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Abstract - Recursive Maximum Likelihood
(RML) is a popular methodology for estimat-
ing unknown static parameters in state-space
models. We describe how a completely decen-
tralized version of RML can be implemented in
dynamic graphical models through the propaga-
tion of suitable messages that are exchanged be-
tween neighbouring nodes of the graph. The re-
sulting algorithm can be interpreted as a gener-
alization of the celebrated belief propagation al-
gorithm to compute likelihood gradients. This
algorithm is applied to solve the sensor regis-
tration and localisation problem for sensor net-
works. An exact implementation is given for
dynamic linear Gaussian models without loop.
If loops are present, a loopy version of the algo-
rithm is described. For non-linear non Gaussian
scenarios, a Sequential Monte Carlo (SMC) or
particle filter implementation is sketched.

Keywords: decentralised sensor networks, distributed

parameter estimation, distributed sensor registration, dy-

namic graphical models.

1 Introduction

The standard approach in centralised sensor manage-
ment is to transmit measurements from all sensor
nodes to a fusion node which performs most of the
computation [2]. This limits the number of expensive
sensors used [5]. However, the spatial deployment of
the network is limited to a restricted range relative to
the central fusion node. Moreover, the (large) commu-
nication bandwidth requirements also limit the maxi-
mum number of potentially utilised sensors [1]. This
motivates the adoption of decentralised or distributed
approaches, such as ad-hoc sensor networks. In such
networks neighbouring sensors-trackers exchange infor-
mation between them in order to track optimally the
target as in the centralised approach [3].

In such a context, it is important for all sensors to
“learn” some parameters of its neighbouring nodes so
as to be able to use their measurements for tracking.
The network should also be able to adapt to poten-
tially changing parameters and/or network topology.
In particular, sensors’ measurements are known to ex-

hibit errors, which in some cases can be decomposed
in random noise and systematic biases. The problem
of identifying these biases is known as sensor registra-
tion [8, 9, 14]. In a centralised approach this can be
solved at the fusion center by augmenting the state
with this bias and maximising the resulting measure-
ment likelihood. In a distributed context, the prob-
lem is somewhat more complex and each node needs
to estimate/register the biases of its neighbours. We
want to achieve this using only local messages between
a node and its neighbours. Solving this problem is es-
sential in many real-world systems as an heterogeneous
collection of sensors is often used and their associated
sensor biases can differ significantly [9].

Furthermore in many distributed sensor networks it
is also important for each node to “learn” the position
or coordinates of its neighbours relative to itself. This
is known as sensor self-localisation or self-calibration
[1]; this problem also often appears in the computer
vision literature [6]. For example, let a sensor net-
work consist of a collection of nodes: each node is a
tracker and is at the origin of its own coordinate sys-
tem. In a target tracking scenario it is important for
each sensor-tracker node to be able to translate the
relative frame of reference of its neighbour to its own
in order to utilise and fuse the measurements. This
is essentially equivalent to knowing with precision the
coordinates of its neighbours w.r.t. itself. If these co-
ordinates are biased or unknown, the sensor calibration
problem can be put in the same framework as the sen-
sor registration one.

In this article, we show that these problems -sensor
registration and self-localisation for sensor networks-
can be cast as recursive static parameter estimation for
dynamic graphical models. We shall be adopting here
a RML approach to solve this problem where the (aver-
age) log-likelihood of the unknown parameters is max-
imized on-line using a stochastic gradient approach.
Belief propagation ideas have been widely used to per-
form statistical inference in undirected and directed
graphs using message passing [10]. The novelty of our
paper relies on a fully decentralized calculation of the
log-likelihood gradient on graphs. In this respect, it
can be interpreted as a generalization of belief propa-
gation to directed graphs. Received messages at a node
shall contain the sufficient statistics sent from the rest



of the network, in order for that node to infer the op-
timal parameters of its surrounding neighbourhood.

