
Adapting Two-Class Support Vector Classification Methods to

Many Class Problems

Simon I. Hill sih22@eng.cam.ac.uk

Department of Engineering, University of Cambridge, UK

Arnaud Doucet arnaud@cs.ubc.ca

Departments of Computer Science and Statistics, University of British Columbia, Canada

Abstract

A geometric construction is presented which
is shown to be an effective tool for under-
standing and implementing multi-category
support vector classification. It is demon-
strated how this construction can be used
to extend many other existing two-class
kernel-based classification methodologies in a
straightforward way while still preserving at-
tractive properties of individual algorithms.
Reducing training times through incorporat-
ing the results of pairwise classification is also
discussed and experimental results presented.

1. Introduction

Recently (Vapnik, 1998; Van Gestel et al., 2001; Man-
gasarian & Musicant, 2001; Fung & Mangasarian,
2001b; Herbrich et al., 2000, for example) there have
been a large number of kernel-based, two-class classi-
fication algorithms developed. Often though problems
require classification intoM > 2 classes and it becomes
important to understand how to extend a particular
methodology.

Three dominant approaches exist for achieving this,
of which two are one-against-all and pairwise or one-
against-one methods. Briefly, the one-against-all tech-
nique sets up a series of M two-class problems each
discriminating one of the M classes against the rest.

By contrast the pairwise method uses M(M−1)
2 differ-

ent classifiers, each concentrating on the comparison
between two individual categories.

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

These two techniques have been shown by Allwein
et al. (2001) to be special cases of the third main ap-
proach; Error Correcting Output Codes (ECOCs) (Di-
etterich & Bakiri, 1995). ECOCs typically involve the
construction of some binary code word1, the determi-
nation of each bit of which involves an individual clas-
sification. For instance, each of eight classes can be in-
dividually assigned unique binary code words of length
three. Unfortunately, as in this example, ECOCs do
not always have equivalent Hamming distances be-
tween classes, which suggests that not all classes are
being compared against each other equivalently.

One-against-all and pairwise methods are exceptions
to this, however even with these the end results must
be in some way combined to produce a single classi-
fication of a new input. Clearly, some heuristic, not
directly related to the initial training, must be used to
provide the final decision, be it through binary code-
words, a voting method, or some other approach.

This use of heuristics may well be adequate, contribu-
tions such as that by Rifkin and Klautau (2004) argue
that one-against-all and pairwise methods can be made
to perform practically as well as other methods. This
should come as no surprise, when comparing the per-
formance of algorithms applied to a variety of datasets
their individual implicit models will be better suited
to some, and less well suited to others.

Often however it is desirable to have a clear under-
standing of the optimisation process and a significant
contribution of the framework used in this work is that
within it many single optimisation methods can be
understood and directly compared. Indeed, many re-
cent Support Vector (SV) contributions have sought

1An exception to this being the case of pairwise compar-
ison when code word elements take values from {−1, 0, 1}.

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

to do this by using what are known as all-together ap-
proaches (Hsu & Lin, 2002a).

The very fact that so many different efforts have been
made to find a method involving a single optimisa-
tion which is competitive in terms of speed is in it-
self evidence of a desire by the research community to
overcome heuristic solutions. Unfortunately though,
all-together methods often have the serious drawback
that the optimisation process can be extremely com-
putationally intensive, typically orders of magnitude
more so than the pairwise approach, for instance.

In this paper we introduce a geometric structure which
aids considerably in understanding connections be-
tween different multi-category classification methods.
Additionally it enables more efficient algorithms to be
developed which can take advantage of the insight pro-
vided to streamline the optimisation process. It be-
comes possible, for example, to perform pairwise opti-
misation, map the results obtained into this geometric
structure, and fine-tune the result to finally obtain the
all-together endpoint.

A brief introduction to the general approach employed
is given in Section 2. Section 3 then aims to give an
overview of how this construction is applicable to a
wide range of similar algorithms. Implementation is-
sues are briefly discussed in Section 4.

