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Abstract. We present novel sequential Monte Carlo (SMC) algorithms for the sim-
ulation of two broad classes of rare events which are suitable for the estimation of
tail probabilities and probability density functions in the regions of rare events, as
well as the simulation of rare system trajectories. These methods have some con-
nection with previously proposed importance sampling (IS) and interacting parti-
cle system (IPS) methodologies, particularly those of [8, 4], but differ significantly
from previous approaches in a number of respects: especially in that they operate
directly on the path space of the Markov process of interest.

1. Introduction

The problem of estimating rare event probabilities has attracted a great deal of at-
tention in recent times. Here we propose novel algorithms which are applicable to two
types of rare events, both of which are defined in terms of the canonical Markov chain:
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In the first instance we consider static rare events, which correspond to the probability
that the trajectory of the Markov chain over a particular, deterministic time interval lies
in some set, T ⊂ QP

p=0 Ep, which is rare, Pη0 (X0:P ∈ T ) << 1. This technique, which is

described in section 2, is applicable to problems such as those considered by [8].
In section 3 we consider what we term dynamic rare events, and these correspond

to the probability that a homogeneous Markov chain on a space (E, E) enters some rare
set, T ⊂ E, before it next enters some recurrent set, R; i.e. Pη0 (Xτ ∈ T ) where the
stopping time is defined as τ = inf {t : Xt ∈ R ∪ T }. This corresponds to the classes of
problems considered by RESTART (see [10] for a review), multilevel splitting [12] and
the approaches of [4, 5].

In both instances, we define a sequence of distributions over the path space of these
Markov chains – which in the dynamic case is clearly a trans-dimensional distribution in
the sense that the dimension of the state of interest is a random variable: see [14]. The first
of these distributions corresponds to the law of the Markov chain (up to a stopping time
in the dynamic case) and subsequent distributions are distorted according to a sequence
of potentials which ultimately causes the distributions to concentrate their mass on the
rare events of interest. This allows us to estimate probabilities and related quantities
via sequential Monte Carlo. This iterative approach makes it possible to obtain weighted
samples with weights of low variance from the target distribution which would otherwise
be extremely difficult to sample from.

This approach dramatically ameliorates the sample diversity relative to methods
which iteratively extend the path and apply importance resampling, a strategy which
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will inevitably lead to degeneracy at the beginning of the path [8]. Furthermore, as noted
by [1] if the transition kernel of the Markov chain admits heavy tails, then rare events are
likely to be driven by single large shocks rather than an accumulation of small ones and
consequently working on the path space is likely to produce much better results in such
settings.

1.1. Sequential Monte Carlo Samplers. The sequential Monte Carlo samplers
framework [7] is a general framework which allows us to sample, sequentially from a
sequence of distributions defined upon essentially arbitrary spaces. We use this framework
here to allow us to obtain samples from the sequences of distributions described above.

Given some sequence of distributions {πt}t≥1 on a sequence of measurable spaces
(Et,Ft)t≥1 (which we assume admit a density with respect to some suitable dominating
measures, dxt, denoted πt(dxt) = πt(xt)dxt) from which we wish to obtain sets of weighted
samples, we construct a sequence of distributions on a sequence of spaces of increasing
dimension which admit the distributions of interest as marginals, by defining:

eπt(dx1:t) = πt(dxt)

1Y

s=t−1

Ls(xs+1, dxs),

where Ls is an arbitrary Markov kernel from space Es+1 to Es (these act, in some sense,
backwards in time). It is clear that standard SMC methods can now be applied on this
space, by propagating samples forward from one distribution to the next according to
a sequence of Markov kernels, (Kt)t≥1, and correcting for the discrepancy between the
proposal and the target distribution by importance sampling. Although a full discussion
of the selection of appropriate kernels is beyond the scope of this paper, we note that one
can typically employ MCMC kernels with invariant distribution πt for this purpose, and
obtain good results when the discrepancy between πt−1 and πt is small.

As always it is important to ensure that a significant fraction of the particle set have
non-negligible weights. The effective sample size (ESS), introduced by [18], is an approxi-
mation obtained by Taylor expansion of a quantity which describes the effective number of

iid samples to which the set corresponds. The ESS is defined as ESS =
hPN

i=1 W (i)−2
i−1

where
n

W (i)
o

are the normalized importance weights. This approximation, of course,

fails if the particle set does not accurately represent the support of the distribution of
interest. Resampling should be carried out after any iteration which causes the ESS to
fall below a reasonable threshold (typically around half of the total number of particles),
to prevent the sample becoming degenerate with a small number of samples having very
large weights.