The rest of this paper is organized as: in Section 2
we present the recursive maximum likelihood (RML)
parameter estimation approach [7]. In Section 3 we
formulate precisely the sensor registration and self-
localisation problems. In Sections 4 and 5 we solve
these problems using an original distributed RML im-
plementation. Finally, in Sections 6 and 7 we illustrate
our ideas on an example and make some conclusive re-
marks.

2 RML Problem Formulation

Let {Xn}n≥0 and {Yn}n≥1 be X and Y-valued sto-
chastic processes defined on a measurable space (Ω,F).
For each θ ∈ Θ where Θ is an open subset of Rk, the
process {Xn}n≥0 is an unobserved (hidden) Markov
process of initial density π0 and Markov transition den-
sity fθ (x′|x), i.e. X0 ∼ π0 and

Xn+1|Xn = x ∼ fθ ( ·|x) . (1)

The hidden process {Xn}n≥0 is observed through the
process {Yn}n≥1. It is assumed that the observations
conditioned upon {Xn}n≥0 are independent with mar-
ginal density gθ (y|x), i.e.,

Yn|Xn = x ∼ gθ ( ·|x) . (2)

It is assumed that the true parameter θ∗ governing
the evolution of the processes {Xn}n≥0 and {Yn}n≥1

is not known and it to be estimated. For a given se-
quence of T observations, the batch ML estimate of θ∗

is the solution to the maximization of the log likelihood
function,

Lθ(Y1:T ) = log Pθ(Y1, . . . , YT )

=
T∑

n=1

log Pθ(Yn|Y1, . . . , Yn−1)

where for n = 1 the conditional density is understood
to be Pθ(Y1).

Our aim is to solve θ∗ recursively using the se-
quence of observations {Yn}n≥1. Under regularity as-
sumptions including the stationarity of the state space
model, then

L(θ) = lim
T→∞

1
T

Lθ(Y1:T )

=
∫

Y×P(X )

log
(∫

gθ(y|x)µ(x)dx

)
λθ,θ∗(dy, dµ)

where P(X ) is the space of probability distributions
on X , and λθ,θ∗(dy, dµ) is the joint invariant distrib-
ution of the measurement and the prediction density,
(Yn, pθ(xn|Y1:n−1)).

Recursive Maximum Likelihood (RML) consists of
identifying the static parameter θ∗ = arg max L(θ) by
using a stochastic gradient algorithm where at time n

the parameter estimate θn is given by

θn = θn−1 + γn∇ log(P (Yn|Y1:n−1))

= θn−1 + γn∇ log(
∫

gθn−1(Yn|xn)

× pθ1:n−1(xn|Y1:n−1)dxn), (3)

where {γn} is a sequence of step-sizes such that∑
n γn = ∞ and

∑
n γn

2 < ∞.
In the context of sensor networks, we will use the

specific (graph) structure of the model (1)-(2) to per-
form those calculations in a fully decentralized way.

3 Sensor Registration and Lo-
calisation

3.1 General Framework for Sensor
Registration

We consider a sensor network deployed for the track-
ing of targets. Let the set of nodes of the network be
indexed by the finite set V while the connectivity of
the network is specified by the set of edges E . We will
deal with an undirected graphical model G = (V, E).
Thus, two nodes i and j communicate provided the
edge e = (i, j) (or (j, i)) belongs to E .

The state of a node v is a random variable Xv that
represents the state of the target being tracked. The
state of the target Xv would comprise of the target’s
location and velocities as measured with respect the lo-
cal coordinate frame of node v. At time n let the state
of the target at node v be Xv,n. The only assumption
on the target dynamic model is

Xv,n+1|Xv,n = xv ∼ fv ( ·|xv)

A local measurement Yv,n of the target’s state is gen-
erated based on the sensing capabilities of the node.
Let the measurement be generated according to the
probability density function

Yv,n|Xv,n = xv ∼ gϑ∗v ( ·|xv)

where ϑ∗v is the unknown bias of sensor node v.
Since all nodes are engaged in tracking the same tar-

get, it is possible to utilise the measurement of all nodes
to enhance the tracking performance. For instance, for
a completely decoupled implementation, each node will
maintain its local filtering distribution

πv,n(xv)dxv = Pϑ∗v (Xv,n ∈ dxv|Yv,1, . . . , Yv,n).