2. The Geometric Construction

We consider the situation in which the aim is to find a
classifier which will take some input x ∈ X and output
a corresponding class ϑ ∈ Θ, of which there are M .
This classifier is to be found based on training data
{(xi, ϑi) ∈ X × Θ}Ni=1.

Class determination of some input from the set X is
performed in the binary classification case by con-
sidering the sign of an underlying real-valued func-
tion f : X → R (Vapnik, 1998, for example). In
considering the M -class case, the underlying vector-
valued function f : X → R

M−1 will be found, where

f =
[

f1 . . . fM−1

]T
. The idea behind the use

of an (M − 1)−dimensional space is to be able to
introduce M equally separable class-target vectors,
{y(ϑ) : ϑ ∈ Θ}. The class of input x will be deter-
mined by identifying to which class-target vector the
output f(x) is closest.

Many binary classification algorithms actually imple-
ment such a decision, where classes, denoted A and B,
have class targets y(A) = −1 and y(B) = +1. Con-
sider now that a third class, C, is a possibility. Clearly
a one-dimensional numerical label is insufficient for the

classes to be equidistant2. A two-dimensional arrange-
ment as illustrated in Figure 1 does, however, allow
this. Here the class-target vectors are

y(A) =
[

−
√

3
2 − 1

2

]T

,

y(B) =
[√

3
2 − 1

2

]T

,

y(C) =
[

0 1
]T
.

(1)

where ‖y(ϑ)‖ = 1 for all classes ϑ (note that in
this work ‖ · ‖ denotes the 2-norm of a vector, i.e.

‖y‖ =
√

y2
1 + · · · + y2

M−1 and, furthermore, normal-

isation will imply y

‖y‖) as this improves tractability

later.

Class Boundary

Class C

Class A Class B

Class Boundary Class Boundary

��� ���

�� �	�
� � ��� � � �
� � �

Figure 1. Diagram showing class labels for classification
into three. The class-target vectors corresponding to classes
A, B and C are shown. The class boundaries are given by
solid lines.

These are example class-target vectors, however, in
general it is important to understand that the opti-
misation methods which will be described are applica-
ble regardless of their rotation. Indeed, although the
apparent Cartesian coordinate asymmetry may seem
unintuitive, the important consideration is the relative
positioning of class-target vectors with respect to each
other. The optimisation procedure has no dependence
on any particular orientation. This will be discussed a
little more in Subsection 3.1.

2Note that in the case that little is known about the re-
lationship between the classes then the logical arrangement
is for them to be equidistant.

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

��� ���

� � ���

	�
�� � ��� � � ���

 � � ���
� � ���

� � � ���

Figure 2. Diagram showing elements involved in determin-
ing empirical loss associated with a training sample of class
C.

The same approach to that described for M = 3 is
taken when considering larger values of M . While typ-
ically M = 3 will be used in this work as an example
case, extensions to higher values of M follow without
too much further consideration.

In setting up the classification process, each class is as-
signed a subspace of the (M − 1) dimensional output
space. In particular these subspaces are the Voronoi
regions associated with the class targets. As a re-
sult, class boundaries can be found by forming hy-
perplanes between class regions which consist of all
points equidistant from the two relevant class targets.
Observing in which of the regions f(x) lies gives h(x),

h(x) = The class of the region in which f(x) lies.
(2)

In order to describe the empirical losses employed in
the various algorithms, it is first necessary to define
the vectors perpendicular to the hyperplane dividing
the region between y(A) and y(B). Let

vA(B) =
y(B) − y(A)

‖y(B) − y(A)‖
. (3)

These vectors are illustrated for class C in Figure 2
in which a margin εB(C) is also introduced. This
margin is often used in defining the empirical loss.
The fundamental starting point in determining and
combining individual loss components for many al-
gorithms is also illustrated in Figure 2. Here a
training point x with class C has f(x) which falls
outside the required region. This is penalised in
multi-category Support Vector Classification (SVC) by
(

εB(C) − vTB(C)f(x)
)

in an analogous way to the bi-
nary SVC empirical loss of (1 − yf(x)). Indeed in

the binary case (vB(A), vA(B)) = (y(A), y(B)) and
εA(B) = εB(A) = 1.

