
Selecting Stable Image Features for Robot Localization Using Stereo∗

James J. Little, Jiping Lu, and Don R. Murray
Department of Computer Science

The University of British Columbia
Vancouver, BC Canada, V6T 1Z4

Abstract

To navigate and recognize where it is, a mobile robot
must be able to identify its current location. In an un-
known initial position, a robot needs to refer to its
environment to determine its location in an external
coordinate system. Even with a known initial position,
drift in odometry causes the estimated position to de-
viate from the correct position, requiring correction.

We show how to find landmarks without models.
We use dense stereo data from our mobile robot’s
trinocular system to discover image regions that will be
stable over widely differing viewpoints. We find image
brightness “corners” in images and select those that do
not straddle depth discontinuities in the stereo depth
data. Selecting corners only in regions of nearly pla-
nar stereo data results in landmarks that can be seen
in images taken from different viewpoints.

1 Introduction

Localization is the problem of identifying the cur-
rent location of a mobile robot. Given a known initial
position and perfect odometry, the problem is a sim-
ple matter of calculation. However, in an unknown
initial position, a robot needs to refer to its environ-
ment to determine its location in an external coordi-
nate system. Even with a known initial position, drift
in odometry causes the estimated position to deviate
from the correct position, requiring correction.

One solution is to supply landmarks, distinctive lo-
cations with identifiable appearances, and then pro-
vide a sensing method to identify the landmarks
and localize the robot with respect to them. This
engineering solution is prohibitively expensive ex-
cept where its cost can justified, as in hospitals or
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factories[Nickerson93].
One can also search the local environment for vi-

sually distinctive locations and record these locations
and a method to identify them (usually their visual
appearance) as landmarks. This obviates the need to
instrument the world and is preferable. The robot
can acquire images and derive image descriptions that
permit it to localize itself[OHD97]. One limitation
of such an approach is that the appearance of sur-
faces varies significantly with differing viewpoints and
is invariant only under restrictive assumptions. Other
systems concentrate on known types of visual events,
finding vertical lines associated with doors, or using
range sensing, such as laser stripe systems, sonar, or
active stereo vision to find locally salient geometric
locations, such as corners, door joists, or pillar/floor
junctions. We plan to learn the useful, stable, observ-
able points (surface patches) from our 3D sensing and
use them as landmarks.

Our current visually guided robot, José, maps its
environment using real-time trinocular stereo from a
camera fixed in the direction of motion. José inte-
grates in a simple manner the recent stereo data with
previous data in a 2D occupancy grid, used for navi-
gation and obstacle avoidance. Features found in such
maps are often used as landmarks for navigation. In
our work, we combine the dense 2D occupancy grid
with sparse 3D landmarks. Geometric information de-
rived from stereo varies predictably with viewpoint,
and can be a rich descriptor of the scene.

A common solution for defining both the struc-
ture of the environment and distinctive locations is to
track “corners”, local 2D image features, over long se-
quences of image frames[ST94], as the corners undergo
incremental motion in the image. The 3D location of
the corner points and the motion of the sensor can be
determined[TK91].

On our mobile robot, maintaining corner points in
the field of view conflicts with the requirements of nav-
igation and obstacle avoidance. But we want to engage
in ongoing activities whose main point is not tracking,



and which have high computational requirements. Al-
ternatively, the robot could store the images for later
processing, but such storage is prohibitive.

We must then process images acquired under large
relative motion. In such images, the structure of
the scene and the relative motion can be recovered.
[McR96] uses differential invariants, local image de-
scriptors composed of derivatives of the smoothed lo-
cal brightness function, to describe image points so
that the disturbance due to variation over viewpoint
is minimized. However, accidental alignments[Low87]
cause the projection of edges in the scene to create
corners that are not stable under varying viewpoint.

Stereo depth data provides geometric information
that lets us eliminate corners from consideration that
arise from accidental alignments. We retain only those
corners that lie on a relatively flat (almost planar) sur-
face. Moreover, the local surface normal is estimated
from the stereo data. With the 3D position informa-
tion, the normal lets us predict the appearance of the
corner point from another viewpoint, and lets us eas-
ily match it with corner points in the new image. The
resulting system should provide distinctive landmarks
visible over a wide range of viewpoints.

Landmarks can provide the skeleton of a topologi-
cal basis for coordinate system in which several robots
or sensors can operate. When two sensors observe a
sufficient set of landmarks, they can derive, using their
own interior camera orientation, their exterior orienta-
tion. This permits them to describe their observations
in a common coordinate system.

Two such robots might identify a location to each
other by transmitting the local subimage around its
point of attention. The other could reconstruct the
image patch as seen from its point of view, using view
interpolation[SD95]. In our robots, this is greatly sim-
plified since they have access to surface structure as
well as appearance, using stereo. The robots can then
predict the local surface appearance, given its position
and orientation from stereo.