The rapidly increasing dimension raises the concern that the variance of the impor-
tance weights will be extremely high. It can be shown (again, see [7]) that the optimal
form for the Markov kernels Ls – in the sense that they minimise the variance of the im-
portance weights if resampling occurs at every time step – depends upon the distributions
of interest and the importance sampling proposal kernels Kt in the following way, with the
fraction being understood as the Radon-Nikodỳm derivative of Kt+1(xt, ·) with respect toR

πt(dx)Kt+1(x, ·):

(1) Lopt
t (xt+1, dxt) = πt(dxt)

dKt+1(xt, ·)
d
R

πt(dx)Kt+1(x, ·) (xt+1).

In practice it is important to choose a sequence of kernels which are as close to the
optimal case as possible to prevent the variance of the importance weights from becoming
extremely large.

Sampling from a complex distribution by direct importance sampling will typically
lead to very high variance importance weights, unless the structure of the problem per-
mits the construction of an importance distribution which is very close to the target
distribution. Making use of the SMC samplers approach, with a number of intermedi-
ate distributions, allows us to avoid the difficulties which one would ordinarily associate
with importance sampling strategies on a space as large as the ones which we consider:
employing the sequence of distributions allows us to ensure that each iteration of the algo-
rithm amounts to importance sampling with a good importance distribution – providing
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that the proposal, Kt is well chosen – and the weights of our samples can be kept close to
unity. This can produce a substantial reduction in the variance of the importance weights,
relative to that obtained by the direct approach.

2. Static Rare Event Estimation

The approach which we propose is to employ a sequence of intermediate distributions
which move smoothly from the “simple” distribution Pη0 ◦X−1

0:P to the target distribution

Pη0◦X−1
0:P (·|X0:P ∈ T ) and to obtain samples from these distributions using SMC methods.

This approach has an interpretation as a mean field approximation to a Feynman-Kac flow
in distribution space, and many theoretical results – including a central limit theorem –
are consequently available [6]; stability has been established in a slightly different setting
by [15] and work is ongoing to extend those results. By operating directly upon the path
space, we obtain a number of advantages. It provides more flexibility in constructing the
importance distribution than methods which consider only the time marginals, and allows
us to take complex correlations into account. Later, we will show that it also allows us
to consider the dynamic case, which is normally treated as a stopping time problem, in
terms of trans-dimensional inference.

We can, of course, cast the probability of interest as the expectation of an indicator
function over the rare set, and the conditional distribution of interest in a similar form as:

Pη0 (X0:P ∈ T ) = Eη0 [IT (X0:P )] ,

Pη0 (dx0:p |X0:P ∈ T ) =
Pη0 (dx0:p ∩ T )

Eη0 [IT (X0:P )]
.

We concern ourselves with those cases in which the rare set of interest can be char-
acterised by some measurable function, V : E0:P → R, which has the properties that:

V : T → [V̂ ,∞),

V : E0:P \ T → (−∞, V̂ ).

In this case, it makes sense to consider a sequence of distributions defined by a po-
tential function which is proportional to their Radon-Nikodỳm derivative with respect to
the law of the Markov chain, namely:

gθ(x0:p) =
“
1 + exp

“
−α(θ)

“
V (x0:P ) − V̂

”””−1

where α(θ) : [0, 1] → R+ is a differentiable monotonically increasing function such that
α(0) = 0 and α(1) is sufficiently large that this potential function approaches the indicator
function on the rare set as we move through the sequence of distributions defined by this
potential function at the parameter values θ ∈ {t/T : t ∈ {0, 1, . . . , T}}.

Let
˘
πt(dx0:P ) ∝ Pη0(dx0:P )gt/T (x0:P )

¯T

t=0
be the sequence of distributions which we

use. The SMC samplers framework allows us to obtain a set of samples from each of these
distributions in turn via a sequential importance sampling and resampling strategy. Note
that each of these distributions is over the first P + 1 elements of a Markov chain: they
are defined upon a common space.