In a fully coupled implementation, each node will use
the measurements of all other nodes too in its update
of the Bayes recursion, i.e. it propagates the filtering
distribution

πv,n(xv)dxv = Pϑ∗(Xv,n ∈ dxv|Y1, . . . , Yn)

where Yn denotes the vector of stacked observations
[Yv,n]v∈V and ϑ∗ denotes the vector of stacked biases
[ϑ∗v]v∈V . Similarly the prediction distribution will be

πv,n|n−1(xv)dxv = Pϑ∗(Xv,n ∈ dxv|Y1, . . . , Yn−1)



It is clear that a fully coupled implementation is advan-
tageous since nodes whose observations are poor, due
to distance or sensing capabilities, can benefit from
other sensors with better quality observations.

The prediction step can be directly done in a de-
centralized way at each node. However in the update
step, each node receives an observation and all nodes
in the network have to share their information by pass-
ing messages around the network in order to compute
their filtering distribution.

3.2 Sensor Localisation as a General
Sensor Registration Problem

We will ignore here the sensor biases and concentrate
on the sensor localisation problem formulated in a gen-
eral sensor registration context as discussed earlier.
For sake of clarity, we make the following assumption
which we stress is not essential for the framework we
propose.

Assumption 1 All nodes maintain a 2D-cartesian
coordinate system and maintain as the state of the tar-
get its position and velocity in the relevant directions.
Also, each node regards itself as located at the origin
of its own coordinate system.

We refer to a particular node v and would like to
use the measurements of the rest of the nodes to com-
pute {πv,n}. Obviously the measurement likelihood de-
pends on the coordinate of each node w.r.t. node v. We
denote then θ∗i→j the coordinate transformation from
node i to j, i.e. θ∗i→j is the origin of node i in the coor-
dinate frame of node j. We use then θ∗ = [θ∗i→j ](i,j)∈E
as a static registration parameter instead of a measure-
ment bias and we have θ∗i→i = 0 because of Assumption
1.

We denote the observation likelihood of node v by
gv( ·|xv). The Bayes recursion applied independently
to each node i would yield

πi,n+1(xi,n+1) ∝
gi(Yi,n+1|xi,n+1)

∫
fi(xi,n+1|xi,n)πi,n(xi,n)dxi,n.

In a coupled implementation of two nodes, node i in-
corporates the observation of adjacent node j (con-
nected by an edge),

πi,n+1(xi,n+1) ∝
gi (Yi,n+1|xi,n+1) gj(Yj,n+1|θ∗i→j + xi,n+1)
× ∫

fi(xi,n+1|xi,n)πi,n(xi,n)dxi,n.

It is clear that sharing the observations is only possible
with the coordinate transformation variable θ∗i→j . In
this paper, we will use the observations from the entire
network to update each node’s filtering density.

Assumption 2 All nodes have a consistent transition
density for the target being tracked and let this density
for node i be denoted by fi(x′i|xi). By consistent we
mean that for any two nodes i and j,

fi(x′i|xi) = fj(x′i + θ∗i→j

∣∣ xi + θ∗i→j).

