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Abstract. This chapter presents a principled way of formulating mod-
els for automatic local feature selection in object class recognition when
there is little supervised data. Moreover, it discusses how one could for-
mulate sensible spatial image context models using a conditional random
field for integrating local features and segmentation cues (superpixels).
By adopting sparse kernel methods and Bayesian model selection and
data association, the proposed model identifies the most relevant sets of
local features for recognizing object classes, achieves performance com-
parable to the fully supervised setting, and consistently outperforms ex-
isting methods for image classification.

1 Introduction

Over the past few years, researchers in high-level vision have shifted their focus
from matching specific objects to the significantly more challenging problem
of recognizing visual categories of objects. Since solutions exists to some image
classification problems, there is a push to address more difficult problems such as
object localization (segmenting an object from the background). There has also
been success in learning robust representations of specific classes in constrained
situations, notably frontal faces [1] and pedestrians in street scenes [2, 3], but
models that can be trained to recognize generic object categories remain elusive.

A wealth of complementary developments in vision and machine learning
have lead to improvements in general representations of object classes [4–7]. This
paper furthers the state-of-the-art by adopting a principled probabilistic model
for data association and model selection in object recognition. Our approach
consists of the following three steps:

1. Extract a sparse set of a priori informative regions of the scene [5, 8], also
called keypoints [9, 10]. Local interest regions bring tolerance to clutter, oc-
clusion and deformable objects, and their sparsity reduces the complexity
of subsequent learning and inference. Good detectors extract a sparse set
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of interest regions without sacrificing information content, and select the
same regions when observed at different viewpoints and scales. There exist
many definitions as to what constitutes a good interest region, predicated
on maximizing disparate criteria. Therefore, we expect that using multiple
detectors will provide complementary information, and hence improve recog-
nition. Sec. 6.1 describes how interest regions are extracted and represented
as feature vectors.

2. Train the Bayesian classification model developed in [11] with an efficient
Markov Chain Monte Carlo (MCMC) algorithm for Bayesian learning. The
algorithm learns a sparse object class representation from the interest region
descriptors, and does so with little supervision by explicitly modeling data
association. See Sections 2-4 for more details.

3. For localization of objects, integrate two types of visual cues: interest regions
and low-level segmentation using superpixels [12]. On their own, independent,
local interest regions do not contain enough information to segment the
object from the background, so we propose a simple conditional random
field [13] that propagates information across neighbouring superpixels and
weights the superpixel labels by the scores of overlapping interest regions. It
is described in detail in Sec. 5.

The resulting representations accurately detect and locate objects in a wide
variety of scenes at different poses and scales, even when training under very
little supervision from the user.

We start with an example that illustrates the need for a model of data as-
sociation in object recognition. After that, we motivate our proposed Bayesian
hierarchical model for data association and object recognition.

1.1 A Case for data association in object recognition

Consider the toy training set in Fig. 1. It consists of three images, each with a
caption indicating the presence or absence of cars in the scene. The circles depict
some of the extracted features at their characteristic scale. The first image does
not contain a car, so we can justifiably say that none of the circles are car
features. In the second and third training images, however, we cannot conclude
with certainty which features belong to a car. The conventional approach to this
problem is to treat unlabeled features in the background as noise [4, 5, 7], an
approach which degrades significantly when the object in question occupies only
a small part of the unlabeled image, as in the second image. A more sensible
strategy is to explicitly model the feature labels, allowing the learning algorithm
to exploit the unlabeled background features instead of being hindered by them.
This is precisely the solution we propose in this paper.

Each feature label is a binary variable indicating whether it belongs to a car
(positive) or to the background (negative). In this setting, data association is
closely related to the multiple instance learning problem [14, 15]. In the classical
multiple instance formulation, a positive group label (the images are the groups)
indicates that at least one of the individuals in the group has a positive label (this
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Fig. 1. Three annotated images from the INRIA car training set. The circles rep-
resent some of the extracted features. The feature labels y1 to y3 in the first image
are known. In the second and third images, we don’t know the correspondence
between the features and the labels, hence the question marks on the yi’s. Notice
there is no image that contains only car features, and the size of the cars varies
considerably. The correct correspondence is likely y4 =−1, y5 =1, y6 =−1, y7 =1,
y8 =1, y9 =−1 (1 means “car” and −1 signifies “not car”).

corresponds to a “contains cars” caption), while a negative group label implies
that all individuals in the group have a negative label. For our purposes, this
formulation is not sufficiently informative for learning the correct association,
since an image may contain hundreds of unlabeled points and in the multiple
instance setting only one of them is enforced to have a positive label.3 We propose
two alternatives. In the first, we introduce image-level constraints enforcing a
certain number of the features to belong to the positive class.