3. Algorithms and their extensions

We restrict our attention in this paper to SVC §3.1,
ν−Support Vector Classification (ν−SVC) §3.2, Least
Squares Support Vector Classification (LS-SVC) §3.3,
Lagrangian Support Vector Classification (LSVC)
§3.4, Proximal Support Vector Classification (PSVC)
§3.5, and Bayes Point Machines (BPMs) §3.6. Multi-
category extensions of many of these have been pre-
sented, indeed there are many SVC methodologies
alone (Lee et al., 2004; Hsu & Lin, 2002a; Crammer &
Singer, 2001; Weston & Watkins, 1999; Kreßel, 1999;
Vapnik, 1998, for example) however with some manip-
ulation these can be seen to be special cases of the
methodology outlined here.

3.1. Standard Support Vector Classification

Multi-category SVC is presented here as a starting
point. Recall (Vapnik, 1998) that the two-class SVC
optimisation problem is to

minimise

(

1

2
‖w‖2

F + C

N
∑

i=1

ξi

)

subject to

{

yi [〈Φ(xi),w〉F + b] ≥ 1 − ξi
ξi ≥ 0.

(4)

The multi-category extension to this is to

min

1

2

M−1
∑

m=1

‖wm‖2
F + C

N
∑

i=1

∑

ψ∈(Θ−ϑi)

ξi,ψ

sub. to

∑M−1
m=1 vψ,m(ϑi) [〈Φ(xi),wm〉F + bm]
≥ εψ(ϑi) − ξi,ψ
ξi,ψ ≥ 0

(5)

where vψ,m(ϑ) is the mth element of vψ(ϑ). The fa-
miliar Lagrangian dual approach can be used to find
an optimal solution to this. Let

V(ϑ) =
[

vA(ϑ) vB(ϑ) . . . vψ 6=ϑ(ϑ) . . .
]

(6)

and represent the mth row of V(ϑ) by v∗T
m (ϑ). With

this then the dual becomes

LD = −
1

2

N
∑

i=1

N
∑

j=1

M−1
∑

m=1

α
T
i VT (ϑi)V(ϑj)αjK(xi,xj)

+

N
∑

i=1

α
T
i ε(ϑi)

(7)

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

where,

αi =
[

αi,A αi,B . . . αi,ψ 6=ϑi
. . .

]T

ε(ϑi) =
[

εA(ϑi) εB(ϑi) . . . εψ 6=ϑi
(ϑi) . . .

]T

and the kernel function has been denoted K(xi,xj) =
〈Φ(xi),Φ(xj)〉F . The derivation of equation (7) also
introduces the constraints that C ≥ αi,ψ ≥ 0, ∀i, ψ ∈

(Θ − ϑi) and
∑N

i=1 V(ϑi)αi = 0. Finally, note that
having found b, the function f(·) can be expressed,

f(x) =

N
∑

i=1

V(ϑi)αiK(x,xi) + b. (8)

A final issue to consider is that of rotational invariance
to the structuring of the problem — as initially raised
in Section 2. Note that the only influence of rotational
orientation in equation (7) is through the summation
term α

T
i VT (ϑi)V(ϑj)αjK(xi,xj). Consider now that

the chosen orientation is rotated in some way as de-
scribed by a rotation matrix R, this quadratic term
then becomes,

α
T
i VT (ϑi)R

TRV(ϑj)αjK(xi,xj)

= α
T
i VT (ϑi)V(ϑj)αjK(xi,xj)

(9)

due to the fact that rotation matrices are orthonor-
mal. Hence the optimisation problem is rotationally
invariant. A similar argument can also be used for the
other algorithms considered here.

