is simpler in the case of videos

obtained from a stationary camera. In the case of a moving

camera, to obtain the trajectories of players on the field or

rink (henceforth referred to as the rink), we need to estimate

the transformation between the geometric model and each

video frame (see Figure 1).

All the images of a plane are related to each other by

homographies [3]. Assuming the rink is a planar surface in

the world, the geometric model of a rink is also related to its

image with a homography. There are various features (lines,

markings, logos, etc.) on the rink which can be used to

estimate this transformation. Homography estimation given

point matches between two images is a well studied problem,

but there are no direct point matches available between the

geometric model and a video frame (some point matches

can be obtained by using curve intersections). However,

there are other geometric shapes like lines and circles on

(a) Geometric model

(b) A video frame
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Figure 1. The problem definition: to estimate a best fitting transformation
matrix H between (a) the geometric model of the rink and every frame
in the sequence. (b) An example frame from the video is also shown with
the transformed geometric model superimposed (shown in red). The inverse
transformation H

−1 can be used to map events in the frame coordinates
to the world coordinates. This process is known as rectification.

the rink surface which can be utilized to overcome this

limitation. Lines transform to lines and circles transform

to conics under perspective projection [3]. Please note the

transformed conic is an ellipse in all the cases we encounter

in this particular problem. These features can be detected

and tracked in the sports video.

In this work, we present a novel method to combine

point, line and ellipse matches to get a homography estimate

by extending the linear method for point matches (the

DLT algorithm). We also propose an area-based geometric

error measure, which can be minimized to fine-tune our

linear estimate. We combine an appearance model (key-

frames) with the geometric model of the rink to estimate

the homography robustly over time. We test this system



on a hockey video sequence. However, it can be easily

generalized to other sports where there are similar features

on the playing surface.

This paper is organized as follows. In the next section,

we discuss related work. Section III outlines mathematical

preliminaries for homography estimation from point and line

correspondences. Section IV describes our new approach

to combine ellipses in the same framework. We discuss a

new area based geometric error measure for homography

estimation in Section V. In Section VI, we combine all these

methods together to complete our system implementation.

Experiments are described in Section VII, followed by

discussion in Section VIII.

II. RELATED WORK

We are looking at the problem of sports video rectifica-

tion. There are similar systems developed for hockey [4],

soccer [5], tennis [6], and American football [7]. However,

these systems differ in goals and scope. They often comprise

multiple modules each dealing with different functionality

e.g., feature detection, tracking and homography estimation.

We look at the related work in each of these subproblems

in the context of sports video rectification.

A. Homography estimation

A homography transformation can be estimated given a

set of feature matches between two images. Four or more

point correspondences provide enough constraints to obtain

the homography using the DLT algorithm [3]. Lines being

the dual of points can be similarly used for homography

estimation [8]. Dubrofsky and Woodham [9] show how

to combine line and point matches in the same image to

estimate the homography using the DLT.

Conic correspondences have also been used to estimate

homographies as described in [10]–[13]. However, these

methods deal only with conics, they do not combine these

constraints with other features. Conomis [13] suggests that

a new set of invariant points can be obtained using conic

correspondences. These point correspondences are then used

to estimate the homography using the DLT. It can be

shown that two conic correspondences are enough to solve

for a homography [11]. Based on these methods ellipse

features on the rink can be used to estimate the homography.

However, there may not be two ellipses visible in the field

of view of the camera in every frame.

The DLT based algorithm for point (and line) matches is

fast and easy to implement. However, one major limitation

is that the DLT minimizes algebraic error which does not

correspond to any geometrically meaningful quantity (see

Section III for details). The homography estimate obtained

using point matches with DLT is often refined by minimiza-

tion of geometric error. Transfer error [3] is a commonly

used error measure (see Figure 3(a)). However, there is no

clear way to deal with combined minimization of geometric

error in the case of line and ellipse features.

B. Feature detection and tracking

Detecting and tracking lines is one of the popular methods

for estimating homographies over a sequence of frames [14],

[15]. On a textureless field like a soccer pitch, lines prove

to be useful features. However, usually there are not enough

lines visible in each frame to uniquely determine the homog-

raphy. The idea of using line features (boundary lines) to

avoid drift while tracking planar surfaces is explored by Xu

et al. [16]. They show that line features make tracking more

accurate. However, when they do correction based on lines

the point feature information is discarded. Farin et al. [6]

use lines to calculate real and virtual points of intersection.

These points are used to establish the homography between

image and the model. They also define a geometric error

measure which they minimize for estimating the homog-

raphy based on lines. They project the white pixels (court

lines in case of tennis) onto the model. The error measure is

defined as the sum of the geometric distance between model

lines and these projected points.