The problem is that it may be hard to identify appropriate constraints. Re-
ferring back to Fig. 1, the cars in the third image occupy much more space than
in the second, so the third image is likely to contain more features associated
with the car class. The best we can do with hard constraints to set a conservative
lower bound on the number of positives per image. We suggest a better route:
specify a ratio that indicates the expected fraction of individuals with a positive
label, along with a level of confidence in such an expectation. When objects vary
widely in size, a low confidence on the expected fraction allows the model to
adapt the number of positive labels to each image. We call this approach data
association with group statistics. It was first proposed in [17].

One might be skeptical that it is possible to achieve recognition in this setting,
given the wide variability exhibited in the training images, the high dimension
of the features, and the fact that there are hundreds of unlabeled points per im-
age. However, the alternative, complete supervision, is not only unappealing but
also unrealistic for general object recognition problems. Complete supervision
requires the user to annotate and segment objects from the background. This
is not only a time-consuming task, but also poorly defined since people tend to

3 Data association is also commonly studied as a case of semi-supervised learning [16].
This formulation is less compatible since it has no notion of groups.
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Fig. 2. Two sample images from the MIT-CSAIL database [18]. Yellow lines
indicate car annotations. The annotations are incomplete in both images, so
learning from data association is still appropriate in the presence of annotated
data.

segment scenes differently. It also inhibits exploitation of the vast quantities of
captioned images available on the Internet (in the form of news photos, for ex-
ample [19]). The experiments in Sec. 6.3 show that our data association scheme
largely compensates for the lack of annotation data.

Even when annotations are provided, a recognition system might still benefit
from multiple instance learning. Consider images from the MIT-CSAIL data-
base [18], pain-stakingly annotated with more than 30 object classes, including
cars, fire hydrants and coffee machines. Despite the effort in producing the scene
labelings, the annotations shown in Fig. 2 are still far from complete. By learning
the labels in the unannotated areas, the model can better exploit such training
data.

There have been several previous attempts in tackling the problem of data
association in object recognition, but they failed to extend to realistic domains.
Duygulu et al. [20] studied the problem from the perspective of statistical ma-
chine translation. They formulated data association as a mixture model, using
expectation maximization (EM) to learn the parameters and the unknown la-
bels. Later, the translation model was extended to handle continuous image
features [21] and spatial relations [22]. The problem with their approach is that
the posterior over the parameters of the mixture model is highly multimodal, so
EM tends to get stuck in local minima. The situation is no better when applying
MCMC simulation techniques to mixture models, due to a factorial explosion in
the number of modes [23]. More complex representations only exacerbate the is-
sue, so mixture models are limited to simple, unimodal object classes. While [22,
21, 20] tackle multi-category classification, we can do likewise by combining re-
sponses from multiple binary classifiers [24]. Others have extended the multiple
instance learning paradigm. We refer the reader to [17] for further references.
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1.2 A Case for Bayesian learning in object recognition

We employ the augmented Bayesian classification model developed in [11] with
an efficient Markov Chain Monte Carlo (MCMC) algorithm for Bayesian learn-
ing. The algorithm accomplishes two things simultaneously: 1.) it learns the
unobserved labels, and 2.) it selects a sparse object class representation from
the high-dimensional feature vectors of the interest regions. We introduce a gen-
eralized Gibbs sampler to explore the space of labels that satisfy the constraints
or group statistics.

Bayesian learning comprehends approximation of the posterior distribution
through integration of multiple hypotheses. This is a crucial ingredient for robust
performance in noisy environments, and helps resolve sensitivity to initialization.
In the presence of uncertainty about the labels, Bayesian learning allows us
to be open about multiple possible interpretations, and is honest regarding its
confidence in a hypothesis. The latter is of particular importance for integrating
multiple visual cues for recognition (see Sec. 5), since it helps weigh the decisions
of multiple models. The same cannot be said for learning through optimization
of the model posterior, using EM for example.

Another advantage over other methods is that we do not need to reduce
the dimension of the features through unsupervised techniques which may purge
valuable information. Monte Carlo methods have received little attention in high-
level vision, but our results show that they can be both effective and efficient in
solving difficult problems.