3.2. ν−Support Vector Classification

In this case the two-class optimisation problem
(Schölkopf & Smola, 2002) is given by

minimise

(

1

2
‖w‖2

F +

N
∑

i=1

ξi − νε

)

subject to

{

yi [〈Φ(xi),w〉F + b] ≥ ε− ξi
ξi ≥ 0, and, ε ≥ 0

(10)

and the extension to the polychotomous case is
straightforward,

minimise

(

1

2

M−1
∑

m=1

‖wm‖2
F

+

N
∑

i=1

∑

ψ∈(Θ−ϑi)

ξi,ψ −
∑

ϑ∈Θ

∑

ψ∈(Θ−ϑ)

νεψ(ϑ)

subject to

∑M−1
m=1 vψ,m(ϑi) [〈Φ(xi),wm〉F + bm]
≥ ε− ξi,ψ
ξi,ψ ≥ 0, and, ε ≥ 0.

(11)

Following the usual Lagrangian dual approach
(Schölkopf & Smola, 2002) results in the final aim be-
ing to maximise

LD = −
1

2

N
∑

i=1

N
∑

j=1

M−1
∑

m=1

α
T
i VT (ϑi)V(ϑj)αjK(xi,xj)

(12)
subject to 0 ≤ αi,φ ≤ 1, ∀i, ψ ∈ (Θ − ϑi),
∑N
i=1 V(ϑi)αi = 0, and

∑N
i=1

∑

ψ∈(Θ−ϑi)
αi,ψ > ν.

The output is as given in equation (8).

3.3. Least Squares Support Vector

Classification

LS-SVC as developed at length by Van Gestel et al.
(2001) is similar to standard SVC, however now with
quadratic instead of linear loss, and inequality con-
straints replaced by equality ones. Multiclass versions
have been published (Van Gestel et al., 2002) which
rely on coding schemes, however these can lead to in-
consistent treatment of different classes. The two-class
case aims to

minimise

(

1

2
‖w‖2

F + C

N
∑

i=1

ξ2i

)

subject to yi [〈Φ(xi),w〉F + b] = 1 − ξi

(13)

A multi-category extension follows succinctly,

minimise

1

2

M−1
∑

m=1

‖wm‖2
F + C

N
∑

i=1

∑

ψ∈(Θ−ϑi)

ξ2i,ψ

subject to
M−1
∑

m=1

vψ,m(ϑi) [〈Φ(xi),wm〉F + bm]

= εψ(ϑi) − ξi,ψ.

(14)

Now, define α
′ =

[

α
T
1 . . . α

T
N

]T
,

ε
′ =

[

ε
T (ϑ1) . . . ε

T (ϑN)
]T

, Zm =
[

Φ(x1)v
∗T
m (ϑ1) . . . Φ(xN)v∗T

m (ϑN)
]

,

V′ =
[

V(ϑ1) . . . V(ϑN)
]

, and Z′ =
[

ZT1 . . . ZTM−1

]T
. With these definitions

then it can be shown (Van Gestel et al., 2001) the
optimisation problem becomes equivalent to finding
α

′ and b to satisfy,
[

0 V′

V′T Z′TZ′ + CI

] [

b

α
′

]

=

[

0

ε
′

]

. (15)

The classifier is found by solving these linear equa-
tions. Note that finding Z′TZ′ does not require refer-
ence to the feature space, but only kernel evaluations.
The final output is again as in equation (8).

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

3.4. Lagrangian Support Vector Classification

As introduced by Mangasarian and Musicant (2001),
the LSVC is an algorithm which has its strength in
that it is computationally efficient, and easy to im-
plement. The method for two-class classification aims
to

minimise

(

1

2

[

‖w‖2
F + b2

]

+ C

N
∑

i=1

ξ2i

)

subject to yi [〈Φ(xi),w〉F + b] ≥ 1 − ξi.

(16)

This can be reformulated to a multi-category problem
resulting in,

minimise

1

2

M−1
∑

m=1

[

‖wm‖2
F + b2m

]

+ C

N
∑

i=1

∑

ψ∈(Θ−ϑi)

ξ2i,ψ

subject to

M−1
∑

m=1

vψ,m(ϑi) [〈Φ(xi),wm〉F + bm]

≥ εψ(ϑi) − ξi,ψ.