In order to estimate the expectation which we seek, make use of the identity:

Eη0 [IT (X0:P )] = πT

»
Z1

g1(X0:P )
IT (X0:P )

–
,

where Zθ = π0(gθ) and use the particle approximation of the right hand side of this
expression. Similarly, the subset of particles representing samples from πT which hit the
rare set can be interpreted as samples from the conditional distribution of interest.

We use the notation (Y
(i)

t )N
i=1 to describe the particle set at time t and Y

(i,j)
t to

describe the jth state in the Markov chain described by particle i at time t. We further

use Y
(i,−p)

t to refer to every state in the Markov chain described by particle i at time t

except the pth, and similarly, Y
(i,−p)

t ∪ Y ′ ,

“
Y

(i,0:p−1)
t , Y ′, Y

(i,p+1:P )
t

”
, i.e., it refers to

the Markov chain described by the same particle, with the pth state of the Markov chain
replaced by some quantity Y ′.
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2.1. Path Sampling Approximation. The estimation of the normalising constant
associated with our potential function can be achieved by a Monte Carlo approximation
to the path sampling formulation given by [11]. Given a parameter θ such that a potential
function gθ(x) allows a smooth transition from a reference distribution to a distribution
of interest, as some parameter increases from zero to one, one can estimate the logarithm
of the ratio of their normalising constants via an integral relationship.

In our cases, we can describe our sequence of distributions in precisely this form via
a discrete sequence of intermediate distributions parameterized by a sequence of values of
θ:

d log gθ

dθ
(x) =

(V (x) − V̂ )

exp(α(θ)(V (x) − V̂ )) + 1

dα

dθ

⇒ log

„
Zt/T

Z0

«
=

Z t/T

0

Eθ

"
(V (·) − V̂ )

exp(α(θ)(V (·) − V̂ )) + 1

#
dα

dθ
dθ

=

Z α(t/T )

0

E α(t/T )
α(1)

"
(V (·) − V̂ )

exp(α(V (·) − V̂ )) + 1

#
dα,

where Eθ is used to denote the expectation under the distribution associated with the
potential function at the specified value of its parameter.

The SMC sampler provides us with a set of weighted particles obtained from a se-
quence of distributions suitable for approximating this integral. At each αt we can obtain
an estimate of the expectation within the integral via the usual importance sampling es-
timator, and this integral can then be approximated via a trapezoidal integration. As we
know that Z0 = 0.5 we are then able to estimate the normalising constant of the final
distribution and then use an importance sampling estimator to obtain the probability of
hitting the rare set.

2.2. Density Estimation. Algorithm 1 provides pointwise estimates of the proba-
bilities of rare events; one can use importance sampling to obtain estimates of the probabil-
ities of similar events. In certain applications, once is actually interested in the estimation
of PDFs (probability density functions). We remark that the algorithm presented here
can be easily adapted to this task, and propose the following approach for one dimensional
PDFs. The generalisation to the multivariate case is straightforward, although it becomes
more difficult to accurately describe the particle localisation.

Assume that we wish to estimate the PDF of a function f : E0:P → R and have a
set of points R at which an estimate is required (typically a grid of some sort in a region
of interest). Assume that it is possible to describe the region in which the particles are
located at each time step and that R̄t ⊂ R is the set of points from R which lie inside this
region at time t.

Let ∆ denote the width of a window which is used to estimate the PDF at a point,
ideally, this should be sufficiently small that the PDF is close to linear across regions of
this width and large enough that a reasonable number of particles typically lie within
ranges of this size.

In order to obtain an estimate of the PDF, we first attempt to obtain estimates, for
each r ∈ R, of the probabilities:

Pη0

„
f(Y0) ∈

»
r − δ

2
, r +

δ

2

–«
= E0

h
I[r− δ

2
,r+ δ

2
](f(Y0))

i

= E α(t/T )
α(1)

»
I[r− δ

2
,r+ δ

2
](f(Y0))

dπ0

dπt
(Yt)

–

At time t, each of these may be estimated using the particle set at that time, by:

p̂t(r) =

NX

i=1

Wt,iI[r−∆
2

,r+∆
2

](f(Yt,i))
ddπ0

dπt
(Yt,i)

=
NX

i=1

Wt,iI[r−∆
2

,r+∆
2

](f(Yt,i))Ẑt/gt/T (Yt,i)
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Algorithm 1 An SMC algorithm for static rare events.