In effect, what we describe is a bag of keypoints model [9] that chooses the
features that best identify an object (e.g. the car model should select features
that describe wheels or rear-view mirrors). It is widely appreciated that bag of
keypoints methods — which treat individual features as being independent —
are inadequate for identifying and locating objects in scenes (a person is not
just an elbow!), and there has been much success in learning relations between
parts [7] and global context [22, 18]. Despite these objections, independent parts
models are not only efficient and simple to implement, but also remain the state-
of-the-art in detection systems [9, 25] and, as we show, can function as a basis
for more complex localization systems.

2 Bayesian kernel machine for classification

We start by assuming complete supervision. In other words, each data point xi

has a known label yk
i ∈ {−1, 1}. The next section considers the case when some

of the labels are unknown.
The training data consists of a set of D labeled images, and each image j, for

j = 1, 2, . . . ,D, contains a set of exemplars or feature vectors {xi | i ∈ dj}. The
set of exemplars for all the images used during training is x = {x1, x2, . . . , xN},
where N is the total number of training exemplars. Sec. 6.1 describes how to
obtain the feature vectors beginning with the raw pixel data.

We use a sparse kernel machine to classify the interest region descriptors. The
classification output depends on the feature being classified, xi, and its relation
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to a subset of relevant exemplars. The outputs of the classifier are then mapped
to the probability of the discrete labels using the probit link function. Following
Tham, Doucet and Kotagiri [26], we have

p(yi =1 |xi,β,γ) = Φ (f(xi,β,γ)) , (1)

where the unknown regression function f is given by

f(xi,β,γ) =
N∑

k=1

γkβkψ(xi, xk).

The probit link Φ(·) is the cumulative density function of the standard Normal
distribution. By convention, researchers tend to adopt a logistic (sigmoidal) link
function, but from a Bayesian computational point of view, the probit link has
many advantages and is equally valid.

The kernel function is denoted by ψ. We use the Gaussian kernel ψ(xi, xk) =
exp(−(xi−xk)2/σ) since it worked well in our experiments, but other choices are
possible. We denote the vector of regression coefficients by β � [β1 β2 · · · βN ]T .
Our model is discriminative because it is specified as a conditional probability
distribution of labels given observations, and not the other way around as in a
generative mixture model.

We introduce sparsity through a set of feature selection parameters γ �
[γ1 γ2 · · · γN ], where γk ∈ {0, 1}. Most of these binary variables will be zero
and so the classification probability for feature vector xi will only depend on a
small subset of exemplars. By learning γ, we learn the relevant set of feature
vectors, or prototypes, for each class.

It is convenient to express (1) in matrix notation,

p(yi =1 |xi,β,γ) = Φ (Ψi,γβγ) , (2)

where Ψ ∈ R
N×N is the kernel matrix with entries Ψi,k = ψ(xi, xk), Ψi,γ is

the ith row of the kernel matrix with zeroed columns corresponding to inactive
entries of γ, and βγ is the reduced version of β containing only the coefficients
of the active kernels. Thus, the vector product in (2) is shorthand for

Ψi,γβγ =
[
ψ(xi, x1)β1 ψ(xi, x2)β2 · · · ψ(xi, xN )βN

]
.

We follow a hierarchical Bayesian strategy [27], where the unknown parame-
ters {γ,β} are drawn from appropriate prior distributions. The intuition behind
this hierarchical approach is that by increasing the levels of inference, we can
make the higher level priors increasingly more diffuse. That is, we avoid having
to specify sensitive parameters and therefore are more likely to obtain results
that are independent of parameter tuning.

We place a regularized maximum entropy g-prior on the regression coefficients
p(β | δ,γ) = N (0, δ2Sγ), where Sγ = (ΨT

γ Ψγ + εIN )−1) and ε is a small value
that helps maintain a prior covariance with full rank. The regularization term
δ2 is in turn assigned an inverse Gamma prior with two hyperparameters µ

2 , ν
2
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Fig. 3. The directed graphical representation of the fully-supervised classifica-
tion model. Shaded nodes are observed during training, and square nodes are
fixed hyperparameters.

specified by the user. One could argue that this is worse than the single parameter
δ2. However, the parameters of this hyperprior have much less direct influence
than δ2 itself, and therefore are less critical in determining the performance of
the model [27]. Typically, we set µ and ν to near-uninformative values.

Following [11], each γk follows a Bernoulli distribution with success rate
τ ∈ [0, 1], which in turn follows a Beta distribution with parameters a, b ≥ 1.
This allows the data to automatically determine the complexity of the model
according to the principle of Occam’s razor, while allowing the user some control
over the prior. Setting b� a on large data sets initializes the learning algorithm
to a reasonable number of active kernels.