(17)

The dual to this is,

LD = −
1

2

N
∑

i=1

N
∑

j=1

M−1
∑

m=1

α
T
i VT (ϑi)V(ϑj)αj [K(xi,xj) + 1]

+

N
∑

i=1

α
T
i

[

ε(ϑi) −
1

2C
αi

]

(18)

which needs to be maximised subject to αi,ψ ≥ 0 for
all i and all ψ ∈ (Θ − ϑi), and once that has been

done then b =
∑N
i=1 V(ϑi)αi. The final solution again

takes the form of equation (8).

3.5. Proximal Support Vector Classification

Following on from the LSVC method, the PSVC
approach was developed by (Fung & Mangasarian,
2001b). They also provided a multiclass version of
the algorithm (Fung & Mangasarian, 2001a), but us-
ing a one-against-all approach instead of a direct all-
together extension. The two-class aim is to

minimise

(

1

2

[

‖w‖2
F + b2

]

+ C

N
∑

i=1

ξ2i

)

subject to yi [〈Φ(xi),w〉F + b] = 1 − ξi.

(19)

which is the same as that for LS-SVC §3.3 except for
the b2 term. This can be reformulated to a multi-

category problem resulting in,

minimise

1

2

M−1
∑

m=1

[

‖wm‖2
F + b2m

]

+ C

N
∑

i=1

∑

ψ∈(Θ−ϑi)

ξ2i,ψ

subject to

M−1
∑

m=1

vψ,m(ϑi) [〈Φ(xi),wm〉F + bm]

= εψ(ϑi) − ξi,ψ.

(20)

Now, define v∗′ =
[

v∗T
1 (ϑ1) . . . v∗T

1 (ϑN) v∗T
2 (ϑ1) . . . v∗T

N (ϑN)
]T

,
and with this then, as for LS-SVC the optimisation
problem has an exact solution,

α
′ =

(

I + Z′TZ′ + v∗′v∗′T
)−1

ε
′ (21)

where everything is as defined in §3.3 and b =
∑N

i=1 V(ϑi)αi. As before, the final solution takes the
form of equation (8).

3.6. Bayes Point Machines

BPMs were introduced by Herbrich et al. (2000) and
the ideas can be extended to a multi-category prob-
lem. In short they consider what they term Version
Space, V. In the two-class case this is the region in
which a weight vector w can lie without inducing any
classification errors on the training set.

Within version space a uniform distribution is assumed
over all possible linear (in feature space) classifiers, h,
outside it is assumed zero. The Bayes point classifier
is then given by

hbp = arg min
h∈H

EX

[

EH|{xi,yi}N

i=1

[` (h(X), H(X))]
]

(22)
where `(·, ·) is some loss function (typically the zero-
one loss function is used) and the inner expectation is
over classifiers H ∈ H. One problem with this defini-
tion is that it is not usual that there is any knowledge
about PX and so evaluation of EX is impossible. With
some assumptions about the form of PX (see Herbrich
et al. (2000) for more) it can, however, be shown that
the centre of mass,

wcm =
E

w|{xi,yi}N

i=1

[w]

‖E
w|{xi,yi}N

i=1

[w]‖
(23)

is a good approximation to wbp. Eventually the prob-
lem becomes to identify V, which is some contiguous
and convex space, and then to find wcm given that
there is a uniform distribution assumed over the weight
vectors in this space.

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

Note that version space is defined by

V = {w : yi〈Φ(xi),w〉 > 0, ‖w‖ = 1} , (24)

When considering multiple classes then
the condition yi〈Φ(xi),w〉 > 0 becomes

VT (ϑi)WΦ(xi) >
[

0 0 . . . 0
]T

where the
inequality indicates component-wise inequalities, and

W =
[

w1 . . . wM−1

]T
. As a result the version

space is given by

V =
{

(w1,w2, . . . ,wM−1) : V T (ϑi)WΦ(xi)

>
[

0 0 . . . 0
]T

, ‖wm‖ = 1 ∀m
}

,
(25)

which is identical form to equation (24). Extensions
of the kernel billiards algorithm described by Herbrich
et al. (2000) can be used to find Wcm. Their method
for including training errors can also be incorporated.