This assumption is necessary for the problem to be
formulated without any ambiguity when translating
the coordinate system from one node to another. All
nodes should maintain the same transition density or
prediction model with respect to an arbitrary coordi-
nate scheme. Moreover the transition density should
in turn follow the physical coordinate transformation
of the state from one node to another. This is impor-
tant since we want all nodes to share the same filtering
and prediction densities. Using Assumption 2 we can
also show that the prediction and filtering density at
each node can be propagated consistently:

Property 3 Assume πi,n and πj,n satisfy

πi,n(xi) = πj,n(xi + θ∗i→j)

for all xi. (This implies πi,n(xj + θ∗j→i) = πj,n(xj)
for all xj.) Then one also has πi,n+1|n (xi) =
πj,n+1|n

(
xi + θ∗i→j

)
.

In the fully coupled implementation, each node i
will incorporate the observations of all other nodes in
the network too. In the filtering step implemented by
a node i, after all nodes take a measurement, we have

πi,n+1(xi) ∝
∏

v∈V\i
gv(Yv,n+1|xi + θ∗i→v)

× gi(Yi,n+1|xi)πi,n+1|n(xi)

where θ∗i→v for non adjacent nodes is defined as follows:
for any path that connects nodes i and v then

θ∗i→v = θ∗i→j1 + θ∗j1→j2 + . . . + θ∗jn−1→jn
+ θ∗jn→v. (4)

Since we start with the same prior and all nodes
have the same transition densities, it is obvious that
the filtering density shared in the network will be the
same for all nodes on it. The coordinate transforma-
tions are consistent at each filtering step and hence
can be used when one node needs to pass a message to
another.

Property 4 After the update step, for any two pair of
nodes i and j, it follows that

πi,n+1(xi) = πj,n+1(xi + θ∗i→j)

for all xi.

Note: For the localisation problem the coordinate
transformation function hθ∗i→j

of the state from node i
to node j is given simply given by hθ∗i→j

= xi + θ∗i→j .
In the general sensor registration case hθ∗i→j

can admit
any nonlinear form but given Assumption 2 is true the
results in this and later sections still hold.

4 Learning θ∗ =
[
θ∗i→j

]
i,j

by

Distributed RML

We propose a distributed implementation of RML for
estimating all the coordinate transformations θ∗i→j .
Since there is one parameter per edge, namely θi→j



for the edge (i, j) ∈ E , a particular node, say i, will
take ownership of the parameter and recursively up-
date it as observations are received in the network.
This node shall be referred as root node for that edge,
since it shall be the node to collect messages from the
rest of the network in order to iterate θi→j,n as in
(3). The messages received by each node i from its
neighbours should be sufficient to iterate the parame-
ter θi→j,n and perform the update step of the Bayesian
recursion yielding the filtering density πi,n. Since the
prediction step can be performed locally at each node,
we shall be able to estimate θ∗i→j while propagating
πi,n.

We now formulate the RML problem for node 1 as
the reference node. Note this is an arbitrary choice
since any node in the network can become root node.
For a fixed parameter θ = [θi→j ](i,j)∈E , the recursive
log likelihood log Pθ(Yn|Y1:n−1), where Yn denotes the
vector of stacked observations [Yv,n]v∈V , is

J1(Yn; θ) = log
∫ ∏

v∈V
gv(Yv,n|x1+θ1→v)πθ

1,n|n−1(x1)dx1

where θ1→1 = 0 , while superscript θ on πθ
1,n|n−1 em-

phasizes the dependency on the vector of coordinate
transformation. We will now take the gradient of this
quantity with respect to θ1→2, i.e., we are assuming
that node (1, 2) is a valid edge and that node 1 has
ownership of parameter θ1→2, i.e. node 1 is the root
node in this case,

∇θ1→2J1(Yn; θ) =
= ∇θ1→2 log

∫ ∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)dx1

{∫
∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)dx1}−1

×{∫ [
∑

v∈V
∇θ1→2gv(Yv,n|x1+θ1→v)

gv(Yv,n|x1+θ1→v) ]