The model is highly intractable. In particular, it is non-linear and the poste-
rior of the coefficients β ∈ R

N is a correlated, hard to sample, high-dimensional
distribution. However, we can simplify the problem enormously by introducing
easy to sample low-dimensional variables z. Then, by conditioning on the sam-
ples of these latent variables, we can solve for the posterior of β analytically.
This is accomplished by ensuring that the variables z � {z1, z2, . . . , zN} have
distribution

p(zi |γ,β, xi) = N (Ψi,γβγ , 1). (3)

It then follows that, conditioned on z, the posterior of the high-dimensional
coefficients β is a Gaussian distribution that can be obtained analytically. This
simple trick, first introduced by Nobel Laureate Daniel McFadden, is important
to Bayesian data analysis since it reduces a difficult high-dimensional inference
problem to a much simpler problem of sampling independent low-dimensional
variables [28]. To recover the binary labels, we have

yi =
{

1 if f(xi,β,γ) > 0,
−1 otherwise.

The directed graphical model in Fig. 3 summarizes the Bayesian kernel ma-
chine for classification.
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3 Two augmented models for data association

The model presented up to this point is nearly identical to the one proposed
in [26]. It assumes all the labels in the training data are known. In this section, we
augment the model with either constraints (Sec. 3.1) or group statistics (Sec. 3.2)
in order to handle weak supervision.

3.1 Constrained multiple instance learning

When the image caption says that no object is present, all the labels are observed
to be negative, and we can recover the latent regression variables zi following
(3), as in [28, 26]. We denote observed labels by yk

i .
When the image contains an instance of the object, the unknown labels yu

i

must satisfy constraints on the minimum number of features of each class. We
define n(+) to be the constraint on the minimum number of positive points in
an image, and n(−) to be the minimum number of negatively classified points.
The prior on the regression coefficients is

p({zu
i }|γ,β, {xi}) ∝

∏
i

N (zu
i |Ψγ,iβ, 1) IC(−)({zu

i })IC(+)({zu
i }),

where i ranges over the set of exemplars in the image, C(−) is the set of assign-
ments to yu

i (and accordingly zu
i ) that obey the negative labels constraint n(−),

C(+) is the set of assignments to yu
i that satisfy the constraint n(+), and IΩ(ω) is

the set indicator: 1 if ω ∈ Ω, and 0 otherwise. Discrete constraints in non-convex
continuous optimization problems can be highly problematic. However, they can
be realistically handled by MCMC algorithms [11].

3.2 Learning with group statistics

An alternative to constrained data association is to augment the training data
with two user-defined statistics: an estimate of the fraction of positive instances
for each image j,mj ∈ [0, 1], and a global parameter χ quantifying the confidence
in these guesses. Higher values indicate higher confidence, while χ = 0 is a
complete lack of confidence, resulting in unsupervised learning.

The observed value mj is an estimate of the true fraction of positives, λj ,
which in turn is deterministically computed from the labels in the image accord-
ing to

λj =
1
Nj

∑
i∈dj

I(0,+∞)(zu
i ), (4)

where Nj is the total number of extracted feature vectors in image j. Note that
we implicitly integrate out yu

i in (4). We use the Beta distribution to model this
noisy measurement process, so the prior on mj is

p(mj |λj , χ) = Beta (χλj + 1, χ(1 − λj) + 1) ∝ m
χλj

j (1 −mj)χ(1−λj).

The augmented classification model with group statistics is summarized in
Fig. 4.
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Fig. 4. The directed graphical representation of the classification model with
group statistics. Shaded nodes are observed during training, and square nodes
are fixed hyperparameters.

4 Model computation

The classification objective is to estimate the density

p(yN+1 =1|xN+1,x,y
k)=

∫
p(yN+1 =1|xN+1, θ)p(θ|x,yk)dθ

for an unseen point xN+1, given the training data {x,yk}, where θ = {γ,β} is
the set of parameters that directly influence prediction. Obtaining this probabil-
ity requires a solution to an intractable integral, so we approximate it with the
Monte Carlo point-mass estimate

p(yN+1 =1 |xN+1,x,y
k) ≈ 1

ns

ns∑
s=1

p(yN+1 =1 |xN+1, θ
(s))

≈ 1 − 1
ns

ns∑
s=1

Φ
( − ΨN+1,γ(s)β(s)