The system described here is a first step towards
an automatic landmark acquisition system based on
stereo depth data and brightness image descriptions.
Our initial goal was to use purely geometric informa-
tion derived from stereo, but our stereo algorithm, de-
scribed later, lacks the resolution to provide such ge-
ometric features. The present system takes advantage
of the strengths of the dense stereo data it does pro-
duce. A contour-based system [Lan98] may provide
precise data permitting a purely geometric system in
the future.

Figure 1: José, the mobile robot

1.1 Landmark-based Localization

Borthwick and Durrant-Whyte [BDW94] base their
system on detecting corner and edge features in 2D,
with no a priori knowledge of features or map nec-
essary. It uses Extended Kalman Filtering [MKS89]
to estimate both feature locations and robot position.
The features assume a rectilinear world.

Weckesser et al. [WDEH95] use a priori landmarks
at known positions in the global coordinate frame and
particular models for landmarks (such as door jambs).
Their system uses active stereo cameras and can ef-
fectively solve for pose of robot with respect to land-
marks. The drawback is the need for models and prior
knowledge of world.

Thrun and Bucken [TB96] have a system based on
sensing regular landmarks (ie: not distinctive land-
marks) (e.g., overhead lights, doorways). It uses a
Bayesian approach implemented in neural nets, and
learns which landmarks are most salient.

In the next section we describe our mobile robot
and its trinocular stereo system. We explain how we
determine the local surface geometry in the scene and
we show how we find “corners” in images.



2 Architecture

2.1 Mobile robot: José

We used a Real World Interfaces (RWI)1 B-14 mo-
bile robot to conduct our experiments in vision-based
robot navigation. José is equipped with a PentiumTM

PC running the Linux operating system as its onboard
processing. The use of a Unix operating system al-
lows a multi-threaded, flexible software architecture,
with short development time, compared to an em-
bedded solution. This robot is a significant improve-
ment over Spinoza, our other mobile robot that was
reported in [TSM+97]. Spinoza used embedded pro-
cessors exclusively and, although it a powerful system,
it proved to be a difficult development environment.
However, with José, we have successfully built on the
stereo vision and mobile robot navigation pioneered
on Spinoza.

José is equipped with an Aironet ethernet radio mo-
dem. This allows communication to a host computer
also equipped with a radio modem, just as over an eth-
ernet network. Communication is achieved through
the Unix socket communication primitives. José is
also equipped with a Matrox Meteor RGB frame grab-
ber board connected to a Triclops trinocular stereo vi-
sion camera module. This provides the stereo images
used in navigating through the environment.

2.2 Trinocular Stereo Vision Rig

The stereo vision module used is the Triclops stereo
vision system that was developed at the UBC Lab-
oratory for Computational Intelligence (LCI) and is
being marketed by Point Grey Research, Inc.2 The
stereo vision module has 3 identical wide angle (90◦

degrees field-of-view) cameras. The cameras are auto-
gain, which makes them robust to changing lighting
conditions.

The system is calibrated using Tsai’s approach
[Tsa87]. Correction for lens distortion, as well as mis-
alignment of the cameras, is performed in software to
yield three corrected images. These corrected images
conform to a pinhole camera model, and have square
pixels. The camera coordinate frames are co-planar
and aligned so that the the epipolar lines of the cam-
era pairs lie along the rows and columns of the images.
This simplifies the stereo matching algorithm and im-
proves its computational speed. The real-time dense
stereo operates at approximately 10Hz.

1www.rwii.com
2www.ptgrey.com

Figure 2: An occupancy grid map built using dense
stereo vision.

Since the camera lenses are fixed (with no possible
changes in zoom or focus) and the cameras are bolted
to a stiff back plane, the camera module will stay in
calibration unless subjected to severe shocks. The fi-
nal corrected images have an accuracy of 0.5 pixels
RMS error for 640x480 images.

3 Method

3.1 Trinocular Stereo Approach

The trinocular stereo approach is based on the
multi-baseline stereo developed by Okutomi and
Kanade [OK93]. For each pixel in the reference image,
the correlation values of the two image pairs (left/right
and top/bottom) are summed to yield a combined
score. The correlation measure used is the sum of
absolute differences (SAD). The disparity data are in-
terpolated to subpixel accuracy.

3.2 2D Navigation

We have developed an occupancy grid approach to
robot navigation using stereo vision [MJ97]. This al-
lows the robot to make 2D maps and safely navigate
in an controlled indoor environment. Figure 2 shows
an occupancy grid derived from stereo data.

Although this approach has been quite successful, it
lacks consistency with an external coordinate frame.
The map is only locally accurate, as over time the
odometry errors become considerable. It is now ap-
parent that in order to develop a robust and re-usable



left right

Figure 3: Left and right images taken with the Tri-
clops system on José.

mapping system, some form of self-localization must
be implemented to allow the robot to correct its posi-
tion within an external coordinate frame.

