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Abstract

This paper presents a template-based algorithm to track
and recognize athlete’s actions in an integrated system us-
ing only visual information. Conventional template-based
action recognition systems usually consider action recogni-
tion and tracking as two independent problems, and solve
them separately. In contrast, our algorithm emphasizes that
tracking and action recognition can be tightly coupled into
a single framework, where tracking assists action recogni-
tion and vice versa. Moreover, this paper proposes to rep-
resent the athletes by the PCA-HOG descriptor, which can
be computed by first transforming the athletes to the grids
of Histograms of Oriented Gradient (HOG) descriptor and
then project it to a linear subspace by Principal Compo-
nent Analysis (PCA). The exploitation of the PCA-HOG de-
scriptor not only helps the tracker to be robust under illu-
mination, pose, and view-point changes, but also implicitly
centers the figure in the tracking region, which makes ac-
tion recognition possible. Empirical results in hockey and
soccer sequences show the effectiveness of this algorithm.

1 Introduction

Vision-based tracking and action recognition systems
have gained more and more attention in the past few years
because of their potential applications on smart surveillence
systems, advanced human-computer interfaces, and sport
video analysis. In the past decade, there has been intensive
research and giant strides in designing algorithms for track-
ing humans and recognizing their actions [6]. Briefly, the
task of visual tracking is to predict and update the target’s
position, velocity, and size based on the video, while the
task of visual action recognition is to recognize (classify)
the person’s action given the person’s most recent appear-
ance.

In this paper, we develop a system that integrates visual
tracking and action recognition, where tracking assists ac-

tion recognition and vice versa. The first novelty of this
paper is to represent the target by the PCA-HOG descrip-
tor. The HOG descriptor and its variants have been used in
human detection [4] and object class recognition [15], and
have been shown to be very distinctive and robust. This
paper shows that the HOG descriptor can be also exploited
in visual tracking and action recognition as well. More-
over, after projecting the HOG descriptor to its principal
subspaces, the speed of the tracking and action recognition
system can be increased without loss of accuracy. The sec-
ond novelty of this paper is an iterative algorithm that solves
the tracking and action recognition problems together using
learned templates. Given the examples of athletes’ appear-
ances of different actions, we learn the templates and the
transition between the templates offline. During the run-
time, we use the templates and the transition matrix to clas-
sify the athlete’s actions and compute the most probable
template sequence consistent with the visual observation.
Moreover, the last template of the most probable sequence
can be used for the visual tracking system to search for the
next positions and sizes of the atheletes, which determines
the next visual observation of the athletes.

This paper is organized as follows: In Section 2, we re-
view some related work in visual tracking and action recog-
nition. In Section 3, we introduce the PCA-HOG represen-
tation. Section 4 details our tracking and action recognition
algorithms. The experimental results in hockey and soccer
sequences are shown in Section 5. Section 6 concludes this
paper.

2 Previous Work

The task of vision-based action recognition can be de-
scribed as follows: given a sequence of consecutive images
containing a single person, we have to determine theaction
of the person. Therefore, the vision-based action recogni-
tion problem is indeed a classification problem of which the
input is a set of images, and the output is a finite set of la-
bels.



The input of a vision-based action recognition system
is usually a set ofstabilizedimages: figure-centric images
containing the whole body of a single person (including the
limbs). Fig. 3 provides some examples of the stabilized
images. In order to obtain the stabilized images, vision-
based action recognition systems usually run visual tracking
and stabilization algorithms prior to the action recognition.
Then, the systems will extract relevant features such as pixel
intensities, edges, optical flow from the images. These fea-
tures are fed into a classification algorithm to determine the
action of the person. For examples, Yamatoet al. [23] trans-
form a sequence of stabilized images to mesh features, and
use a Hidden Markov Model classifier to recognize the ac-
tions. Efroset al. [5] transform the images to novel motion
descriptors computed by decomposing the optical flow of
images into four channels. Then, a nearest-neighbor algo-
rithm is performed to determine the person’s actions. In or-
der to tackle the stabilization problem, Wu [21] develop an
algorithm to automatically extract figure-centric stabilized
images from the tracking system. They also propose to use
Decomposed Image Gradients (DIG), which can be com-
puted by decomposing the image gradients into four chan-
nels, to classify the person’s actions.