γ

)
,

where ns is the number of samples, and each sample θ(s) = {γ(s),β(s)} is dis-
tributed according to the posterior p(γ,β |x,yk). Kück et al. [11] develop an
MCMC algorithm for sampling from the posterior by augmenting the original
blocked Gibbs sampler [26] to the data association scenario. We follow their
strategy for sampling these variables efficiently using Rao-Blackwellisation for
variance reduction and the Morrison-Sherman lemma for fast matrix updates.
One key difference is that [11] uses rejection sampling to sample the unknown la-
bels subject to the constraints or group statistics, while we adopt a more efficient
MCMC scheme and sample from the full conditionals in each document.
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5 Conditional random field for integration of multiple
cues

Even though positively classified local features often lie on the object (see the ex-
perimental results of Sec. 6.3), they are inadequate for separating the object from
the background. Interest regions have been used successfully as a basis for image
classification, but there are few positive results extending to the localization of
objects. Here, we add an additional layer to localize the objects in an image.
The basic intuition behind our approach is that labels on nearby interest regions
and neighbouring segments should be useful in predicting a segment label. We
propose a simple conditional random field that incorporates segmentation cues
and the interest region labels predicted by our Bayesian kernel machine. Spatial
integration is achieved in a generic fashion, so we expect our localization scheme
applies to a variety of object classes.

The first step is to learn a classifier using the Bayesian learning algorithm
described in Sections 2-4. Next, the image is decomposed into superpixels —
small segments which induce a low compression [12]. We use the Normalized
Cuts algorithm [29] to segment images, but other (less expensive) methods could
possibly be used with similar returns. The extracted features of small segments
are hardly sufficient for locating object classes in cluttered scenes, so the novel
step is the construction of a conditional random field [13] (CRF) that propagates
information across an image’s neighbouring superpixels and interest regions.

Interest region labels influence the segment labels through CRF potentials.
The strength of a potential is determined according to the overlap between the
interest region and the segment. Defining ai to be the area occupied by interest
region i, and aik to be the overlap between segment k and interest region i, the
potential on the kth segment label ys

k is defined to be

φk(ys
k) =

∑
i

aik

ai
δ(ys

k = yi), (5)

where yi is the interest region label predicted by the sparse kernel machine
classifier (1), i ranges over the set of interest regions in the image, and δ(x=y)
is the delta-Dirac indicator which returns 1 when x is equal to y, and 0 otherwise.

Next, we define the potential between two adjacent segments k and l to be

µkl(ys
k, y

s
l ) = θµ +

(
bkl

2bk
+
bkl

2bl

)
δ(ys

k = ys
l ), (6)

where bk is the contour length of segment k and bkl is the length of the border
shared by segments k and l. The pairwise potential (6) is the prior compatibility
of the labels of neighbouring segments.

Putting the potentials (5,6) together, the joint probability of the segment
labels ys is given by

p(ys |y) =
1

Z(y)

∏
k

φk(ys
k)

∏
l

µkl(ys
k, y

s
l ), (7)
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where the partition function Z(y) =
∑

ys

∏
k φk(ys

k)
∏

l µkl(ys
k, y

s
l ) ensures that

the probabilities sum to unity. There is only a single free parameter, θµ, which
controls the strength of the potential. At this point, there is no learning; we
tune the parameter by hand. In our experiments, we set θµ to a relatively strong
prior, 0.1, which encourages neighbouring segments to have the same labels.

Even though equation (7) contains a product over all pairs (k, l) of segments
in the image, the adjacency graph is sparse since only a few superpixels will
share a border, so it is reasonable to run an inference algorithm suitable for
sparse graphs. We use the tree sampling algorithm of [30] to infer the hidden
labels ys.

6 Experiments

We conduct three sets of experiments. First, we measure the model’s ability to
detect the presence or absence of objects in scenes, comparing performance with
previously proposed models. Second, we assess the model’s capacity for learning
the correct associations between local features and class labels by training the
model with varying levels of supervision. Third, by integrating local feature and
segmentation cues in a principled manner, we demonstrate reliable localization
of objects. We start by describing the setup used in our experiments.

6.1 Experiment setup

We use interest region detectors which select informative or stable regions of the
image. We use three different scale-invariant detectors: the Harris-Laplace de-
tector [31] which finds corner-like features, the Kadir-Brady detector [32] which
proposes circular regions with maximum grey-level entropy, and the Laplacian
method [33] which detects blob-like structures. Based on earlier studies [34], we
chose the Scale Invariant Feature Transform (SIFT) [10] to describe the nor-
malized regions extracted by the detectors. We compute each SIFT description
using 8 orientations and a 4×4 grid, resulting in a 128-dimension feature vector.