At t = 0.
for i = 1 to N do

Sample Y
(i)
0 ∼ ν for some importance distribution ν.

Set W
(i)
0 ∝ π0(Y

(i)
0 )

ν(Y
(i)
1 )

such that
PN

j=1 W
(j)
0 = 1.

end for

for t = 1 to T do

if ESS < threshold then resample
n

W
(i)
t−1, Y

(i)
t−1

oN

i=1
using stratified resampling [3]

to obtain
n

Ŵ
(i)
t−1, Ŷ

(i)
t−1

oN

i=1
else let

n
Ŵ

(i)
t−1, Ŷ

(i)
t−1

oN

i=1
=
n

W
(i)
t−1, Y

(i)
t−1

oN

i=1
.

If desired, apply a Markov kernel, K̃t−1 of invariant distribution πt−1 to improve

sample diversity, for each particle, sample Ỹ
(i)

t−1 ∼ K̃t−1(Ŷ
(i)

t−1, ·). Otherwise, letn
Ỹ

(i)
t−1

oN

i=1
=
n

Ŷ
(i)

t−1

oN

i=1
.

for i = 1 to N do

Sample Y
(i)

t ∼ Kt(Ỹ
(i)

t−1, ·).
Weight W

(i)
t ∝ Ŵ

(i)
t−1ω

(i)
t where the incremental importance weight, ω

(i)
t is defined

through ω
(i)
t =

πt(Y
(i)
t )Lt−1(Y

(i)
t ,Ỹ

(i)
t−1)

πt−1(Ỹ
(i)
t−1)Kt(Ỹ

(i)
t−1,Y

(i)
t )

, and
PN

j=1 W
(j)
t = 1.

end for

end for

Approximate the path sampling identity to estimate the normalising constant:

Ẑ1 =
1

2
exp

"
TX

t=1

(α(t/T ) − α((t − 1)/T ))
Êt−1 + Êt

2

#

Êt =

PN
j=1 W

(j)
t

V
“

Y
(j)
t

”

−V̂

1+exp
“

αt

“

V
“

Y
(j)
t

”

−V̂
””

PN
j=1 W

(j)
t

Estimate the rare event probability using importance sampling:

p⋆ = Ẑ1

PN
j=1 W

(j)
T

“
1 + exp(α(1)(V

“
Y

(j)
T

”
− V̂ ))

”
I(V̂ ,∞]

“
V
“
Y

(j)
T

””

PN
j=1 W

(j)
T

.

where Ẑt is the path sampling estimator of the normalising constant of the distribution
πt(dx) ∝ gt/T (x)π0(dx). At every point r, taking the mean of all of the individual estima-
tors which were obtained from the region of support of the particle set at the appropriate
time yields:

p̂(r) =

TP
t=1

p̂t(r)IR̄t
(r)

TP
t=1

IR̄t
(r)

For sufficiently small ∆, under suitably continuity conditions, this provides us with the
density estimate which we seek.

2.3. Examples. We now provide some simple examples of algorithm 1.
2.3.1. A Gaussian Random Walk. It is useful to consider a simple example for which it

is possible to obtain analytic results for the rare event probability. The tails of a Gaussian
distribution serve well in this context, and we borrow the example of [8]. We consider
a homogeneous Markov chain defined on (R,B(R)) for which the initial distribution is a
standard Gaussian distribution and each kernel is a standard Gaussian distribution centred
on the previous position:

η0(dx) = N (dx; 0, 1) ∀n > 0 : Mn(x, dy) = N (dy; x, 1) .
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Threshold, V̂ True log probability SMC Mean SMC Variance k T

5 -2.32 -2.30 0.016 2 333
10 -5.32 -5.30 0.028 4 667
15 -9.83 -9.81 0.026 6 1000
20 -15.93 -15.94 0.113 10 2000
25 -23.64 -23.83 0.059 12.5 2500
30 -33.00 -33.08 0.106 14 3500

9
√

15 -43.63 -43.61 0.133 12 3600

10
√

15 -53.23 -53.20 0.142 11.5 4000
Table 1. Means and variances of the estimates produced by 10 runs of
the proposed algorithm using 100 particles at each threshold value for
the Gaussian random walk example.