The task of visual tracking can be defined as follows:
given the initial state (usually the position and size) of a per-
son in the first frame of a video sequence, the tracking sys-
tems will continuously update the person’s state given the
successive frames. During the tracking algorithm, relevant
features should be extracted from the images. Some sys-
tems use intensities or color information [1, 19], some use
shape information [7, 9], and some use both [22]. The track-
ing problem can be solved either deterministically [1, 3, 10]
or probabilistically [9, 22]. In order to improve the per-
formance and robustness of the tracker, many systems also
combine the tracking system with other systems such as ob-
ject detection [18] and object recognition [11].

In order to simplify the tracking problem, many track-
ers use a fixed target appearance [3, 18, 19]. However,
having a fixed target appearance is optimistic in the real
world because the view point and the illumination condi-
tions may change, and the person constantly change their
poses. In order to tackle this problem, [8, 12] project the
images of the person to a linear subspace and incrementally
update the subspace based on the new images. These sys-
tems are efficient; however, they have difficulties recovering
from drift because the linear subspace also accumulates the
information obtained from the images containing only the
background. Jepsonet al. [10] propose the WSL tracker
of which the appearance model is dominated by each either
the stable (S), wandering (W), or lost (L) components. They
use an online EM algorithm to update the parameters of the
stable component, and therefore the tracker is robust under
smooth appearance changes.

The tracking systems that most resemble ours are Giebel
et al. [7] and Leeet al. [11]. Giebelet al. [7] learn the
templates of the targets and the transition between the tem-
plates from examples. However, they do not divide the tem-
plates into different actions. During the tracking, they use
particle filtering [19] to infer both the next template and the
position and size of the target. Leeet al. [11] introduce a
system that combines face tracking and recognition. They
also learn templates of faces and the transition between the
templates from examples, and partition the templates into
different groups according to theidentityof the face. Dur-
ing the runtime, they first recognize the identity of the face
based on the history of the tracking results. Knowing the
identity of the face, the target template used by the tracker
can be more accurately estimated, and thus improve the ro-
bustness of the tracker.

3 The PCA-HOG Descriptor

In this paper we propose to use the PCA-HOG descriptor
to represent the athletes. The PCA-HOG descriptor can be
constructed by first transforming the tracking region to the
grids of Histograms of Oriented Gradient (HOG) descriptor
[4], and then using Principal Components Analysis (PCA)
to project the HOG descriptor to a linear subspace.

The HOG representation is inspired by the SIFT descrip-
tor proposed by Lowe [13]. It can be constructed by di-
viding the tracking regions into non-overlapping grids, and
then computing the orientation histograms of the image gra-
dient of each grid (Fig. 1). Since the HOG/SIFT repre-
sentation has been shown to be very distinctive and robust
under small affine transformation and illumination changes,
it has gained widespread use among the object recognition
and object detection community [4, 13, 15]. In our previous
work [14], we have also studied using the HOG descriptor
to the tracking and action recognition problems.

Let I ∈ R
m×n denote an image of widthm and height

n, andI(x, y) denote the pixel intensity in position(x, y),
the PCA-HOG descriptor can be computed by the following
procedures:

1. The imageI is filtered by a symmetric low-pass Gaus-
sian filter of sizewg with standard deviationσg. Then,
we compute the image gradient along thex andy di-
rection by a 1-D centered mask[−1, 0, 1]:

gx(x, y) = I(x + 1, y) − I(x − 1, y) ∀x, y

gy(x, y) = I(x, y + 1) − I(x, y − 1) ∀x, y
(1)

wheregx(x, y) andgy(x, y) denotes thex andy com-
ponents of the image gradient, respectively.