For fair comparison, we adjust the thresholds of all the detectors in order to
obtain an average of 100 interest regions per training image. The combination
scenario has an average of 300 detections per image. Note Fergus et al. [7] extract
only 20 features per image on average, owing in part to the expense of training,
while Opelt et al. [6] learn from several hundred regions per image.

For all our experiments using the constrained data association model (Sec. 3.1),
we fix the label constraint n0 to 0 and set n1 between 15 and 30, depending on
the object in question. Our constraints tend to be conservative, the advantage
being that they do not force too many points to belong to objects that occupy
only a small portion of the scene. When employing the group statistics model
(Sec. 3.2), we set the parameters to be approximately m = 0.3 and χ = 400.
We set a = 1 and b according to a feature selection prior of approximately 200
active kernel centres, and we bestow near uninformative priors on the rest of
the model parameters. In all our experiments, we set σ to 1/100 because our
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MCMC algorithm reliably converged to a good solution. (Scale selection is an
unsolved problem.) We found that 2000 MCMC samples with a burn-in period
of 100 was sufficient for a stable approximation of the model posterior. Predic-
tion by integrating the samples is fast: it takes about 1 second per image on a 2
GHz Pentium machine. The code and data for our experiments are available at
http://lear.inrialpes.fr/objrecls.

6.2 Image classification

The experiments in this section quantify our model’s capacity for identifying
the presence or absence of objects in images. We refer to this task as image
classification. One should take caution, however, in generalizing the results to
recognition: unless the image data is well-constructed, one cannot legitimately
make the case that image classification is equivalent to object recognition. It is
important to ensure the model learns to recognize cars, not objects associated
with cars, such as stop signs. We address these concerns by proposing new ex-
periment data consisting of images arising from the same environment: parking
lots with and without cars. The outdoor scenes exhibit a significant amount of
variation in scale, pose and lighting conditions. In addition, the new data set
poses a challenge to learning with weak supervision, since the cars often occupy
a small portion of the scene. See Fig. 1 for some example images. For purposes of
comparison with other methods, we also present results on some existing data-
bases of airplanes, motorbikes, wildcats, bicycles and people. The experiment
data is summarized in Table 1.

Training images Test images
class with object without with object without

airplanes 400 450 400 450
motorbikes 400 450 400 450
wildcats 100 450 100 450
bicycles 100 100 50 50
people 100 100 50 50
cars 50 50 29 21

Table 1. Summary of experiment data. The sources are the Caltech motor-
bikes (side) and airplanes (side) categories (http://www.vision.caltech.edu/html-

files/archive.html), the Corel Image database for the Wildcats, the Graz bicycles
and people data sets (http://www.emt.tugraz.at/∼pinz/data/GRAZ 01), and the IN-
RIA car database (http://lear.inrialpes.fr/data).

We adopt a simple voting scheme for image classification by summing over
the feature label probabilities assigned by the model. Results of the image clas-
sification experiments are shown in Table 2. We report performance using the
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data set H-L K-B LoG Combo Csurka Fergus Opelt

airplanes 0.985 0.993 0.938 0.998 0.962 0.902 0.889
motorbikes 0.988 0.998 0.983 1.000 0.980 0.925 0.922
wildcats 0.960 0.980 0.930 0.990 0.920 0.900 —
bicycles 0.920 0.880 0.840 0.900 0.880 — 0.865
people 0.800 0.740 0.840 0.820 0.780 — 0.808
cars 0.966 0.897 0.897 0.931 — — —

Table 2. Image classification performance on test sets measured using the ROC
equal error rate. The two three columns refer to the performance reported by
Fergus et al. [7] and Opelt et al. [6]. The third column from the right is a reimple-
mentation of the bag-of-keypoints model of Csurka et al. [9] using affine-invariant
Harris-Laplace interest regions. All the other columns state the performance ob-
tained using the proposed Bayesian model with regions extracted by various
detectors (from left to right): Harris-Laplace [31], Kadir-Brady entropy detec-
tor [32], Laplacian of Gaussians [33], and combination of the three detectors.

Receiver Operating Characteristic (ROC) equal error rate, a standard evaluation
criterion [6, 7]. It is defined to be the point on the ROC curve — obtained by
varying the classification threshold — when the proportion of true positives is
equal to the proportion of true negatives. We used the constrained data asso-
ciation model for these experiments, since constraints were easier to specify for
most of the existing data sets.