Okuma et al. [4] also tackle the problem of rink rectifica-

tion for hockey videos. Their approach is based on tracking

point correspondences (using KLT [17]) to estimate the ho-

mography between consecutive frames (using RANSAC [18]

for robustness). However, this leads to significant drift in

homography estimate over time. They correct their estimate

based on a geometric model of the rink by generating addi-

tional point correspondences. They achieve this by searching

for points on the edges in the image along the normals

at sampled points on lines and circles in the transformed

model (using an approximate homography estimate). These

additional point correspondences are then used to estimate

the homography using the DLT. The two major limitations

of this approach are: first, the nearest point chosen along

the normal may not correspond to the actual ellipse or line

feature on the frame. Second, final drift correction is based

on the DLT; there is no geometric error minimization used

to refine the estimate.

Hess and Fern [7] demonstrate that using local fea-

tures (e.g., SIFT [19]) can also be an alternative way to

rectify sports video frames. They use a set of frames as

reference images (or key-frames) with a known homog-

raphy transform (obtained by manually establishing point

correspondences). These reference images are then used to

assemble a set of local features registered to the rink model.

This model with registered key-frames is used to rectify

frames based on point matches with each new frame. This

approach is robust. However, its effectiveness is subject to

the availability of sufficient point features well distributed

across the rink. Also, this does not exploit any other infor-

mation available apart from point matches.



III. PRELIMINARIES

Let pi =
[

xi yi wi

]T
and p′

i =
[

x′

i y′i w′

i

]T
be

corresponding points related by a homography, written in

homogeneous coordinates. The homography matrix, H , by

definition relates these points as

p′

i = Hpi ∀i ∈ {1...np} (1)

where np is the number of point correspondences and H is

a 3x3 matrix given by

H =





h1 h2 h3

h4 h5 h6

h7 h8 h9



 (2)

Equation 1 can be rewritten in the form

Aih = 0 (3)

where h =
[

h1 h2 h3 h4 h5 h6 h7 h8 h9

]T

and Ai is a 2× 9 matrix given by

Ai =

[

0T −w′

ip
T
i y′ip

T
i

w′

ip
T
i 0T −x′

ip
T
i

]

(4)

The matrix Ai for each point correspondence can be stacked

to form a matrix A =
[

A1 A2 · · · Anp

]T
which satis-

fies the relation

Ah = 0 (5)

In case of an over-constrained system, a solution can be

obtained by minimizing the cost function (algebraic dis-

tance): ‖Ah‖. This is the DLT algorithm for point corre-

spondences (see Hartley and Zisserman [3] for details).

A. Normalization for points

The DLT algorithm is sensitive to the choice of the

coordinate frame (origin and scale). Hartley and Zisser-

man [3] suggest a normalization step to make the data well

conditioned. A similarity transformation, S, is applied to

transform points such that their centroid is at the origin and

the average distance from the origin is
√
2

p̃i = Spi ∀i ∈ {1...np} (6)

where S is defined as

S =





s 0 tx
0 s ty
0 0 1



 (7)

Corresponding points are also normalized by a similar

transform S′. The homography matrix H̃ is computed us-

ing the DLT on these normalized correspondences. It is

denormalized to get the homography estimate for original

correspondences.

H = S′−1H̃S (8)

B. Adding lines

A line ax + by + c = 0 can be represented as a vector

of coefficients
[

a b c
]T

. Using this representation, the

transformation of a line li =
[

pi qi ri
]T

under the

homography H is given by

l′i = H−T li or li = HT l′i (9)

This is analogous to the point case described above and

a similar relation as Equation 4 can be obtained. Addi-

tional rows corresponding to the line correspondences are

appended to the matrix A in Equation 5. However, including

lines in the same framework as points requires lines to be

normalized with the same similarity transform S. Dubrofsky

and Woodham [9] extend point normalization to lines as

l̃i = s





pi
qi

sri − txpi − tyqi



 (10)

Now, these lines can be treated uniformly along with the

normalized points to estimate the homography.

IV. ADDING ELLIPSES

The coefficients of a conic cannot be treated in a similar

way to lines and points. However, the constraints obtained

from ellipses using existing points and lines in the scene

can be transformed into additional line and point correspon-

dences.

A. Pole-polar relationship

Let C be a matrix of coefficients of a conic. Any point x

lying on the conic satisfies the relationship xTCx = 0. The

transformed conic under a homography H is given by

C ′ = H−TCH−1 (11)

A polar line corresponding to a point x in the plane is

defined as l = Cx. It is straightforward to prove that if

two points correspond in two images (transformed by a

homography), their polar lines with respect to the corre-

sponding conics in the images also transform under the same

homography [13]. Let x and x′ be two matching points, C

and C ′ be matching conics in the images and l = Cx be

the polar corresponding to pole x with respect to conic C.

