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Abstract

This paper addresses the problem of simultaneous lo-
calization and mapping (SLAM) using vision-based sens-
ing. We present and analyse an implementation of a Rao-
Blackwellised particle filter (RBPF) that uses stereo vision
to localize a camera and 3D landmarks as the camera
moves through an unknown environment. Our implemen-
tation is robust, can operate in real-time, and can oper-
ate without odometric or inertial measurements. Further-
more, our approach supports a 6-degree-of-freedom pose
representation, vision-based ego-motion estimation, adap-
tive resampling, monocular operation, and a selection of
odometry-based, observation-based, and mixture (combin-
ing local and global pose estimation) proposal distribu-
tions. This paper also examines the run-time behavior of
efficiently designed RBPFs, providing an extensive empir-
ical analysis of the memory and processing characteristics
of RBPFss for vision-based SLAM. Finally, we present exper-
imental results demonstrating the accuracy and efficiency of
our approach.

1. Introduction

Recent advances in methods in state estimation have
led to a plethora of approaches to solving the simultane-
ous localization and mapping (SLAM) problem (for exam-
ple, [1,3,6,7,11,15,16]). However, there are a limited num-
ber of vision-based solutions that address large-scale real-
time mapping, and that can scale up to tens of thousands, or
even millions of mapped features. Furthermore, the variety
of vision-based modalities, such as monocular versus stereo
sensing, and pinhole versus omnidirectional camera mod-
els, and the development of increasingly advanced tech-
niques in state estimation and particle filtering, have created
the need for general purpose frameworks for implementing,
testing and deploying vision-based SLAM solutions. This

paper presents a framework for implementing vision-based
SLAM solutions based on Rao-Blackwellised particle fil-
ters (RBPFs) that operate in real-time over long trajectories
(on the order of 100m or more), resulting in maps consist-
ing of many thousands of landmarks. A key feature of our
framework is its flexibility — the user can select from a wide
array of operating modalities depending on their hardware
platform and enable or disable various advanced particle fil-
tering techniques; these include

e Vision-based options

— Monocular or stereo sensing

— Vision-based ego-motion estimation
e Particle filtering options

— Standard proposal distribution p(s¢|s¢—1, ug).

— Vision-based proposal distribution (odometry-
free ego-motion) p(s¢|si—1, 2¢).

— Global pose estimation and mixture proposal dis-
tributions p(s¢|mi—1).

e State and Hybrid map representations

— 6-DOF pose representation.

— Ability to construct occupancy grids in addition
to landmark-based map [5].

Our approach to solving the SLAM problem with a vi-
sion sensor is to combine a Rao-Blackwellised particle filter
(RBPF)-based approach to mapping [15], coupled with ef-
ficient data structures developed by Montemerlo et al. for
representing a distribution over maps (referred to as Fast-
SLAM [14]). Specifically one of the important contribu-
tions of the FastSLAM algorithm is the data structure it em-
ploys to share information between trajectory samples with
common history. This facilitates real-time performance of
the algorithm as the map grows. In addition, we employ fast



data association techniques for matching the relatively un-
ambiguous feature descriptors obtained using the SIFT fea-
ture detector [12]. As an exploratory vehicle moves through
the environment, the number of landmarks in its map can
grow to number in the hundreds of thousands. This poses a
difficult problem for solving the data association problem,
where a single feature observation might require compari-
son with all of the landmarks in the map. Such an exten-
sive comparison might be required when extracted features
are generic, without any uniquely defining characteristics
(such as those typically employed in mapping algorithms
based on laser range sensing). Furthermore, the computed
data association is rarely unique, and often highly ambigu-
ous. Previous approaches have addressed this problem by
sampling over possible data associations [13]. In our work,
we employ the SIFT feature descriptor, which provides de-
scriptions of feature observations that have been shown to
be very robust for feature correspondence. In addition, we
apply a kd-tree over the space of SIFT features to facilitate
approximate nearest-neighbor lookups in time logarithmic
in the number of visually distinct landmarks [2].