2. The magnitudem(x, y) and orientationθ(x, y) of the
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Figure 1. Examples of the PCA-HOG descriptor: (a) The image gradient. (b) The HOG descriptor
with a 2 × 2 grid and 8 orientation bins. (c) The PCA-HOG descriptor with np = 12. (d) The recon-
structed HOG descriptor.

image gradient are computed by

m(x, y) =
√

gx(x, y)2 + gy(x, y)2 (2)

θ(x, y) = tan−1(gy(x, y)/gx(x, y)) (3)

In order to make the PCA-HOG representation insen-
sitive to the color of the athletes’ uniform, we use the
unsigned orientation of the image gradient suggested
by Dalalet al. [4], i.e.,

θ̃(x, y) =

{

θ(x, y) + π if θ(x, y) < 0

θ(x, y) otherwise
(4)

3. We partition the image intosw × sh non-overlapping
grids. For each grid, we quantize the orientation
θ̃(x, y) for all pixels intosb orientation bins weighted
by its magnitudem(x, y).

4. We normalize each feature by the sums of all features.
The resulting feature vector,H ∈ R

nf , nf = sw ×
sh × sb, is the HOG descriptor of the imageI.

5. LetΓ ∈ R
np×nf denote the firstnp principal compo-

nents learned from the HOG descriptors of the training
images. We project the HOG descriptorH to the lin-
ear subspace spanned by the principal componentsΓ,
i.e.,

Y = ΓT (H − H̄) (5)

whereH̄ ∈ R
nf is the mean HOG descriptor of all

training images, andY ∈ R
np is the PCA-HOG de-

scriptor of the imageI.

Fig. 1 (a) gives an example of the image gradient and
Fig. 1 (b) and (c) are its corresponding HOG and PCA-
HOG descriptor, respectively. Fig. 1 (d) shows the recon-
structed HOG descriptor computed from the PCA-HOG de-
scriptor. We can observe that there is no significant differ-
ence between the original HOG descriptor and the recon-
struction.

Using the PCA-HOG representation has several advan-
tages. Firstly, since the HOG/SIFT representation is based
on edges, the rectangular tracking region can enclose the
entire body of the athletes (including the limbs) without
sacrificing the discrimination between the foreground and
background. This is especially the case in tracking ath-
letes in sports such as hockey and soccer because the back-
ground is usually homogeneous. Another attractive prop-
erty of the HOG/SIFT representation is that it is insensitive
to the changes of athletes’ uniform because the use of the
unsigned orientation of the image gradient. This enables
the tracker to focus on theshapeof the athletes but not the
colors or textures of the uniform. Secondly, the HOG/SIFT
representation improves the robustness of the tracker be-
cause it is robust to small misalignments and illumination
changes [4, 16, 15]. Thirdly, the HOG/SIFT representation
implicitly centers the figure in the tracking region because
it preserves some spatial arrangement by dividing the track-
ing region into non-overlapping grids. In contrast to [5, 21],
no further stabilization techniques need to be used to center
the figure in the tracking region. This helps integrate track-
ing and action recognition into a single framework. Finally,
using PCA with the HOG descriptor reduces the dimension-
ality of the feature vector and thus greatly increases the pro-
cessing speed.