×
∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)dx1

+
∫ ∏

v∈V
gv(Yv,n|x1 + θ1→v)∇θ1→2π

θ
1,n|n−1(x1)dx1}

(5)
In the context of recursive distributed para-

meter estimation πθ
1,n|n−1(x1) and its gradi-

ent ∇θ1→2π
θ
1,n|n−1(x1) should be propagated

locally at node 1. It also appears neces-
sary to pass

∏

v∈V\{1}
gv(Yv,n|x1 + θ1→v) and

∑
v∈V

∇θ1→2gv(Yv,n|x1+θ1→v)

gv(Yv,n|x1+θ1→v) using appropriate mes-

sages from the network to node 1 in order to be able
to update θi→j,n as in (3). It can be shown that these
messages are sufficient to propagate the filtering and
prediction densities as well as their gradients.

4.1 Propagating the filtering and pre-
diction densities and its derivatives

For node 1 we would like to implement a recursion
for πθ

1,n(x1) and ∇θ1→2π
θ
1,n(x1) given that πθ

1,n−1(x
′
1)

and ∇θ1→2π
θ
1,n−1(x

′
1) are available locally from previ-

ous epoch n−1. As node 1 is chosen to be the reference

or root node just for convenience and is a completely
arbitrary choice, the derivation for any other node is
identical. Consider the prediction and update stage
of the filter given the evolution density of the target’s
model f1 and the observation density g1:

πθ
1,n|n−1(x1) =

∫
f1(x1|x′1)πθ

1,n−1(x
′
1)dx′1, (6)

and

πθ
1,n(x1) =

∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)

∫ ∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)dx1

(7)
In the meantime we aim to propagate the densities

and their derivatives. For the derivatives we have:

∇θ1→2π
θ
1,n|n−1(x1) =

∫
f1(x1|x′1)∇θ1→2π

θ(x′1)dx′1,

(8)
and

∇θπ
θ
1,n(x1) = {∫

∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)dx1}−1

×{
∏

v∈V
gv(Yv,n|x1 + θ1→v)∇θ1→2π

θ
1,n|n−1(x1)

+(

P
v∈V

∇θ1→2gv(Yv,n|x1+θ1→v)

gv(Yv,n|x1+θ1→v) )

×
∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)

−πθ
1,n(x1)[

∫ ∏

v∈V
gv(Yv,n|x1 + θ1→v)∇θ1→2π

θ
1,n|n−1(x1)dx1

+
∫

(

P
v∈V

∇θ1→2gv(Yv,n|x1+θ1→v)

gv(Yv,n|x1+θ1→v) )

×
∏

v∈V
gv(Yv,n|x1 + θ1→v)πθ

1,n|n−1(x1)dx1]}.

(9)
Note that if

∏

v∈V\{1}
gv(Yv,n|x1 + θ1→v) and

∑
v∈V

∇θ1→2gv(Yv,n|x1+θ1→v)

gv(Yv,n|x1+θ1→v) are available at the root

node 1, then the filtering and predictions densities to-
gether with their derivatives can be computed locally.
These quantities should become available to node 1 by
messages received from its neighbours, which in turn
receive messages from their neighbours. We aim to de-
fine an appropriate message passing scheme so that all
possible nodes can act as roots and update one or more
parameters associated with its adjacent edges.

4.2 Defining Message Passing in the
Sensor Network

To derive a distributed implementation, consider
first how for each v ∈ V gv(Yv,n|x1 + θ1→v) and
∇θ1→2gv(Yv,n|x1+θ1→v) can be communicated to node
1 via a sequence of messages. Assume the directed path
from node v to 1 traverses the edges

−−−→
(v, jl),

−−−−−→
(jl, jl−1),

. . . ,
−−−−→
(j2, j1),

−−−→
(j1, 1).

In order to pass gv(Yv,n|x1 + θ1→v) from node v to
1, the incoming message to node jk from node jk+1



should be gv(Yv,n|xjk
+ θjk→v). Then node jk should

forward to node jk−1 the message

gv(Yv,n|xjk
+ θjk→v)|xjk

=xjk−1+θjk−1→jk

= gv(Yv,n|xjk−1 + θjk−1→v)

So starting from gv(Yv,n|xv) at node v, after us-
ing repetitive coordinate transformations from each
node jk−1 to node jk and taking advantage of (4),
gv(Yv,n|x1 + θ1→v) can reach root node 1.