The function V (x0:P ) := xP corresponds to a canonical coordinate operator and the rare

set T := EP × [V̂ ,∞) is simply a Gaussian tail probability: the distribution of XP is
simply N (0, P + 1) as the sum of P + 1 iid standard Gaussian random variables.

Sampling from π0 is trivial. We employ an importance kernel which moves position
i of the chain by ijδ where j is a random variable sampled from a distribution which
makes the probability of proposing each possible change from a grid proportional to the
associated target probability, and δ is an arbitrary scale parameter. The operator, Oχ,

defined by OχY
(i)

t =
“
Y

(i,p)
t + pχ

”P

p=0
, where χ is interpreted as a parameter, is used for

notational convenience. This forward kernel can be written as:

Kt(Y
(i)

t−1, Y
(i)

t ) =

SX

j=−S

wt(Y
(i)

t−1, Y
(i)

t )δ
OδjY

(i)
t−1

(Y
(i)

t ),

where the probability of each of the possible moves is given by

wt(Y
(i)

t−1, Y
(i)

t ) =
πt(Y

(i)
t )

PS
j=−S πt(OδjY

(i)
t−1)

.

This leads to the following optimal auxiliary kernel, as given by (1):

Lt−1(Y
(i)

t , Y
(i)

t−1) =

πt−1(Y
(i)

t−1)
SP

j=−S

wt(Y
(i)

t−1, Y
(i)

t )δ
OδjY

(i)
t−1

(Y
(i)

t )

SP
j=−S

πt−1(O−δjY
(i)

t )wt(O−δjY
(i)

t , Yt)

.

The incremental importance weight is consequently:

ωt(Y
(i)

t−1, Y
(i)

t ) =
πt(Y

(i)
t )

SP
j=−S

πt(O−δjY
(i)

t )wt(O−δjY
(i)

t , Y
(i)

t )δ
OδjY

(i)
t−1

(Y
(i)

t )

.

As the calculation of the integrals involved in the incremental weight expression tend
to be analytically intractable in general, we have made use of a discrete grid of proposal
distributions as proposed by [21]. This naturally impedes the exploration of the sample
space. Consequently, we make use of a Metropolis-Hastings kernel of the correct invariant
distribution at each time step (whether resampling has occurred, in which case this also
helps to prevent sample impoverishment, or not). We make use of a linear schedule
α(θ) = kθ and show the results of our approach (using a chain of length 15, a grid
spacing of δt = 0.025 and S = 12 in the sampling kernel) in table 1. For the purposes of
comparison, we also implemented the algorithm of [8] and show its performance in table
2.

2.3.2. Polarisation Mode Dispersion. As a more realistic example, we consider the
so-called “outage” probability due to polarisation mode dispersion (PMD) in single-mode
optical fibres. This problem has recently been considered by a number of sources, including
[2, 8, 9] who obtained good results with their methods. The advantage of the SMC
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Threshold True IPS(1,000) IPS(20,000)

V̂ Mean Variance Mean Variance

5 -2.32 -2.28 0.008 -2.174 0.003
10 -5.32 -5.27 0.016 -5.320 0.003
15 -9.83 -9.81 0.086 -9.887 0.003
20 -15.93 -16.00 0.224 -15.92 0.004
25 -23.64 -23.38 2.510 -23.40 0.143
30 - 33.00 -29.33 [9] - -32.02 [5] 0.209

Table 2. Results of 10 runs of the algorithm of [8] with 1,000 particles
and 20,000 particles, respectively. Numbers in square brackets indicate
the number of runs which failed to hit the rare set at all.

samplers framework when applied to this problem is predominantly that it is able to
obtain estimates of much smaller rare event probabilities than the methods which have
been proposed in the literature, see figure 1, although it requires more knowledge on the
part of the user than the method of [8].

We have a sequence of rotation vectors, rn which evolve according to the equation:

rn = R(θn, φn)rn−1 +
1

2
Ω(θn)

where φn is a random variable distributed uniformly on the interval [−π, π] and θn is a ran-
dom variable taking values in [−π, π] such that cos(θn) is uniformly distributed on [−1, 1],
sn = sgn(θn) is uniformly distributed on {−1, +1}, the vector Ω(θ) = (cos(θ), sin(θ), 0)
and R(θ, φ) is the matrix which describes a rotation of φ about axis Ω(θ).