3.3 Finding Corners

The corner-finding methods of [HP88] deliver cor-
ners that can be tracked over a sequence of images. A
corner is detected by filtering the image with a simple
mask that detects brightness variation in two (nearly)
orthogonal directions.

We are using KLT, an implementation of the
Kanade-Lucas-Tomasi feature tracker, provided by
Stan Birchfield at Stanford University. It is based on
the early work of Lucas and Kanade [LK81], and re-
fined by Shi and Tomasi[ST94]. However, we do not
use the tracker, only the corner locator. Its notion of
a corner is essentially one where the local eigenvalues
of the image Hessian are both significantly non-zero.

3.4 Fitting Planes

We convert the disparities, using calibrated mea-
sures, into depth measurements. At each point in the
resulting depth image, we fit a plane using all valid
depth measurements in surrounding square region (the
size is determined by a system parameter). The fit
finds ~n and c to minimize the sum of the normal errors
(the distance of points in the surface normal direction
of the fit plane), a total least-square problem [Gv79],

min
∑

~n · ~p − c

where ~n is the unit surface normal, p a surface point,
and c is the distance of the plane from the origin. Con-
sequently, our fit is coordinate system independent.
Thus we can compare results from differing frames.

The adequacy of the fit is measured by the sum of
the absolute value of the normal error relative to the
fit plane. Any points where the total error is large are

Figure 4: Disparity result of trinocular stereo:
brighter points are nearer.

rejected. This allows us to eliminate locations in the
image where there are depth discontinuities.

In the interest of efficiency, we can restrict the com-
putation of the planar fit to corner locations.

4 Experiments

We have taken a series of rectified trinocular stereo
images using José‘s Triclops cameras. Figure 3 shows
the left and right images taken by our mobile robot; we
have omitted the third, top, image used in the trinoc-
ular stereo. We process the images to produce sub-
pixel interpolated disparity maps. Figure 4 displays
the stereo disparity data before conversion to depth
data. We fit local planes to the depth data over 13×13
regions, and determine the goodness of the local fit us-
ing the sum of absolute normal error from the fitted
plane. Figure 5 shows the total absolute normal error
over the planar fit regions.

We find corners (Figure 6) using by the KLT sys-
tem. We choose only those corner points where the
local error is in the lowest 5%. These are almost pla-
nar regions with little depth change over the region.
Only a small set of corners survive, which are good
candidates for landmarks. Figure 7 shows the refer-
ence (right) image with only the corners in regions of
good planar fit.

Figure 8 shows the reference (right) image for the
second images with only the corners in regions of
good planar fit. A substantial fraction of the cor-
ners have been eliminated by rejecting regions that
straddle depth discontinuities. We processed ten im-
ages in similar fashion. For each image we visually



Figure 5: Fitting error (normal) for the planar fits;
brighter is lower error, i.e., more like a plane. Corners
are shown in black.

Figure 6: Corners (white) found by KLT superim-
posed on the right image.

Figure 7: Right image with corners (white) in planar
regions.

Figure 8: A second image (right) with corners in pla-
nar regions.

Sequence Without stereo Using stereo

1 40 83.3

2 30 85.7

3 19 73.3

4 20 83.3

5 40 45.0

6 30 65.0

7 39 100.0

8 39 100.0

9 28 52.0

10 24 50.0

Table 1: Percent of corners on planar surfaces.

determined which corners were “stable”, i.e., lying on
planar patches. Table 1 shows the percentage of stable
corners for the sequences. Without stereo, the aver-
age number of stable corners is 30.9%. Using stereo to
eliminate corners formed by accidental alignments in-
creases the number to 73.8%. A standard method for
determining pose from point matches[ML96] can han-
dle these better point features with little difficulty.

5 Summary and Conclusions

Dense stereo data can be analyzed to determine
scene locations that are locally almost planar. We
reject image points where the surface is not planar,
so we can with confidence assume that the brightness
corners result from surface markings on a nearly pla-
nar surface, not the accidental projection of brightness
edges separated in space. These selected corners are
easier to identify from widely differing viewpoints.



We show initial steps toward building a stereo land-
mark system that uses stereo data and corners. Select-
ing corners only in regions of nearly planar stereo data
results in landmarks that can be seen in images taken
from different viewpoints. The task of matching the
corners and then determining pose is greatly simpli-
fied. Geometric information from surface orientation
aids matching.

The long-range goal of this work is to accumulate
such reliable scene points as landmarks, together with
descriptions of the local image brightness and local
scene geometry. Because of the local scene geometry,
these landmarks will be reliable. By comparing the
landmarks for distinctiveness, we can select a subset
that work well for localization.
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