The main contributions of this paper are two-fold. First,
we present an application framework for performing vision-
based SLAM based on RBPFs. The framework is extensible
and flexible in that it supports a wide range of common op-
erating modalities. Second, we present and discuss experi-
mental results illustrating the behavior of our implementa-
tion. These results are important for evaluating FastSLAM
as an appropriate method for SLAM in general and vision-
based SLAM in particular. It is important and noteworthy
that of the existing implementations, including the original
implementation by Montemerlo ef al. [14], none have per-
formed an extensive analysis of the operating characteristics
of the filter, such as memory consumption, sample set size,
update frequency, and resampling frequency, opting instead
to report only successful mapping experiments.

The remainder of this paper is structured to provide
a coverage of the strengths and weaknesses of current
methods, elaborate on the details of our implementation,
present and discuss experimental results, and finally discuss
planned improvements.

2. Related Work

In general, two competing map representations have
emerged as popular choices in the literature: landmark-
based [14, 16, 19] and occupancy grid based [4, 8]. Occu-
pancy grids are effective for dense but ambiguous informa-
tion while landmarks are more suited to sparse but distin-
guishable features. Very impressive occupancy grids have
been produced online by recent scan matching techniques
which also use particle filters for pose estimation [4, 8].
Landmark and vision-based approaches also perform well,

Figure 1. Example map of two rooms in a labora-
tory environment. The map consists of 184,211 3D
landmarks constructed in real-time using 100 par-
ticles. The robot travelled approximately 128m in
constructing the map. Grid lines indicate 1m inter-
vals. Refer to the experimental results for an evalu-
ation of the map quality.

as in [16]. In the latter case, a laboratory environment was
successfully mapped by using a Kalman Filter and assum-
ing independence between landmark and pose estimates.
For larger environments, this approach is likely to be over-
confident and lead to filter divergence. Similarly, Davison
implemented a monocular SLAM approach that operates
well in small environments, but has difficulties scaling to
larger environments [3]. The vSLAM approach employs
particle filters to localize in a hybrid metric-topological
map [9]. However, it is not clear that the representation can
scale well and still provide robust localization everywhere
in the world.

This paper is an extension of two previously published
papers addressing vision-based SLAM [17, 18], in which
we introduced a RBPF-based approach to mapping with a
stereo camera. Other most similar to ours is the FastSLAM
implementation presented by Barfoot [1]. The chief dif-
ferences between that work and ours are the real-time per-
formance of our system for up to 2000 particles, and its
flexibility in the variety of operating modalities, such as
operating without odometry when it is unavailable, or the
ability to cope with monocular data. Furthermore, we can
demonstrate robust loop-closing capabilities in larger envi-
ronments than have previousy been encountered using vi-
sion.



3. Simultaneous Localization and Mapping

This paper represents map estimation as the evolution
of a Rao-Blackwellised particle filter [15]. In this context,
the trajectory and landmark distribution is modeled as a dy-
namic Bayes network, where trajectories are instantiated as
samples, and the landmark distribution can be expressed an-
alytically for each trajectory. At time ¢, let s; denote the ve-
hicle pose, m; the map learned thus far and x; = {s¢, m:}
be the complete state. Also, let u; denote a control signal
or a measurement of the vehicle’s motion from time £ — 1 to
time ¢t and z; be the current observation. The set of obser-
vations and controls from time O to ¢ are denoted as z* and
u® respectively. Our goal is to estimate the density

p(8t7mt|zt7ut) :p(xt|zt7ut) (1)

It has been demonstrated elsewhere that p(s?, m;|zt, u?)
can be approximated by factoring the distribution in terms
of sampled trajectories s;, and independent landmark distri-
butions conditioned on the sampled trajectories [15]:

p(s',mul2t ut) ~ p(stl2t ul) [ [ pOma (k)]s 25, ut) (@)
k

where m(k) denotes the k—th landmark in the map. That is,
we instantiate a set of samples s?, propagate them according
to u', and construct maps for each according to 2.

A simplistic approach to running an RBPF for SLAM
would yield an update complexity of O(N K'), where N is
the number of samples at each step and K is the number of
landmarks. However, Montemerlo et al. introduced a tree-
based structure which refines the amortized complexity to
O(N log K) by sharing landmark estimates between sam-
ples [14]. Each sample in the filter will share unaltered land-
mark estimates with other samples (those landmarks that
have not been observed since the time the samples became
siblings). Each landmark observation results in a landmark
being copied and updated but the rest of the map remains
unaltered.