4. Implementation Issues

The algorithms discussed have all been shown to yield
multi-category variants of a very similar form to their
binary counterparts. As a result it appears likely that
variants of the optimisation procedures used in the
two-class cases should be derivable.

The parallels between the two- and multi-category rep-
resentations means also that those multi-category vari-
ants of those algorithms which have been developed di-
rectly with optimisation speed considerations in mind
(for instance PSVC and LS-SVC) will exhibit similar
properties. Similarly properties of other algorithms
(e.g. the interpretation of ν in ν−SVC) will also carry
over.

One continuing issue with many algorithms is however
the optimisation speed. It has been found by many
authors (Hsu & Lin, 2002a; Fürnkranz, 2002; Rifkin
& Klautau, 2004, for example) that pairwise meth-
ods can actually be orders of magnitude faster than
all-together approaches. To make use of this consider

that a series of M(M−1)
2 two-class classifiers have been

found. It is straightforward to understand these as giv-
ing a distance along a vector perpendicular to a class
boundary.

For instance the function underlying the classification
between classes ϑ and ψ can be understood to be giv-
ing a distance along the vector vψ(ϑ). But note also
from equation (8) that αi,ψ is the coefficient of vψ(ϑi)
in f(xi). Thus it turns out that having performed pair-
wise classification then setting the value αi,ψ equal to
αi, as found when considering classes ψ and ϑi is an
efficient ad hoc method of mapping the two-class out-
puts to the all-together geometric structure.

An all-together algorithm can now be used to fine-tune
the result. We present a SVC example of this to give
an idea of the general approach. The dataset used was
obtained from the University of California repository
(Blake & Merz, 1998). It is a DNA dataset consisting
of three classes ‘Intron-Extron’; ‘IE’, ‘Extron-Intron’;
‘EI’, and ‘Neither’; ‘N ’. Training and test results
are presented in Figure 3. Here it is clear to see how

−4 −2 0 2 4
−4

−2

0

2

4
Found f(x), After Initial Mapping

f
1
(x)

f 2(x
)

−4 −2 0 2 4
−4

−2

0

2

4
Found f(x) Final

f
1
(x)

f 2(x
)

−4 −2 0 2 4
−4

−2

0

2

4
Found f(x), After Initial Mapping

f
1
(x)

f 2(x
)

−4 −2 0 2 4
−4

−2

0

2

4
Found f(x) Final

f
1
(x)

f 2(x
)

Figure 3. DNA data outputs for training and test data
cases. The mapped pairwise and optimised ‘all-together’
results are shown. Margins analogous to those in the two-
class case are shown by dashed lines. Training data forms
the top row, test data the bottom. The ‘N’ case is given by
green triangles, ‘EI’ by blue circles, and ‘IE’ by red squares.

the pairwise result (the left two Subfigures) has been
mapped into the classification plane of Figure 1, and
what changes are made in performing the ‘all-together’
additional optimisation (the right two Subfigures). In
short the ‘N ’ class appears to have intermingled a lit-
tle more with the ‘EI’ class and less with the ‘IE’
class. As well the ‘all-together’ outputs fill the corners
of the margin intersections more completely, while the
pairwise outputs tend to cut them off.

5. Experiments

Extensive investigations into comparative performance
of multi-category SVM methods have been detailed by
Hsu and Lin (2002a), again on datasets from Blake
and Merz (1998), and they present current benchmark
training times. As discussed, their work has found
that pairwise coupling approaches are far more com-
putationally efficient than others. In performing com-
parative work a standard binary, and a multi-category
version of the Sequential Minimal Optimisation (SMO)

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

algorithm as detailed by Hill and Doucet (2005) was
used, and these were coded in a straightforward way.
No dynamic caching or low-level code refinements were
used in this initial proof-of-concept investigation as it
was felt that such detailed optimisations are best done
together in a consistent way, as in the dedicated com-
parative work of Hsu and Lin (2002a).