4 Tracking and Action Recognition

The probabilistic graphical model of our system (Fig.
2) is a hybrid Hidden Markov Model with two first-order
Markov processes. The first Markov process,{Et; t ∈ N},
contains discrete random variableEt denoting the template
at timet. The second Markov process,{Xt; t ∈ N}, con-
tains continuous random variableXt denoting the position,
velocity, and size of a single athlete at timet. The random
variable{It; t ∈ N} denote the frame of the video at timet,
and the deterministic parameterαt denote the action of the
athlete at timet. The joint distribution of the entire system



Figure 2. Probabilistic Graphical Model.

is given by:

p(X, E, I|α) = p(X0)p(E0)
∏

t

p(It|Xt, Et, αt)·

∏

t

p(Et|Et−1, αt)
∏

t

p(Xt|Xt−1)
(6)

The transition distributionp(Et|Et−1, αt) is defined as:

p(Et = j | Et−1 = i, αt) = Aαt

ij (7)

whereAα
ij is the transition distribution between templatesi

andj of actionαt.
The continuous random variableXt is defined asXt =

{xt, yt, v
x
t , vy

t , wt}T , where(xt, yt) denotes the center of
the athlete,wt denotes the width of the rectangular tracking
region (we currently fix the aspect ratio of the tracking re-
gion), andvx

t andvy
t denote the velocity of the athlete along

thex andy direction, respectively. The transition distribu-
tion p(Xt|Xt−1) is a Linear Gaussian:

p(Xt | Xt−1) = N (Xt | BXt−1, ΣX) (8)

whereΣX is a 5 × 5 covariance matrix and the dynamic
matrixB is defined as:

B =













1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













(9)

In order to track and recognize the athlete’s actions si-
multaneous, we perform the following three procedures at
time t:

1. Tracking: Under the assumption that the the ap-
pearance of the athlete changes smoothly, we use the
template at timet− 1 to update the current state of the
tracker using particle filtering.

2. Action Recognition: To estimate the actionαt,
we perform Maximum Likelihood Estimation (MLE)
based on the previousT observations using the Hid-
den Markov Model classifier [20, 23].

3. Template Updating: Having the optimal action, we
update the current templateEt based on the most prob-
able sequence in the Hidden Markov Model [20, 23].

By repeatedly perform these three procedures at timet,
the system can approximately update the athlete’s position,
velocity, size, and determine the athlete’s action in practice
though we do not prove the convergence of the system.

4.1 Tracking

The posterior distributionp(Xt|I1:t, E0:t, α1:t) can be
computed by the following recursion:

p(Xt|I1:t, E0:t, α1:t) ∝

p(It|Xt, Et, αt)

∫

p(Xt|Xt−1)·

p(Xt−1|I1:(t−1), E0:(t−1), α1:(t−1)) dXt−1

(10)

Since computing the exact posterior distribution of Eq.
(10) is intractable, we useparticle filtering [9, 18, 19]
to approximate Eq. (10). Assume that we have a set
of N particles {X(i)

t }i=1...N . In each time step, we
sample candidate particles from an proposal distribution

X̃
(i)

t ∼ q(Xt|X0:t−1, I1:t, E0:t, α1:t) (In this paper, we
set q(Xt|X0:t−1, I1:t, E0:t, α1:t) = p(Xt|Xt−1), yield-
ing the bootstrap filter), and weight these particles accord-
ing to the following importance ratio

ω
(i)
t = ω

(i)
t−1

p(It|X̃
(i)

t , Et, αt)p(X̃
(i)

t |X
(i)
t−1)

q(X̃
(i)

t |X
(i)
0:t−1, I1:t, E0:t, α1:t)

(11)

We re-sample the particles using their importance
weights to generate an unweighted approximation
p(Xt|I1:t, E0:t, α1:t).

The problem of Eq. (11) is thatEt and αt are un-
known. Assuming that the appearance of the athletes
changes smoothly, we approximate the current template
and action by the previous ones, i.e.,Ẽt = Et−1, α̃t =
αt−1. Following [17], we define the sensor distribution
p(It|Xt, Ẽt, α̃t) as:

p(It|Xt, Ẽt = i, α̃t) ∝ exp(−λ d2(Ht,Π
α̃t

i )) (12)

whereHt is the HOG descriptor of the image given the
stateXt, Π

α̃t

i is the PCA-HOG descriptor of the templatei
of the actionα̃t, andλ is a constant. The similarity measure
d(·, ·) is the weighted sums of distance-from-feature-space
d2
1(·, ·) and distance-in-feature-spaced2