4. Implementation

This section will describe our implementation. Given the
wide array of user options, we will limit our description to
using a standard proposal distribution, and stereo sensing.
In subsequent sections we will describe the special consid-
erations involved in implementing the additional optional
features, such as monocular sensing. = The RBPF oper-
ates at each time step by stochastically sampling a motion
for each sample from a proposal distribution, and subse-
quently weighting each sample according to an observation
model. In the following sections we describe the procedure
for these operations.

Sample SIFT ID’s Landmark Estimates

O—

Figure 2. Conceptually, each sample has an associ-
ated map, organized by SIFT descriptor. Each SIFT
descriptor might have multiple landmark estimates,
each spatially distinct.

4.1. Map Representation

We employ a data structure similar to that described
in [14] as a map representation. Conceptually, each parti-
cle has associated with it a set of landmark estimates, de-
scribed by Gaussian distributions. We take advantage of the
descriptive power of SIFT (described below), enabling us
improve the quality of data association. In this formulation,
each sample maintains a list of SIFT IDs, and these IDs
in turn point to a linked list of one or more 3D landmark
estimates (Figure 2). Note that one SIFT ID can point to
multiple landmarks — landmarks that have similar appear-
ance but are spatially distinct. The implementation of the
map structure is identical to that of the original reference-
counted FastSLAM binary search tree, with the exception
that indexing a landmark by SIFT ID returns a linked list of
the landmarks associated with that ID. Individual landmark
estimates are represented as 3D Gaussian distributions us-
ing the Extended Kalman Filter.

4.2. State Representation and Proposal
Distributions

We describe samples of the vehicle’s pose with the set
st = {T, R}, where T = [z y z] is the robot’s position and
R = [p 0 ¢] is the robot’s heading described by Euler angles
in 6-DOF.

At each time step, the N pose samples are propagated
according to the proposal distribution q(s¢|s¢—1, 2¢, Me—1).
We will refer to the standard proposal as the distribution
based on the robot’s motion model:

q<5t|5t717 2ty mtfl) = p(5t|5t717 Ut)~

Over time the distribution of samples can become non-
Gaussian, and even multi-modal. Other proposal distri-



butions have been suggested, and our system facilitates
a vision-based ego-motion estimator to produce a visual
odometry model:

Q(5t|5t—1aztamt—1) :p(5t|5t—1,2t),

and a global pose estimator to support mixture proposal dis-
tributions:

q(selse—1,2e,me—1) = ap(se|si—1, z¢)+H(1—a)p(s¢|me—1)

Note that the visual odometer is independent of odometry
inputs, facilitating SLAM in the absence of odometry or
IMU measurements. We describe the design and implemen-
tation of the alternative proposal distributions elsewhere [5].

For the case of the standard proposal distibution, the spe-
cific action sequence is dependent on the robot’s exploration
policy. For this paper, we drive the robot by hand, and ei-
ther infer the robot’s actions from odometry measurements
between observations.

After taking an observation z; of a landmark (described
in the next section), each particle in the current generation
of particles is weighted according to the probability of the
current observation z;, conditioned on that particle’s trajec-
tory:

p(Zt |51',t7 mi,t—l)p(St |5t—17 Ut)

Wit = Wi t—1 3)
Q(5t|8t717Ut72t,mt71)

p(zt|3i,t7 mi,tfl) Wi, t—1 “4)

= kexp(70.5AzT271Az) Wi -1 5)

where we are assuming the standard proposal, Az =
h(s;t) — 2, h(-) is a generative model of the observation as
a function of pose, X is the sum of the measurement covari-
ance and prediction covariance. The particle is weighted
according to how well the current observation is consistent
with the map constructed from that particle’s trajectory.

4.3. Weight Normalization and Adaptive
Resampling

Special consideration must be taken when computing the
particle weight, particularly where large numbers of fea-
ture observations, with significant potential for outlier cor-
respondences, are present. We accumulate the log likeli-
hood of observations over time, and employ a normalization
technique described below to prevent catastrophic numeri-
cal outcomes.

logw;+ = logp(zt|sie, mis—1) +logw;s—1 (6)
= —0.5min(T}, Az"S 7 Az) + logw; 4 (7)

where the maximum observation deviance 7] is selected so
as to prevent outlier observations from significantly affect-
ing the observation likelihood. However, given the poten-
tially large numbers of observations, even with a reasonable
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Figure 3. Observation update (refer to text for de-
tails)

setting for 7j, the magnitude of the log-likelihood can be
such that raising it to the exponential to evaluate the ¢-th
particle weight results in zero — we employ a normalization
procedure described in [17] that preserves accuracy while
preventing catastrophic numerical results.