The implementation time was found to be heavily de-
pendent on the tolerance to within which convergence
is desired (referred to as τ by Keerthi et al. (2001)).
The effect of this has been investigated for two val-
ues of τ , and the results are tabulated in Table 1. In
these experiments Gaussian kernels were used and val-
ues of σ and C were chosen by trial and error such that
output accuracies (accuracy is the percentage classifi-
cation error rate) of the ‘all-together’ implementation
were comparable to those of Hsu and Lin (2002a).

The actual accuracies recorded are given in the Table,
however recall that, as mentioned in Section 3, the
optimisation problem being solved is the generic SVC
‘all-together’ one and, as such, judicious choices of σ
and C should mean that the same accuracy rates are
achievable by all such algorithms. Clearly as the im-
plicit model behind the pairwise approach is slightly
different it may indeed be able to achieve slightly dif-
ferent accuracy results. With this in mind the aim
here has not been to incessantly tweak hyperparame-
ters to achieve marginally superior results, but simply
to look at the big picture of performance.

In continuing with this mindset, no class weightings
were introduced, and target vectors were set to be
equidistant. It may well be the case that these could
actually be perturbed, and class weights used to im-
prove performance, with no additional computational
effort, however in this initial work this was not done.

The experiments were all run on a 2.8GHz P4 with
1GB RAM3. From Table 1 it becomes apparent that
the optimisation times for two approaches presented
are of magnitudes similar to those of Hsu and Lin,
when the difference in computing power is taken into
account. Although it has not been the aim of this
work to produce highly refined optimal code, and while
such comparisons are always going to be problematic
in terms of implementation specifics, this result is, in
itself, positive. Generally, when using only the ‘all-
together’ methodology with τ = 0.001C convergence
times are similar to those of Hsu and Lin for their
‘all-together’ implementation. Briefly, their optimisa-
tion times were; for DNA, 13.5s, for vehicle 88.6s, for

3Hsu and Lin (2002a) had a 500MHz P3 with 384MB
RAM.

satimage 48.2s, for segment 66.4s, for vowel 14.1s, and
for letter 8786.2s. As such we consider the advantage
obtained here through extra computational power as
roughly equivalent to the effect of their extra coding.

While clearly very approximate this does however help
to demonstrate the relative effect of combining the
pairwise and ‘all-together’ algorithms in context. In
short it typically halves them, although the variation
on this is quite large. This result is consistent for both
values of τ , as is the result that error rate results do not
strongly favour the pairwise or ‘all-together’ methods;
this is always going to be a case-by-case issue.

6. Conclusion

The geometric construction detailed in Section 2 can
be considered an effective tool for understanding and
implementing multi-category classification. It has
been shown in Section 3 to extend many existing two-
class methodologies in a straightforward way while
preserving attractive properties of individual algo-
rithms. It also provides an effective mechanism for
incorporating the results of pairwise classification as
a means of reducing training times when aiming to
achieve an all-together result.

References

Allwein, E. L., Schapire, R. E., & Singer, Y. (2001).
Reducing multiclass to binary: A unifying approach
for margin classifiers. Journal of Machine Learning
Research, 1.

Blake, C. L., & Merz, C. J. (1998). UCI
repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Crammer, K., & Singer, Y. (2001). On the algo-
rithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Re-
search, 2, 265–292.

Dietterich, T., & Bakiri, G. (1995). Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2, 263–
286.

Fung, G., & Mangasarian, O. L. (2001a). Multicat-
egory proximal support vector machine classifiers
(Technical Report 01-06). Data Mining Institute.

Fung, G., & Mangasarian, O. L. (2001b). Proxi-
mal support vector machine classifiers. Proceedings
KDD-2001 (pp. 77–86). San Francisco.