It is convenient for our purposes to consider this as a Markov chain on the 6 dimen-
sional space En = R

3×[0, 2π]×[−1, 1]×{−1, +1}. Where Xn = {rn, φn, cn = cos(θn), sn =
sgn(θn)} We assume that r0 = (0, 0, 0) (This corresponds to the simulation performed in
[2] – the “squares” in figure 2 therein) and then the finite dimensional distributions are
given by:

P ◦ X−1
0:n(r0:n, θ1:n, c1:n, s1:n) = δ(0,0,0)(r0)

NY

i=1

1

2π

1

4

h
δR(θn,sn cos−1(cn))rn−1+Ω(θn)/2(rn)

i

As {rn} can be obtained deterministically from {φn, cn, sn} we shall henceforth think of
the distribution as a three dimensional one over just these variables. The magnitude of r
is termed the differential group delay (DGD) and is the quantity of interest.

One option for a proposal distribution is an update move, which does not adjust the
state associated with a particle at all, but does correct the particle weights to account for
the change in distribution from one time step to the next. This has incremental weight
equal to the ratio of the densities of the distribution at time t to that at time t − 1. A
priori this would lead very fast to sample degeneracy, and so we also apply a Markov
kernel of the correct invariant distribution to maintain sample diversity. We employed a
Metropolis-Hastings kernel with a proposal which randomly selects two indices uniformly
between 1 and n and proposes replacing the φ and c values between those two indices
with values drawn from the uniform distribution over [−π, π] × [−1, 1]. This proposal is
then accepted with the usual Metropolis acceptance probability. Results of the approach
proposed here and that of [8] are illustrated in figure 1.

2.3.3. Counting Problems. Counting the number of ways of filling a knapsack with
unique combinations of objects of known sizes is one of the classic counting problems of
computer science, see for example, [16]. In its simplest form, the problem is this one: given
a vector, a of n object sizes and a knapsack of capacity b we wish to estimate the number
of different combinations of objects which will fit within the knapsack, which clearly
corresponds to the number of unique 0 − 1 vectors x for which the following inequality is
satisfied:

(2) a · x =
PX

i=1

aixi ≤ b.



8 A. M. JOHANSEN, P. DEL MORAL, AND A. DOUCET

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  1  2  3  4  5  6  7  8  9

pd
f

DGD

PDF Estimates for PMD

IPS (Alpha=1)
IPS (Alpha=3)

SMC

Figure 1. PDF estimates obtained with the SMC samplers methodol-
ogy and the IPS approach of [8]. The SMC Sampler used N = 100, T =
8000, c = 250. The IPS used N = 20, 000, α = 1 and N = 20, 000, α = 3,
respectively.

As observed by [20] the approximate solution of this problem can be cast as a rare
event problem1. If one can determine the probability of a random vector sampled uniformly
from the vertices of the P -dimensional unit hypercube satisfying the inequality, then the
number of such valid vectors is clearly 2P times that probability.

We define V (x) := −a · x such that inequality (2) can clearly be expressed as V (x) ≥
− (b + mini6=j |ai − aj |). This approach turns the “rare” sets of interest into the level sets
of our function and leads to a sequence of distributions which decreasing mass in states
which violate the inequality. More precisely, we define the sequence of distributions from
which we wish to sample as:

πt(x) ∝
»
1 + exp

„
α

„
t

T

«„
a · x − b − min

i6=j
|ai − aj |

««–−1

.

It is trivial to sample from π0 which is simply the uniform distribution over the
vertices of the n-dimensional unit hypercube, and providing that T is sufficiently large,
the discrepancy between successive distributions defined in this was will be small.

An obvious choice of move is an adjustment move which selects one element of the
state vector and proposes a value of 0 or 1 with probabilities proportional to the probability
of the resulting state under the current distribution, so the forward kernel is:

Kt(Y
(i)

t−1, Y
(i)

t ) =
1

P

PX

p=1

δ
Y

(i,−p)
t−1

“
Y

(i,−p)
t

” h
wpi

0 δ0(Y
(i,p)

t ) + wpi
1 δ1(Y

(i,p)
t )

i

with

wpi
y ∝ πt

“
Y

(i,−p)
t−1 ∪ y

”
.