Once particle weights are calculated, the filter deter-
mines whether it is appropriate to resample. Resampling
too often can result in sample starvation in the filter, re-
sulting in poor modelling of the posterior distribution over
states. We use the technique suggested in [21] to evaluate
the effective sample size Nyr:

_ 1
B Zzw?

The general heuristic is to resample when Ny falls less
than N/2, where N is the number of samples in the fil-
ter. Resampling involves sampling probabilistically with
replacement to produce the next generation of particles.
When any particle is not chosen for advancement it is
pruned, and all nodes in the FastSLAM tree to which it
refers have their reference counts decremented, and are
deleted if their reference counts reach zero.

Negy

4.4. Observation Model and Data Associa-
tion

Figure 3 and Algorithm 1 summarize the observation up-
date process. We extract SIFT features using the difference
of Gaussian detector described in [12]. In the stereo case,
we perform a linear search of the keys in the left image for
the best match to each key in the right, subject to epipolar
constraints, and determine its 3D position and covariance
according to the well-known stereo equations:

Z=fB/d, X =uZ/f, Y =vZ/f

where f is the focal length of the camera, B is the base-line
of the stereo head, d is the disparity between SIFT keys in
the left and right images and [u v] is the pixel position of
the key in the right camera.



Algorithm 1 Observation update procedure

F:= Extract SIFT keys and positions f = {k,p} from
image.
for all features f in F' do
id:= kd_tree_lookup(f.k) {Index into kd-tree.}
for all Samples s do
List L:= s.map_lookup(id)
Find most likely landmark estimate [ in L, given f.p
{Maximizing observation likelihood. }
Copy [ if necessary {If shared with other samples. }
Update [ with f.p using Kalman Filter update.
Update w; for s according to observation likelihood.
end for
end for

Once landmark observations are extracted from the
stereo pair', the landmark estimates must be updated for
the individual samples. To efficiently store and access what
can quickly become a large number of SIFT keys we use
a kd-tree. The kd-tree facilitates nearest-neighbor match-
ing in time logarithmic in the size of the tree, and has been
demonstrated to be reliable for object recognition tasks [2].
The disadvantage of using a kd-tree is that it can sometimes
produce not the nearest match but a close match. We main-
tain a single tree for the sensor and associate an arbitrary
integer ID with each SIFT identifier we add. New keys are
considered to be candidate keys and are not passed as an ob-
servation to the particle filter until they have been observed
for a sufficient number of frames.

Each particle’s map is indexed by a set of IDs associ-
ated with SIFT descriptors and each node contains a linked
list of 3D landmarks sharing that descriptor. Multiple data
associations can be entertained by the filter because each
particle determines the specific landmark to which an ob-
servation corresponds. A sample’s weight is updated for a
given landmark observation according to Equation 5 by first
selecting from the linked list for the matched landmark ID
the landmark estimate that is most likely to have generated
the observed point. If the observation deviance exceeds a
particular threshold, or if no previous landmark estimates
exist for a particular SIFT ID, a new landmark estimate is
instantiated using the observation as the initial estimate.

4.5. Monocular SLAM

Several authors have demonstrated that in order to suc-
cessfully map an environment with a bearings-only sensor,
it is important to maintain several initial landmark hypothe-
ses until a substantially wide baseline is achieved between
observations [3, 10,20]. We take advantage of the frame-
work’s ability to assign multiple landmarks per SIFT ID

'In the monocular case, the complete list of SIFT keys is returned along
with their pixel positions- no depth computation is performed.

in order to perform undelayed landmark initialization for
accomplishing SLAM using a monocular camera (that is,
performing bearings-only SLAM). We employ the initial-
ization method proposed by Sola et al., which aims to ac-
curately represent the full probability distribution of a land-
mark’s position using a geometric progression of Gaussian
distributions along the cone projected from the camera’s fo-
cal point through the pixel location of the observation [20].

Specifically, when a landmark is initialized, its probabil-
ity distribution is a cone with Gaussian cross-section, lying
along the ray projected from the focal point of the camera
through the pixel corresponding to the observation such that
the intersection of the cone with the image plane represents
the measurement covariance R. This distribution is approx-
imated by defining a progression of Gaussian distributions
such that

N.q
p(lilz) =Y N(sj,05)

1

where s; = 771sy, 0; = #7710y and N, 3, s1, and o1
are user-defined constants calibrated according to the scale
of the environment being mapped.