Adapting Two-Class Support Vector Classification Methods to Many Class Problems

τ = 0.03C τ = 0.001C
Problem M N Pair All Alone ER(P) ER(A) Pair All Alone ER(P) ER(A)
DNA 3 2000 0.8 1.1 1.5 4.4 4.6 1.1 3.7 11.7 4.6 4.5
Vehicle 4 766 0.4 2.7 5.3 15.0 18.8 0.5 3.5 3.9 17.5 20.0
Satimage 6 4435 3.0 10.8 41.8 10.6 10.8 3.6 9.0 27.6 9.7 9.2
Segment 7 2079 2.4 13.2 47.9 3.0 2.6 3.2 16.2 42.0 3.0 3.0
Vowel 11 891 0.7 3.5 13.3 3.0 3.0 1.0 18.5 22.8 3.0 3.0
Letter 26 15000 129.0 129.9 2119.2 8.8 8.8 142.3 1373.7 5573.4 8.9 8.8

Table 1. Optimisation times (seconds) and error rates (percentage) for various example problems. Columns present
experimentally obtained results using the pairwise, ‘all-together’ multi-category SMO algorithm discussed. In all cases
‘Pair’ refers to pairwise optimisation time results, ‘All’ to additional refinement time, and ‘Alone’ to the ‘all-together’
algorithm without pairwise initialisation optimisation time results. Meanwhile ‘ER(P)’ refers to the test error rate of the
pairwise method and ‘ER(A)’ to that of the ‘all-together’ algorithm.

Fürnkranz, J. (2002). Round robin classification. Jour-
nal of Machine Learning, 2, 721–747.

Herbrich, R., Graepel, T., & Campbell, C. (2000).
Bayes point machines. Journal of Machine Learning
Research.

Hill, S. I., & Doucet, A. (2005). A framework for
kernel-based multi-category classification (Technical
Report CUED/F-INFENG/TR.508). University of
Engineering, Cambridge University.

Hsu, C.-W., & Lin, C.-J. (2002a). A comparison of
methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13, 415–
425.

Hsu, C.-W., & Lin, C.-J. (2002b). A simple decompo-
sition method for support vector machines. Journal
of Machine Learning, 46, 291–314.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &
Murthy, K. R. K. (2001). Improvements to Platt’s
SMO algorithm for SVM classifier design. Neural
Computation, 13, 637–649.

Kreßel, U. H.-G. (1999). Pairwise classification and
support vector machines. In B. Schölkopf, C. J. C.
Burges and A. J. Smola (Eds.), Advances in kernel
methods: Support vector learning. MIT Press.

Lee, Y., Lin, Y., & Wahba, G. (2004). Multicategory
support vector machines, theory, and application to
the classification of microarray data and satellite ra-
diance data. Journal of the American Statistical As-
sociation, 99, 659–672.

Mangasarian, O. L., & Musicant, D. R. (2001). La-
grangian support vector machines. Journal of Ma-
chine Learning Research, 1, 161–177.

Rifkin, R., & Klautau, A. (2004). In defense of one-
vs-all classification. Journal of Machine Learning
Research, 5, 101–141.

Schölkopf, B., & Smola, A. J. (2002). Learning with
kernels. MIT Press.

Van Gestel, T., Suykens, J. A. K., Baesens, B., Viaene,
S., Vanthienen, J., Dedene, G., De Moor, B., & Van-
dewalle, J. (2001). Benchmarking least squares sup-
port vector machine classifiers. Machine Learning,
54, 5–32.

Van Gestel, T., Suykens, J. A. K., Lanckriet, G.,
Lambrechts, A., De Moor, B., & Vandewalle, J.
(2002). Multiclass LS-SVMs: Moderated outputs
and coding-decoding schemes. Neural Processing
Letters, 15, 45–58.

Vapnik, V. N. (1998). Statistical learning theory. Wi-
ley.

Weston, J. A. E., & Watkins, C. (1999). Support
vector machines for multi-class pattern recognition.
Proceedings of the 7th European Symposium On Ar-
tificial Neural Networks.