2(·, ·):

d2(Ht,Π
α̃t

i ) = ǫ · d2
1(Ht, Y t) + d2

2(Y t,Π
α̃t

i ) (13)



whereY t is the PCA-HOG descriptor of the image given
the stateXt, and ǫ is a constant. The distance-from-
feature spaced2

1(·, ·) and distance-in-feature-spaced2
2(·, ·)

are given by:

d2
1(Ht, Y t) = (Ht − H̃t)

T (Ht − H̃t) (14)

d2
2(Y t,Π

α̃t

i ) = (Y t − Πα̃t

i )T (Y t − Πα̃t

i ) (15)

whereH̃t is the reconstructed HOG descriptor defined as
H̃t = ΓY t + H̄ . Intuitively, the distance-from-feature-
space (DFFS) measures the distance between the HOG de-
scriptor and its projection on the linear subspace, which
can be interpreted as “how likely the tracking region is a
player”. The distance-in-feature-space (DIFS) measures the
distance between the projection of the HOG descriptor on
the subspace and the template, which can be interpreted
as “how likely the tracking region is performing a specific
pose”. The combination of the DFFS and DIFS provides a
robust similarity measure between the tracking region and
the templates.

4.2 Action Recognition

Knowing the position and size of the athlete, the PCA-
HOG descriptorY t of the tracking region can be computed.
Then, we can estimate the action of the athlete at timet by
the Maximum Likelihood Estimation (MLE) based on the
previousT observations. Lets = t−T +1 denote the time
of first observation we use to classify the athlete’s action,
the likelihood of the previousT observations can be defined
as:

p(Y s:t|αt) =
∑

Et

p(Y s:t, Et|αt) (16)

p(Y s:t,Et|αt) = p(Y t|Et, αt)·
∑

Et−1

p(Y s:(t−1), Et−1|αt) p(Et|Et−1, αt) (17)

The sensor distributionp(Y t|Et, αt) is defined as a Gaus-
sian distribution:

p(Y t | Et = i, αt) = N (Y t | Π
αt

i ,Σαt

i ) (18)

whereΠαt

i andΣαt

i are the mean and covariance of the
PCA-HOG descriptor of the templatei in actionαt.

The optimal action of the athlete at timet can be com-
puted by

α∗

t = argmax
αt

p(Y s:t | αt) (19)

Note that Eq. (16), (17), and (19) form the Hidden Markov
Model classifier [20, 23], and can be efficiently computed
using the forward-backward algorithm [20]. The parame-
ters of the Hidden Markov Model can be learned using the
Baum-Welch (EM) algorithm [20].

Figure 3. Examples of the training images.

4.3 Template Updating

Knowing the current actionα∗

t , we estimate the most
probable template sequence from times to t given the ob-
servations represented by the PCA-HOG descriptors:

E∗

s:t = argmax
Es:t

p(Es:t | Y s:t, α
∗

t ) (20)

We can use the Viterbi algorithm [20] to compute the most
probable template sequenceE∗

s:t.
To update the current templateEt, we simply setEt =

E∗

t . In other words, we use the last template of the most
probable sequence as the template of timet.

5 Experimental Results

We tested our algorithm in soccer sequences [5] and
hockey sequences [18]. For both soccer and hockey, we
first collect examples of athletes performing a specific ac-
tion. Fig. 3 shows some of the training images.

For the hockey sequences, we collect images of players
performing6 actions (skate left, skate right, skate in, skate
out, skate left 45, and skate right 45), and transform them
to the PCA-HOG descriptors. The PCA-HOG descriptors
are computed withwg = 5, σg = 5, sw = 5, sh = 5,
sb = 8, nf = 200, andnp = 20. In other words, each
player is represented by20-D PCA-HOG descriptor. Next,
we learn the parameters of the Hidden Markov Models by
the Baum-Welch (EM) algorithm. For each action, we as-
sume that there are10 possible templates, and we use the
most recent7 images (T = 7) to classify the player’s ac-
tion. Tracking will start with a manually initialized tracking
region and with60 particles in our experiments.