Observation updates in the monocular case are per-
formed by updating all of the individual landmark estimates
and recording the observation likelihood for each in a vector
A. The landmark whose observation likelihood is highest is
used to weight the sample, and over time landmarks whose
A; drops below a threshold are pruned, until a single land-
mark estimate is determined. Note that for the monocular
case, this approach precludes the estimation of multiple dis-
tinct landmark estimates (corresponding to distinctly differ-
ent 3D points) per SIFT ID.

In this paper we will present results for the monocu-
lar case, however our current implementation requires that
odometry be available to resolve the well-known scale am-
biguity in monocular SLAM and structure from motion
(SFM) problems.

5. Experimental Results

For the purposes of our experiments, we used an RWI
B14 robot with a BumbleBee stereo head from Point Grey
Research. The robot was driven by a human operator
through a laboratory environment consisting of two rooms
of total size approximately 19m by 16.5m, and the robot
collected 8500 stereo images along a trajectory of approx-
imately 128m. Figure 4 depicts some sample images from
the sequence. Note the presence of motion blur and satura-
tion. The entire sequence and odometry log was saved for
testing under the various operating modes of our system.
All of the filter tests were conducted on a Pentium Xeon
3.2GHz PC with 4GB of RAM.



Figure 4. Sample frames from our test sequences.
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Figure 5. Map constructed using standard pro-
posal distribution, with overlaid architectural draw-
ing. Note that apparently spurious landmarks cor-
respond to furniture or points on the ceiling or
floor. The grid marks 25cm intervals. The trajec-
tory of the filter is plotted, with the set of samples
marked by red ’x’s. Note that the robot successfully
closes a large loop (going out one door and return-
ing through another), although the precise location
of one door is off by about 0.5m, and also success-
fully locates the top door on three occasions.

5.1. FastSLAM Behavior using a standard
proposal

Our first set of results illustrates the behavior of our sys-
tem using a standard proposal distribution (that is, camera
motions are sampled stochastically based only on odome-
try). Figure 5 presents the map constructed by our system
using 100 particles, with an architectural drawing overlaid
to illustrate the features of the environment.

Figure 6 illustrates the run-time performance of the filter
as we varied the number of samples in the filter, from values

Mean time per frame vs N
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Figure 6. Mean processing time per frame vs num-
ber of samples

of 1 up to 16000, roughly doubling the number of samples
at each increment. The performance is measured in terms of
the mean processing time per frame, in milliseconds, over
the run of 8500 frames. In all cases the number of land-
marks represented per map at the end of each of these runs
was 12,316. Note that the plot is in log-log format.

It is worthwhile noting that the filter can run at 1Hz at ap-
proximately 3000 samples, enabling real-time performance
for large sample sets. It is also interesting to note that
the slope of the log-log plot is less than 1 up to approxi-
mately 2000 samples, but begins to demonstrate superlinear
behavior beyond this value. Note that the theoretical per-
formance of the RBPF and FastSLAM map representation
is O(N K log K), hence the performance should scale lin-
early for fixed K and varying N. The main reason for the
superlinear performance appears to be an increased cache
and page fault frequency as N grows.

Figure 7 illustrates the memory consumption of the fil-
ter for varying N, represented in terms of the total num-
ber of nodes in the FastSLAM tree, averaged over all time
instances. As N increases, the number of nodes required
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Figure 7. Mean nodes in the FastSLAM tree versus
number of samples.
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Figure 8. Processing time versus time instance for
varying values of sample set size V.

for map maintenance increases, and while the mean num-
ber of nodes is much smaller than the theoretical maximum
of O(NK), the slope of the plot at 8000 samples is 1.17,
suggesting that the consumption for larger numbers of sam-
ples may not scale well.

The main concern for many SLAM implementations is
the performance as the number of landmarks increases. Fig-
ure 8 shows the average processing time per frame over 400
frame intervals for a selection of sample set sizes N. The
rate of growth in the number of landmarks is approximately
constant over the entire run (at most 5 new landmarks per
frame). This plot demonstrates that while there is a modest
increase in the cost of maintaining the map over time, the
filter performance does not degrade significantly over time.