1Although the event of a particular set of objects fitting into the knapsack need not be a particu-
larly rare one in some configurations, that does not pose any particular problems for the methodology
described here.
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N Runs Threshold, V̂ , Mean Variance

100 50 2.5 -12.889 0.04727
100 50 10.5 -10.214 0.03647
100 50 75.5 -2.0413 0.00501

1000 5 2.5 -12.811 0.04805
1000 5 10.5 -10.207 0.00652
1000 5 75.5 -2.0026 0.00027

Table 3. SMC results for the counting problem of section 2.3.3 obtained
using a linear schedule for α increasing from 0 to 1 over 800 steps.

Which has the following optimal backward kernel (see equation (1)) associated with it:

Lt−1(Y
(i)

t , Y
(i)

t−1) =

πt−1(Y
(i)

t−1)
PP

p=1

δ
Y

(i,−p)
t−1

“
Y

(i,−p)
t

” h
wpi

0 δ0(Y
(i,p)

t ) + wpi
1 δ1(Y

(i,p)
t )

i

PP
p=1

P
y∈{0,1}

πt−1

“
Y

(i,−p)
t ∪ y

”

Leading to the incremental weight expression:

ωt(Y
(i)

t−1, Y
(i)

t ) =
Pπt(Y

(i)
t )

PP
p=1

P
y∈{0,1}

wp
yπt−1

“
Y

(i,−p)
t ∪ y

”

This is essentially a random scan Gibbs sampler kernel, with an associated importance
weight to compensate for the fact that the particles available from the previous time step
are distributed according to πt−1 rather than πt.

Results are shown in table 3 for a = (1, 2, . . . , 20) for knapsacks with capacities of
2,10 and 75; for comparison at similar computational cost (using 100,000 samples in total,
compared with 80,000 for the SMC algorithm with 100 particles and 800 intermediate
distributions) crude Monte Carlo simulation gave, over 50 runs, answers of 2.7263 with
variance 30.562 and 44.040 with variance 453.27 in the two less rare instances. The
logarithms of these means are -12.87 and -10.08, respectively, but many runs failed to
produce any satisfactory solutions and a direct comparison is not possible due to the
enormous variance. The true values for the thresholds given here were -12.764, -10.102
and -1.9756, respectively. Although a comparison with the approach of [19] would be
possible, this is a much more challenging problem than that considered there in which
a = (1, . . . , 4) and a threshold of b = 3 was employed.

3. Dynamic Rare Event Estimation

Length constraints prevent us from doing more than illustrating the applicability of
our approach to the dynamic rare event estimation problem, and providing a simple toy
example by way of illustration. Further details will be presented in [17].

Considering the space on which the paths of interest (i.e. those starting in the support
of η0 and then evolving according to the law of the Markov chain until they hit R ∪ T )
exist

F =
∞[

i=2

{i} × supp(η0) × (E \ (R∪ T ))i−2 ×R∪ T ,

where we assume that the support of the initial distribution does not include either the
rare set or the recurrent set – supp(η0) ∩ (R ∪ T ) = ∅ – for notational convenience, we
can see that this is actually a trans-dimensional estimation problem, as follows:

Pη0 (Xτ ∈ T ) =
∞X

p=2

Z
Pη0 (dx0:p) IT (xp)

p−1Y

s=0

IE\(R∪T )(xs).

In common with many techniques for solving this problem, we employ a decreasing
sequence of sets which concentrate themselves on the rare set of interest: T = TT ⊂
TT−1 . . . T2 ⊂ T1. Our approach differs slightly, in that we endeavour to arrange these sets
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Algorithm 2 An SMC algorithm for dynamic rare event simulation.

t = 1. Initialise an ensemble of N weighted particle: for i = 1 to N do sample Y
(i)
1

from the law of the Markov chain until it hits either T1 or R, at stopping time τ
(i)
1 ; set

W
(i)
1 = IT1

„
X

(i)

τ
(i)
1

«
. end for

for t = 2 to T do

Resample, to obtain { 1
N

, Ŷ
(i)

t−1}N
i=1. If desired, apply a Markov kernel (typically a

reversible-jump kernel which may include dimension-changing moves [13]), K̃t−1 of

invariant distribution πt−1: for each path-particle sample Ỹ
(i)

t−1 ∼ K̃t−1(Ŷ
(i)

t−1, ·). Oth-

erwise, let
n

Ỹ
(i)

t−1

oN

i=1
=
n

Ŷ
(i)

t−1

oN

i=1
.