In order to show how∇θ1→2gv(Yv,n|x1+θ1→v) could
be passed from node v to 1 in a similar fashion, we
should note from (4), that for any path connecting
node 1 and v, which does not include the edge (1, 2),
then ∇θ1→2gv(Yv,n|x1 + θ1→v) = 0. If θ1→v is defined
over a path that includes edge (1, 2) then

∇θ1→2gv(Yv,n|x1 + θ1→v)
= ∇zgv(Yv,n| z)|z=x1+θ1→v

since ∇θ1→2 [x1 + θ1→v] = 1. As before then each node
jk should forward to node jk−1 the message

∇xjk
+θjk→vgv(Yv,n|xjk

+ θjk→v)|xjk
=xjk−1+θjk−1→jk

= ∇xjk−1+θjk−1→vgv(Yv,n|xjk−1 + θjk−1→v)

so that ∇θ1→2gv(Yv,n|x1+θ1→v) travels along the path−−−→
(v, jl),

−−−−−→
(jl, jl−1), . . . ,

−−−−→
(j2, j1),

−−−→
(j1, 1).

Previously we have shown that the sufficient
statistics that root node 1 needs to compute
θ1→2,n as well as propagating the densities
in (6)-(9) are

∏

v∈V\{1}
gv(Yv,n|x1 + θ1→v) and

∑
v∈V

∇θ1→2gv(Yv,n|x1+θ1→v)

gv(Yv,n|x1+θ1→v) . Therefore we could

define messages from each node in a way that it is not
necessary to transmit each ∇θ1→2gv(Yv,n|x1 + θ1→v)
and gv(Yv,n|x1 + θ1→v) separately in all different
possible paths

−−−→
(v, jl),

−−−−−→
(jl, jl−1), . . . ,

−−−−→
(j2, j1),

−−−→
(j1, 1).

For this reason we inherit a generalized version of
belief propagation (BP) approach as described in [10]
where messages are defined m1,i→j and m2,i→j from
node i to j for all (i, j) ∈ E

m1,i→j(xj) = gi(Yi,n|xj + θj→i)

×
∏

p∈ne(i)\{j}
m1,p→i(xj + θj→i) (10)

m2,i→j(xj) =
∇θ1→2gi(Yi,n|xj + θj→i)

gi(Yi,n|xj + θj→i)

+
∑

p∈ne(i)\{j}
m2,p→i(xj + θj→i) (11)

where ne(i) is the set of neighbouring nodes of i in V.
Equations (5)-(9) can be reproduced for any other

root node r and parameter θr→q, (q, r) ∈ E , by ob-
vious substitutions to the subscript indices. In ad-
dition we can define for each root node r an ap-
propriate message scheduling, where we choose to
use only messages m1,i→j(xj) and m1,i→j(xj) only
for (i, j) directed towards that root node, i.e. start

from the outer branches of the graphical model and
leading each time to node r. So after the root
node receives its messages from its neighbours it
will have available:

∏

p∈ne(r)

m1,p→r(x1 + θr→p) =

∏

v∈V\{r}
gv(Yv,n|xr + θr→v) and

∑
p∈ne(r)

m2,p→r(xr +

θr→p) =
∑

v∈V\{r}

∇θr→q gv(Yv,n|xr+θr→v)

gv(Yv,n|xr+θr→v) , as desired.

5 Distributed RML Ideal Algo-
rithm

In this section we demonstrate how the general
distributed parameter estimation problem for sen-
sor localisation can be solved using RML. Using
the results of Section 4 we estimate θr→q for any
edge (r, q) using now an arbitrary root node r.
At each iteration n all edges should be updated
in a cyclic fashion using a valid root node and
hence θ = θi→jij

will be updated for all (i, j) ∈ E .