We compute the PCA-HOG descriptor with the same set-
tings for the experiments on soccer sequences. The differ-
ence is that we classify the soccer player’s actions into8
categories (run left, run right, run left 45, run right 45, run
in/out, and walk left, walk right, walk in/out)1. In addition,
we assume that there are10 possible templates for each ac-
tion, and we use the most recent10 images (T = 10) to
classify the player’s action.

We implement the entire system using Matlab, and the
processing time is about 2 fps under a Linux machine with a

1The action categories are the same as Efroset al. [5]



2.6GHz CPU. Fig. 4 and Fig. 5 show some experimental re-
sults in the hockey sequences. We can observe that the sys-
tem can track a single hockey player and recognize his ac-
tions effectively even though the player constantly changes
his pose. Moreover, the tracker is also robust under sig-
nificant illumination changes (flashes) because we rely on
shape rather than color information. Fig. 5 also indicates
that the tracker is robust underpartial occlusions. A pos-
sible explanation is that we project the HOG descriptor to
its principal subspace and thus the influences of other play-
ers in the tracking region can be alleviated. Unfortunately,
when two players cross over, further techniques such as [2]
are needed to tackle the occlusion problem.

The experimental results in soccer sequences are shown
in Fig. 6 and 7. Fig. 6 displays the results of a player run-
ning across a line. This example shows that even the back-
ground contains strong edges, the tracker can still accurately
track the player due to the robustness of the PCA-HOG de-
scriptor. Fig. 7 presents the results of a player running with
a ball and constantly changing actions. The action recogni-
tion results show that using shape (HOG/SIFT representa-
tion) alone also works for the soccer sequence even though
the tracking region is small and of low resolution.

6 Conclusion

This paper presents a system that tightly couples track-
ing and action recognition into an integrated system. In
addition, the PCA-HOG descriptor representation not only
provides robust and distinctive input features, but also im-
plicitly centers the figure in the tracking region. Therefore,
no further stabilization techniques need to be used. Exper-
imental results in hockey and soccer sequences show that
this system can track a single athlete and recognize his/her
actions effectively.

In the future, we plan to use the action as a random vari-
able instead of a deterministic parameter, and introduce de-
pendencies between the current action and the previous ac-
tion, and between the action and the state of the tracker.
The resulting Dynamical Bayesian Network (DBN) will be
a hybrid hierarchical Hidden Markov Model (HHMM) con-
taining three interacting Markov processes. Furthermore,
we also plan to extend our work to a multi-target tracking
system, where the actions of the athletes can be used as an
addition cue when players occlude each other.
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Frame 195 Frame 204 Frame 248

Frame 276 Frame 298 Frame 312

Figure 4. (Hockey sequence 1) Player changing actions: The upper parts of the images are the
video frames and the lower parts are the most recent observations used to classify the player’s
actions.

Frame 159 Frame 162 Frame 182

Frame 193 Frame 200 Frame 210

Figure 5. (Hockey sequence 2) Flash and partial occlusion: The upper parts of the images are
the video frames and the lower parts are the most recent observations used to classify the player’s
actions.



Frame 400 Frame 432 Frame 434

Frame 439 Frame 441 Frame 451

Figure 6. (Soccer sequence 1) Player running across a line: The upper parts of the images are
the video frames and the lower parts are the most recent observations used to classify the player’s
actions.

Frame 1352 Frame 1387 Frame 1410

Frame 1415 Frame 1441 Frame 1453

Figure 7. (Soccer sequence 2) Player running with a ball: The upper parts of the images are the
video frames and the lower parts are the most recent observations used to classify the player’s
actions.