Observe that our model in combination with the three detectors always pro-
duces the best image classification (at least when comparisons with other meth-
ods are available). Moreover, our model does very well in classifying car images
in spite of the aforementioned challenges posed by the training examples. We
omitted error bars because independent MCMC trials with fixed priors exhibited
little variance.

One of the more interesting results of Table 2 is that no single detector
dominates over the rest. This highlights the importance of having a wide variety
of feature types for object class recognition.

Training with the combination of the Harris-Laplace, Kadir-Brady and LoG
detectors often — albeit inconsistently — improves the equal error rate. For
instance, we see that the ROC equal error rate decreases in the combination
scenario for car, people and bicycle classification. Upon closer inspection, how-
ever, the ROC equal error rate can be deceptive. If we examine the full ROC
plots in Fig. 5, the combination of detectors now appears to be equally advan-
tageous. Importantly, a precision-recall plot for the task of labeling individual
features as belonging to cars in Fig. 6 shows that our classifier picks the best
individual features first when given the choice between three detectors in the
combination scenario (the ground truth was determined according to manual
object-background segmentations of the scenes). Note that in Fig. 6 the Harris-
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Fig. 5. The graph on the left plots the ROC curve for classification performance
of car test images using the Harris-Laplace detector (blue solid line) and the
combination of three detectors (red dotted line). The graph on the right shows
analogous results for the bicycles test set. In both cases, the equal error rate
(indicated by a large dot) is inferior in the combination, but according to the
full ROC curve it may perform slightly better.
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Fig. 6. Plots of precision (percentage of correct positives) versus average recall
per image for the task of labeling individual features as belonging to cars. Our
definition of recall here is not standard since we do not divide by the number
of regions in the image. The combination scenario extends to 300 along the x-
axis, but we cut it off at 100. Our algorithm learns which features are best in
the combination, but this performance does not necessarily translate to better
image classification (shown in Table 2).
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Laplace detector is overly penalized because it often selects corner-like features
that are near, but not on, cars. Fig. 7 shows a couple examples where learning
a model with a combination of detectors results in an improved image classifi-
cation.

K-B  1.000 K-B  1.000 K-B  1.000

LoG  1.000 LoG  1.000 K-B  0.996

K-B  0.996 LoG  0.995 K-B  0.988

K-B  0.997 K-B  0.990 K-B  0.986

K-B  0.974 K-B  0.971 LoG  0.964

LoG  0.955 LoG  0.917 K-B  0.913

Fig. 7. Two examples in which the combination of detectors (top row) results
in improved image classification over the Harris-Laplace detector (middle row).
The circles represent the 9 interest regions that are most likely to belong to
cars or bicycles. The bottom row shows the top features along with feature type
and probability of positive classification. The combination is an improvement
precisely because the Harris-Laplace detector fails to select good features in
these two images.

We show examples of correctly and incorrectly classified images, along with
the interest regions extracted by the detectors, in Fig. 8. Incorrectly classified
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Fig. 8. Test images correctly (top four images) and incorrectly (bottom four)
classified using interest regions extracted by the Harris-Laplace (for cars and
bicycles) or LoG detector (for people). Dark blue circles represent local interest
regions that are more likely to belong to the object, while yellow circles more
probably belong to the background.

images tended to be unlike any of the images observed during training, such
as the van and the child’s bicycle. Problematic images also tended to exhibit
unusual illumination conditions.
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Fig. 9. The yellow circles are two interest regions extracted by the entropy de-
tector. By looking only at the pixels inside the yellow circle, it is difficult to tell
which one belongs to the bicycle and which one belongs to the background.

6.3 Investigation of data association

In this section, we ask to what extent our proposed scheme for data association
correctly labels the individual features, given that it is provided very little infor-
mation. In some sense, this task is unfair since many individual interest regions
cannot discriminate the object class. Fig. 9 shows two Kadir-Brady interest re-
gions that do not help discriminate bicycles. Even under the best of conditions,
we should not expect the classifier to predict the feature labels perfectly.

We frame the data association question as follows: if manual segmentations
were provided, how much would we gain over image caption data? The answer of
course depends on the nature and quality of the data. At the very least, we should
expect that our model predicts the correct labels of the discriminative features
in the INRIA car database, since it appears to exhibit sufficient information to
delineate positive and negative instances.