The polar in the corresponding image is given by

l′ = C ′x′

= (H−TCH−1)(Hx)

= H−TCx

= H−T l (12)

We can similarly prove that if two lines l, l′ are transformed

under a homography, H , then their poles x, x′ with respect

to ellipses C, C ′ also satisfy the relation x′ = Hx.





Key-frame 1 Key-frame 3 Key-frame 5

Figure 4. The key-frames used in appearance model of the rink. Figure shows three key-frames with the transformed geometric model superimposed.
The homography between these frames and the geometric model is obtained by manually selecting point correspondences.

arcs (see Section 5.2 in [21] for details on area calculation).

The error term for point matches is defined as

Ap(H) =
∑

i

d(x̂′

i, x
′

i)
2 (17)

Once we have the area calculation framework in place, the

homography estimation problem can be formulated as

Hest = argmin
H

(Ares(H)) (18)

VI. SYSTEM IMPLEMENTATION

We initialize the system by choosing a set of key-frames.

Key-frames are images with overlapping features to cover

the whole range of camera motion. In the current implemen-

tation, we manually select five frames from the sequence (see

Figure 4). We also manually choose point correspondences

between key-frames and the geometric model to estimate the

homography for all the key-frames.

For each new frame from the video first we identify the

closest key-frame. We choose it on the basis of total number

of local feature matches between a key-frame and the current

frame, combined with the area covered by these matches (see

Section 3.2.2 in [21] for details). We use SFOP [22] based

key-point detection along with SIFT [19] descriptors to

generate point correspondences. We also use these point

matches to obtain a rough estimate of the homography

between the selected key-frame and the current frame. As we

already have the homography for each of the key-frames, we

can also calculate an initial homography estimate between

the geometric model and the current frame by chaining these

two estimates together.

We use this approximate homography estimate to project

the geometric model onto the current frame and use the

location of transformed lines and circles as the basis to

search for line and ellipse features in the frame. This model

guided approach simplifies the line and ellipse detection

problem (for details see Section 3.3 in [21]). We detect

all the lines and ellipses corresponding to the features in

the geometric model. However, there are no direct point

matches available between the model and the current frame.

We solve this problem by back-projecting point matches

from the closest key-frame onto the model to obtain a set of

point matches. We combine these features (line, point and

ellipse) matches between the model and current frame to

obtain a linear estimate for the homography (referred to as

Hlin) using the approach described in Section IV.

Consecutive frames in the video have a lot of overlapping

features (assuming smooth camera motion). We again use

SFOP-SIFT based local features to establish point corre-

spondences between the last frame and the current frame. We

estimate the homography using these point matches. Given

the homography estimate for the last frame, we can multiply

it with this frame to frame homography estimate to obtain

another estimate for the homography between the model and

the current frame. We refer to it as Htr.

We can use one of these estimates (Hlin or Htr) as an

initial value for the geometric minimization step (described

in Section V). As observed by Okuma et al. [4], frame

to frame estimation is prone to drift due to accumulation

of error. On the other hand, Hlin is sensitive to errors in

detection. We choose between the two based on the residual

area error for each of these initial estimates. A complete

system diagram is shown in Figure 5 (see Section 5.3 in

[21] for details).

VII. EXPERIMENTS

We test our system on a high-definition (HD) broadcast

hockey video sequence with 1000 frames.

A. Ground truth

It is hard to generate ground truth for all the frames

in the dataset. Ground truth in this case means the best

possible homography fit for each frame. A good fit has to

be visually evaluated by a user, as we do not have a clear

way to quantitatively measure it. To simplify this problem,

we only annotate a subset of frames from the 1000 frame

sequence by selecting point correspondences between these

frames and the geometric model. An initial estimate of the

homography is obtained by these point matches which is

used to detect line and ellipse features on these frames. We

further refine the estimate by using geometric minimization

of the residual area. The error measure does not go to zero

even for these ground truth frames as features never align

perfectly with the projected model. We refer to this error

as the ground truth residual area. These annotated frames

represent a close approximation to the perfect transformation



current frame

Frame to frame

homography

estimation

Linear homography

estimation

previous framekey-frames

Tracking or

detection?

Geometric error

minimization

final homography estimate

Hn−1

Hlin Htr

Hinit

Hn

Figure 5. Outline of the system implementation. Ovals represent data and
rectangles denote software modules.

between the geometric model and the video. We make sure

the frames we choose have line and ellipse detections which

are closely aligned with the actual features in the image.

B. Error measure

To evaluate a homography estimate we use the follow-

ing error measure: we project the geometric model using

the homography and calculate the residual area between

projected features (only lines and ellipses, no points) and

the detections in the ground truth frames. In the subsequent

discussion, this error is referred as the residual area error

for a given homography estimate in a particular frame.