From these results we can conclude that while Fast-
SLAM scales well for large numbers of landmarks (for the
environments considered), it is not clear that the filter will
scale well for very large numbers of samples. This may
explain in part the difficulty other researchers have had in
implementing FastSLAM with more than a small number
of particles. The cause for the superlinear behavior shown
in Figure 7 is under investigation.

5.2. Accuracy

The main goal of any SLAM architecture is robust, accu-
rate mapping. However, without an accurate map in the first
instance, it is difficult to reliably evaluate the performance
of a SLAM algorithm. Our approach to map evaluation was
to record the filter’s estimate of the robot’s position as it vis-
ited a set of pre-determined waypoints. Map accuracy was
then defined in terms of the accuracy of the robot’s trajec-
tory, as evaluated by its ability to localize at the waypoints.
The set of waypoints and their positions are marked with the
numbers 1-5 in Figure 9. The waypoints were visited in the
sequence 1,3,1,2,1,4,1,5,1,1,3,1 where the robot traversed a
large loop through an adjacent room in the 1,1 phase of the
sequence.

For the following set of experiments, we ran the filter
with 100 samples, and varied the operating modality of the
filter. We defined five waypoints located in the corners and
center of the main room that the robot explored and mea-
sured their positions. Table 1 summarizes the configuration
of the filter for each run, along with the mean error in the
trajectory estimate. Similarly, Figure 10 summarizes the re-
sults. Figure 9 a),b) and c) plot the localization estimates
at each of the waypoints for the standard proposal, visual
odometry, and monocular camera runs, respectively. The
green **’s correspond to the dead reckoning estimate (iden-
tical in all four plots), and the blue ’x’s indicate the filter
pose estimate at the time instances the robot visited the way-
points. The waypoints themselves are plotted with ared *o’,
and a line connects each pose estimate to the corresponding
waypoint. In all three cases the number of mapped SIFT
features was 13957. The “Mapped Landmarks” column in
Table 1 indicates the number of landmarks in each case that
had more than three observations.

It is important to note that even the worst performing
approach (SLAM with a monocular camera) out-performed
the robot’s dead reckoning. The erroneous monocular es-
timates are largely due to the robot’s failure to re-localize
when it closed the large loop through the second room. We
hope that advanced mixture proposal techniques, such as
that describe in our related work [5], will lead to improved
performance with the monocular modality. We also note
that the accuracy of the visual odometry approach facilitates
the use of non-robotic platforms, such as hand-held cam-



Table 1. Summary of operating modes and experimental results for evaluating map accuracy.

Run Title Known Visual Stereo/ Mean map | Mapped
Odometry Odometry Monocular | error (m) Landmarks
Dead Reckoning n/a n/a n/a 0.70 n/a
Monocular yes no monocular 0.61 4051
Visual Odometry no yes stereo 0.26 11266
Standard yes no stereo 0.10 6228

Map accuracy vs Odometry for Standard SLAM

Map accuracy vs Odometry for Visual-Odometry SLAM

Map accuracy vs Odometry for Monocular SLAM
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Figure 9. Map accuracy for a) standard proposal, b) visual odometry, and ¢) monocular camera.
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Figure 10. Summary of map accuracies for various
operating modalities

eras, and other devices where odometry may not be avail-
able.

6. Conclusion

This paper has presented the design and analysis of
an application framework for conducting experiments in
vision-based SLAM using Rao-blackwellised particle fil-
ters. The experimental results presented illustrate the ca-
pability of the system for operating in real-time with signif-
icant numbers of samples. We also demonstrate successful

mapping for a variety of modalities, including vision-based
ego-motion estimation and monocular sensing. This work
represents a significant step beyond the state of the art in
terms of both its flexibility and the scale and density of the
environments we are successfully mapping with vision.

There are a number of features of our system that, due
to space limitations, we have not presented. These include
the incorporation of global pose estimation in a mixture
proposal distribution, and the construction of coarse occu-
pancy grids that enable an exploring robot to plan and nav-
igate safely. Our current work exploits these features for
enabling autonomous navigation. We are also examining
how the monocular mapping system can be improved to fa-
cilitate accurate mapping without odometry. Ultimately, we
hope to deploy a system that can accurately map large envi-
ronments using a freely moving monocular camera without
odometric inputs.
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