Algorithm 1:
For each edge (q, r) ∈ E assign a valid root node, say
r, so as to update parameter θr→q

At time n,

Prediction Update for all nodes: For
all nodes v ∈ V derive the pre-
diction densities πθ

v,n|n−1(xv,n) =∫
fv(xv,n|xv,n−1)πθ

v,n−1(xv,n−1)dxv,n−1 and
their derivatives ∇θr→qπ

θ
v,n|n−1(xv,n) =∫

fv(xv,n|xv,n−1)∇θr→qπ
θ
v,n−1(xv,n−1)dxv,n−1.

Propagate messages: After Yv,n is received from all
nodes v ∈ V propagate all possible messages
m1,i→j , m2,i→j given by (10) and (11) for all edges
(i, j) ∈ E in the network.

Use messages to compute sufficient statistics:
At each node v compute

∏

p∈ne(v)

m1,p→v(xv +θv→p)

and, for each root node r,
∑

p∈ne(r)

m2,p→r(xr +

θr→p).

Update the parameter θr→q: At each root node r
set

θr→q,n+1 = θr→q,n + γn∇θr→qJr(Yn; θ̃n),

where θ̃n is defined so that θ̃r→q = θr→q,n, θ̃l→e =
θl→e,n, for all (l, e) ∈ E and ∇θr→qJ(Yn; θ) is given
by an expression similar to (5).

Update Filtering density and derivative: Using
incoming messages, update at all nodes the
current state belief πθ

v,n(xv,n) as in (7) and its
derivative ∇θr→qπ

θ
v,n(xv,n) as in (9).

Typically, the step-sizes are selected as γn = n−γ ,
where γ > 0.5, so that

∑
n γn = ∞ and

∑
n γn

2 < ∞.



As for standard belief propagation [10], this algo-
rithm will only be exact when the graph/network ad-
mits a tree structure. Applying belief propagation al-
gorithms to non-tree topologies is generally referred as
Loopy Belief Propagation (LBP). In some cases LBP
can lead to very good approximations given [15]. Simi-
larly, we can apply this algorithm to general topologies
and we demonstrate in simulations that this loopy ver-
sion can exhibit excellent performance.
Using Particle Filters:

This algorithm relies on the evaluation of complex
multi-dimensional integrals given in equations (5)-(9).
In the general non linear non Gaussian case this is
impossible and one must rely on approximation and
simulation-based methods. It is important to empha-
sise that we have not made any linearity or gaussianity
assumption in our framework. Hence in the nonlinear
non-gaussian case, Sequential Monte Carlo or in other
words Particle Filters can be used.

In [11, 12] a centralised implementation of particle
filtering for RML has been derived. This implemen-
tation can be extended to our distributed framework.
In the above algorithm the state’s belief at each node
πθ

i,n as well as the prediction density πθ
i,n|n−1 will have

to be replaced by their particle filter approximations
π̂θ

i,n and π̂θ
i,n|n−1, which will be weighted sums of Dirac

delta-mass functions [4]. It can be shown that the mes-
sages defined above evaluated at the particle’s states
are adequate to recur π̂θ

i,n and π̂θ
i,n|n−1 as well as their

derivatives.

6 Numerical Example

In this section we shall demonstrate how to solve the
sensor self-localisation problem using our framework.
We will be using the ideal algorithm of Section 5 to
solve the sensor localisation problem for the linear
Gaussian case.

We consider an M node sensor network. At each
node v, the target being tracked yields observation Yv,n

and obeys the following dynamics

Xv,n = AXv,n−1 + BVv,n,

Yv,n = CXv,n + DWv,n

with Vv,n
i.i.d.∼ N (0, Q) and Wv,n

i.i.d.∼ N (0, R).