C. Results

We evaluate the quantitative reduction in the residual

area error due to this non-linear optimization. In Figure 6

we compare the error in homography estimation after the

geometric error minimization to the linear homography

estimate. We observe that there is a significant reduction

in the error after the optimization step. We also find that the

tracking is more stable (observe the variation in the error

corresponding to the linear estimate in Figure 6 (top)).

We test our system, using all the components and running

it over a long image sequence. Figure 7 (left column) shows

a few selected frames from the sequence with the model

transformed by the estimated homography superimposed (in

red). This shows that we are able to robustly estimate the

homography for a long sequence accurately. We also observe

that there is no error accumulation. The last frame is well

aligned with the projected features from the model (see

Frame:1299). This shows that the system can possibly

continue to track a longer sequence.

Finally, we demonstrate an application based on our

video rectification system (see Figure 7). The right column

shows the player trajectories for the last 100 frames in the

rink coordinates. Using this approach, given the scale of

the geometric model, we can estimate player position and

velocity with respect to the ground.

VIII. DISCUSSION

We effectively combine the geometry, appearance and

motion information to get a homography estimate between

a geometric model of the rink and each frame in the

sports video sequence. In this work, we focus on using the

geometric shapes in the model as features to estimate the

homography. To achieve this, we develop a method to incor-

porate ellipse features in homography estimation along with

line and point features (which have been traditionally used to

solve similar problems). We show that the minimization of

an area based geometric error measure can be used to refine

the linear estimate and stabilize tracking. We also combine

the geometric model with an appearance model using the

key-frame idea to add robustness to the system.

The results we present show that our system is able to

robustly track long sequences of the order of 1000 frames.

We have tested our system only on hockey videos. However,

as the geometric model of the rink is an input to the system,

we expect it can be easily generalized to other sports.

The major limitations of our current system are: we rely

on line and ellipse features which are more robust to occlu-

sion and motion blur compared to point matches. However,

this makes our approach sensitive to errors in detections.

RANSAC [18] can be applied in case of points, dealing

with outliers in a mixed correspondence case is a topic for

future work. We have also ignored the “normalization for

lines” issue highlighted by Zeng et al. [8]. We do not deal

with lens distortion in the image. Sports footage may have

visible radial distortion and hence straight lines in the real

world appear curved in the image, making the assumption

of a homography inaccurate. Our method also assumes an

accurate geometric model. However, not all rinks conform

to the standard specifications. Building a model from the

data itself can be an interesting direction for future work.

The problem of automatic rectification holds great chal-

lenges and possibilities for interesting research. Even with

its limitations, our approach is a significant next step to-

wards combining a wider variety of heterogeneous scene

information for homography estimation and also building

an application that deals with actual broadcast video data.

ACKNOWLEDGMENT

The authors thank Dr. David Pearsall and Antoine Fortier

from the Department of Kinesiology and Physical Education

at McGill University for providing high quality HD data.

Thanks to Kenji Okuma and Wei-lwun Lu for their player

tracking application. Thanks to anonymous reviewers for



300 400 500 600 700 800 900 1000 1100 1200
0

1

2

3

4

5

6

7

Frame index

R
e
s
id

u
a
l 
a
re

a
 e

rr
o
r 

(n
o
rm

a
liz

e
d
)

 

 

Residual area minimization

Linear estimation

A

B

C

A

B

C

Figure 6. The error in homography estimation after minimization of the geometric error compared with the linear estimate used as the initial value (top).
Along the y-axis we have the residual area error, normalized by the ground truth residual area (as defined in SectionVII-B). The frame numbers are plotted
along the x-axis. We also show homography estimates for three selected frames, denoted by A, B, and C. Left and right column (bottom) show the model
superimposed on the frame using linear homography estimate and final output of the system for these three frames.

their detailed and insightful feedback on the earlier draft

of this paper. This research is funded by Natural Sciences

and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] F. Li and R. J. Woodham, “Video analysis of hockey play
in selected game situations,” Image and Vision Computing,
vol. 27, no. 1–2, pp. 45–58, 2009.

[2] K. Kim, M. Grundmann, A. Shamir, I. Matthews, J. Hod-
gins, and I. Essa, “Motion fields to predict play evolution
in dynamic sport scenes,” in Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 840–847.

[3] R. Hartley and A. Zisserman, Multiple view geometry in
computer vision. Cambridge University Press New York,
NY, USA, 2003.

[4] K. Okuma, J. Little, and D. Lowe, “Automatic rectification
of long image sequences,” in Asian Conference on Computer
Vision, 2004.

[5] J.-B. Hayet and J. Piater, “On-line rectification of sport
sequences with moving cameras,” in MICAI 2007: Advances
in Artificial Intelligence, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2007, vol. 4827, pp.
736–746.

[6] D. Farin, S. Krabbe, H. Peter, and W. Effelsberg, “Robust