Propose a revised estimate for each path-particle from the proposal kernel Kt, which
should correspond to extending the path if necessary until it hits either Tt or R, and

reweight the particle ensemble using W
(i)
t = ITt

“
X

τ
(i)
t

”
(for convenience we assume

that Kt is the law of the Markov chain conditioned upon hitting TT−1 before R).
end for

We can now estimate the quantity of interest: p⋆ =
TQ

t=1

Ẑt with Zt = 1
N

NP
i=1

W
(i)
t .

such that the majority of paths reaching Tt before R also reach Tt+1 before R. That is,
the sets are somehow closer together than is usually the case with splitting approaches.
For simplicity we construct a sequence of distributions which place all of their mass on
one of these sets, although it is easy to envisage situations in which potential functions
more like that employed in the static case could produce better results. We define our
synthetic distributions as:

πt(X1:τt) = Pη0 (X1:τt |Xτt ∈ Tt) = Pη0 (X1:τt , Xτt ∈ Tt) /Zt

with the stopping times τt = inf{t : Xt ∈ Tt ∪ R} and the normalising constant Zt =
Pη0 (Xτt ∈ Tt).

As in the static case, providing that we are able to obtain samples from this sequence
of distributions, we can obtain an estimate of the ratio of normalising constants. Using
such a 0-1 potential function makes it impossible to employ the path sampling [11] identity
as the logarithm of the potential function no longer has a well defined derivative. However,
we may still obtain an estimate of the ratio of normalising constants by the more näıve
approach of taking the product of the particle system estimates of the ratio of normalising
constants from one time step to the next. We could also employ a smooth potential
function to allow us to employ the path sampling approach.

Algorithm 2 provides a fairly general framework for rare event probability estimation
within this framework. We remark that, in full generality, it is simple to amend the
algorithm to allow the proposal kernel, Kt, to modify that part of the path which has
already sampled: this simply alters the importance weight.

3.1. Example. Consider a simple random walk over the integers, starting from X0 =
0, defined by transition kernel:

M(xn, dxn+1) = (1 − p)δxn−1(dxn+1) + pδxn+1(dxn+1)

If we defined R = (−∞,−a] and T = [b,∞) for two integers, 0 < a < b, it is trivial to see
that Xτ ∈ {−a, b} and it is straightforward to verify that

Pη0(Xτ ∈ T ) =

8
>><
>>:

a
a+b

if p = 1
2

1−
“

1−p
p

”a

1−
“

1−p
p

”a+b otherwise

As an illustration, consider the case where p < 0.5, with a = 1 and b = 10. Table
4 summarises the results of 100 runs of the SMC algorithm using ten intermediate dis-
tributions and various numbers of particles. In all cases, the proposal distribution Kt

corresponds to extending the path until it hits either Tt = [t,∞) or R.
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N p = 0.1 p = 0.2
Mean Standard Deviation Mean Standard Deviation

100 2.71 × 10−10 2.76 × 10−10 6.86 × 10−7 5.10 × 10−7

500 2.36 × 10−10 0.98 × 10−10 6.82 × 10−7 1.86 × 10−7

2000 2.55 × 10−10 0.58 × 10−10 7.29 × 10−7 0.92 × 10−7

5000 2.53 × 10−10 0.38 × 10−10 7.17 × 10−7 0.50 × 10−7

Table 4. Simulation results for the simple random walk example with
p = 0.1 and p = 0.2, and in both cases a = 1 and b = 10. The true
values are 2.55 × 10−10 and 7.15 × 10−7, respectively.

4. Conclusions and Ongoing Work

We have presented two novel algorithms for estimating the probability of rare events,
and the distribution of Markov chains conditioned upon the occurrence of such events.
Work is ongoing in this area. Methodologically, we are interested in determining how to se-
lect the sequence of distributions to be employed, and whether this can be done adaptively
(perhaps in a manner similar to [5]), and how the competing demands on computational
power of using a large number of particles and using a large number of intermediate distri-
butions can be best balanced; theoretically, it would be interesting to establish reasonable
conditions under which the particle system is stable, as well as establishing computable
bounds on the variance and bias of the estimates which it produces.
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