Thanks to the linear and Gaussian assumptions, we
have at time n

πv,n|n−1(xv,n) = Nxn(µv,n|n−1, Σv,n|n−1)
πv,n(xv,n) = Nxn(µv,n|n, Σv,n|n)

whose parameters can be computed using a distributed
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Figure 1: Sensor Network used for target tracking; in
the numerical example its localisation parameter θ is
estimated.

Kalman filter recursion for each node v

µv,n|n−1 = A µv,n−1|n−1

Σv,n|n−1 = AΣv,n−1|n−1A
T + BQBT

mv,n = Cµv,n|n−1

Sv,n = CΣv,n|n−1C
T + M−1DRDT

Kv,n = Σv,n|n−1C
T S−1

v,n

µv,n|n = µv,n|n−1

+ Kv,n(M−1
∑

i∈V
(Yi,n − Cθv→i)−mv,n)

Σv,n|n = Σv,n|n−1 −Kv,nCΣv,n|n−1

So it is only necessary to propagate
the mean and covariance of these densi-
ties. Moreover since ∇θv→k

Nx(mθ, Σ) =
(∇θv→k

mθ)TNx(mθ,Σ)Σ−1 (x−mθ), in order to
propagate the derivatives of the densities we only
need to propagate ∇θv→k

µv,n|n−1 and ∇θv→k
µv,n|n.

Also to update each edge parameter θr→q, we can
use the analytical expression of the predictive distri-
bution Pθ(Yn|Y0:n−1) when taking the derivative of
log Pθ(Yn|Y0:n−1).

For the sensor network in Figure 1 ignore first the
dotted line between nodes 3 and 6. In this case, the
graph has a tree structure and we can solve for any
θi→j exactly. We choose nodes {3, 4, 6, 9} as root nodes
and update at each iteration their adjacent edges. For
practical implementation reasons we choose to use a
constant step size γn = 10−3. For stochastic approx-
imation in general, decreasing step-sizes are essential
conditions of convergence. If fixed step-sizes are used,
then we may still have convergence, but now the iter-
ates “oscillate” about their limiting values with vari-
ance proportional to the step-size. We also initialise
θi→j = 0 for all (i, j) ∈ E . In Figures 2, 3 we illus-
trate the convergence to the correct values of all the
localisation parameters relative to node 6, θ6→v, for all
v ∈ V.

Next we solve for the sensor network in Figure 1 but
with the dotted line connected. Now the sensor net-
work has a loop in its topology defined by E at {3, 4, 6}.
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Figure 2: Convergence of x-coordinate of θ6→v,n for
the sensor net with dotted line not connected
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Figure 3: Convergence of y-coordinate of θ6→v,n for
the sensor net with dotted line not connected

We choose again nodes {3, 4, 6, 9} as root nodes and
update at each iteration their adjacent edges. As be-
fore, we choose to use a constant step size γn = 10−3

and initialise θi→j = 0. In Figures 4, 5 we illustrate
the convergence of all the localisation parameters rela-
tive to node 6, θ6→v when LBP is used. Note that the
errors of the solution for θ6→v are very small, but the
convergence rate is now slower.

7 Conclusion

In this paper, we have presented a fully decentral-
ized algorithm to perform recursive static parameter
estimation in dynamic graphical models. We have
used this approach to formulate the sensor registration
problem and proposed an algorithm to solve the sensor
localisation problem. For linear Gaussian graphs, our
algorithm can be implemented exactly using a distrib-
uted version of the Kalman filter and its derivative. In
the general non linear and non Gaussian case, Sequen-
tial Monte Carlo can be used.
Acknowledgement: This work has been funded by
the DIF-DTC.
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Figure 4: Convergence of x-coordinate of θ6→v,n when
LBP is applied to the sensor net with the dotted line
connected
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Figure 5: Convergence of y-coordinate of θ6→v,n when
LBP is applied to the sensor net with the dotted line
connected
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