We conduct the experiment on the car database using the interest regions
extracted from the Harris-Laplace detector. We use both hard constraints and
group statistics. We increase supervision by setting some unknown labels yu

i

known to fall on cars to yk
i = 1. Note that there is some noise in this process, since

an interest region near a car may or may nor be associated with it. The results
are presented in Fig. 10. The ROC curves show how the accuracy in labeling
individual features changes with different levels of supervision. As expected, the
addition of a few hand-labeled points improves recognition in training images.
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Fig. 10. The ROC plots demonstrate how learning with different proportions
of hand-labeled points affects performance on labeling individual car features.
(a) Labeling accuracy using the constrained data association model (Sec. 3.1).
(b) Labeling accuracy using the data association with group statistics model
(Sec. 3.2). The Harris-Laplace detector is used for both these experiments. With
a lot of supervision, the models predict near-perfect feature labels in the training
images, but there is little improvement in the test images.

However, further upgrades in supervision result in almost no gains to recognition
in test images. This shows that our data association schemes largely compensate
for the lack of annotations in the data. Fig. 11 demonstrates this effect on a
single image.
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Fig. 11. Labeling of individual interest regions using the model augmented with
data association constraints. The model was trained with various levels of super-
vision (see Fig. 10). Left: Car test image, no observed car labels during training.
Right: The same image, except that the model was trained with an additional
11% observed feature labels. Dark blue circles are more likely than not to belong
to the object, and light yellow circles are more likely to belong to the background.

6.4 Object localization

In this section, we evaluate the proposed object localization model. In order
to quantify its effectiveness, we compare the object-background segmentation
predicted by the model with those drawn by hand. Some examples of man-
ual segmentations are shown in Fig. 12. Perfect localization requires: 1.) that

Fig. 12. Examples of ground truth segmentations from the bicycle and car data-
bases.

the boundaries of the segments follow the object boundaries, and 2.) that the
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conditional random field predicts the segment labels correctly. Even then, the
evaluation may not be precise since the ground truth annotations contain some
error, as evidenced by the examples in Fig. 12.
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Fig. 13. ROC plots for localization of (a) bicycles and (b) cars, with (solid blue
line) and without (dashed green line) the proposed CRF model. We use the
Harris-Laplace detector for the cars, and the Kadir-Brady entropy detector for
extracting interest regions in the bicycles database. Notice that the addition
of the superpixels with the conditional random field dramatically improve the
quality of the object-background separation.

The ROC curves in Fig. 13 report the quality of the estimated segmentations
in the car and bicycle databases. The ROC plots are obtained by thresholding
the label probabilities on the segments and then finding the intersection with
the ground truth segmentations. We use the Harris-Laplace detector for the car
images and the Kadir-Brady entropy detector for the bicycles. The “without
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Estimated segmentation Estimated segmentationImageImage

Fig. 14. Good localization results on car test images. Darker patches are more
likely to correspond to cars.

Estimated segmentation Estimated segmentationImageImage

Fig. 15. Poor localization results on car test images. Darker patches are more
likely to belong to the car class.

CRF” results in Fig. 13 do not use the superpixels; the spatial information is
acquired from the location and scale of the interest regions. Our results show
that we gain a lot in localization by using the segments to propagate interest
region labels. The results in Fig. 13 show that our method is more reliable for
locating cars in images. Without the CRF, Fig. 13a shows that the first selected
labels selected are almost always within the boundary of cars, but the model
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cannot make any predictions in areas where no interest regions are extracted by
the detector.

Some successful predictions in car test images are shown in Fig. 14, and
some less successful car recognition results are displayed in Fig. 15. Localization
failed when the interest regions and superpixels failed to complement each other.
Notice we did not tailor the CRF to an object class, so recognition performance
might very well generalize to other visual object classes.

7 Conclusions and Discussion

In this paper, we extended the discriminative power of local scale-invariant fea-
tures using Bayesian learning. We showed that both models for generalized mul-
tiple instance learning — constrained data association and learning with group
statistics — are remarkably well-behaved in the face of noisy high-dimensional
features and wide variability in the unlabeled training data. Our method allows
us to solve the important problem of selecting local features for classification. In
addition, we proposed a generic, probabilistic method for robust object localiza-
tion by integrating multiple visual cues learned through our model. The experi-
ments show our method successfully segments the object from the background.
The important implication is that our Bayesian model selects the features that
really lie on or near the object.

The conditional random field we proposed does not adapt its parameters to
the object class in question since there is no learning involved. An important
question is whether our Bayesian methods for data association can be extended
to more advanced models for learning to recognize objects, such as those that
incorporate context, shape information, correlations between features and dif-
ferent types of features. We suspect that it is as much a challenge for machine
learning as it is for vision.
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