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Abstract. The accuracy of a user model usually depends on the amount and 
quality of information available on the user’s states of interest. An eye-tracker 
provides data detailing where a user is looking during interaction with the 
system. In this paper we present a study to explore how this information can 
improve the performance of a model designed to assess the user’s tendency to 
engage in a meta-cognitive behavior known as self-explanation. 

1 Introduction 

One of the key dimensions that characterizes a user modeling problem is model 
bandwidth [15], i.e., the amount and quality of information available to the model to 
assess the user’s states of interest (e.g., knowledge, goals, emotions). If a model 
assesses a user’s task  performance (or a user’s final states, following the 
classification in [15]), high bandwidth is already achieved through information on 
task-related interface actions. However, if the model must assess the higher level 
mental states underlying a given behavior, high bandwidth requires explicit 
information on these states, which are seldom fully observable. In this case, 
bandwidth can be increased through interface mechanisms that force the user to make 
the states of interest explicit (e.g., by showing all the steps used to generate a problem 
solution). Unfortunately, this approach has the potential to be highly intrusive. 

In this paper, we present research on exploring eye tracking as a means to 
unobtrusively raise bandwidth in user models. In particular, we discuss findings from 
a user study that explores the usage of  users’ gaze patterns to understand whether 
students engage in a meta-cognitive behavior known as self-explanation [4], during 
interaction with an Intelligent Learning Environment for mathematical functions.  

Retrospective analysis of eye movements has been long used in Cognitive 
Psychology as a tool to help understand both motor and cognitive processes (e.g., [9]), 
as well as  in HCI for off-line interface evaluation (e.g.,  [8]). There has also been 
fairly extensive research in using eye gaze as an alternative form of input to allow a 
user to explicitly  operate an interface (e.g., [8, 11]).  

There is a much smaller body of work on real-time processing  of a user’s gaze to 
interpret a user’s behavior beyond interface operation to enable on-line adaptation of 
the interaction. Some of this work uses gaze tracking to help assess user final states, 



such as reading performance in a system for automatic reading remediation [13], or 
what task a user is performing independently from the underlying application (e.g., 
reading email vs. reading a web page) [14]. Others have explored using gaze data to 
assess user mental states such as interest in various elements of an interactive story 
[7], or problem-solving strategies in a tutoring system for algebra [6]).  

Our work extends this body of research by exploring if and how eye tracking can 
help assess mental states related to the meta-cognitive, domain-independent skill of 
self-explanation.  Self-explanation is the process of explaining to oneself a piece of 
instructional material, and  has been shown to greatly improve learning [4]. It has also 
been shown that many students tend to not self-explain spontaneously. For this 
reason, there has been increasing interest in devising computer-based tools that can 
help students self-explain. The support provided by most of these tools, however, is 
not based on an explicit model of a student’s self-explanation behavior. The 
Geometry Explanation Tutor prompts students to self-explain every problem-solving 
step in an Intelligent Learning Environment (ILE) for geometry [1].  Normit-SE 
prompts students to self-explain every new or incorrect problem-solving step in an 
ILE for data normalization [10]. This approach is potentially intrusive, since it may 
force spontaneous self-explainers to produce redundant and unnecessary self-
explanations. In contrast, [5] proposes a framework that provides individualized 
support for self-explanation based on an explicit model of a student’s self-explanation 
needs. The model uses information on both student knowledge and reading patterns to 
assess self-explanation during example studying in the domain of Newtonian physics. 
Reading patterns are tracked via a poor-man-eye-tracker interface that forces students 
to explicitly uncover the various parts of the studied example via mouse movements.  

We have been working on a similar model of self-explanation to aid the assessment 
of the effectiveness of student exploratory behavior and consequent learning in the 
Adaptive Coach for Exploration (ACE) [2, 3]. ACE is an ILE designed to help 
students learn about mathematical functions through free exploration of interactive 
simulations, rather than through more traditional problem solving activities.  Like [5], 
ACE could benefit from information on student attention patterns to more reliably 
assess whether a student is self-explaining the phenomena observed in the interactive 
simulations. However, because of the nature of the interaction, i.e. unconstrained 
exploration, we felt that it would be too intrusive to use a poor-man-eye-tracker 
mechanism to track user attention. Thus, we are exploring the usage of real-time eye-
tracker data to inform our model. In the rest of the paper, we first describe ACE. We 
then provide a high level description of the ACE student model. Next, we illustrate a 
user study that we have conducted to understand what information an eye-tracker can 
provide about a student’s self-explanation behavior. Finally, we discuss the 
implications of our findings.  

2 The ACE Open Learning Environment 

 
ACE is an adaptive open learning environment for the domain of mathematical 

functions. Open learning environments rely on the assumption that if a learner can 
freely explore the instructional material, she can acquire a deeper understanding of the 



      

target domain. However, various studies have shown that not all students can explore 
effectively on their own (e.g., [12]). Thus, ACE provides activities for students to 
freely explore mathematical functions, tracks their exploratory behavior and provides 
tailored suggestions to improve this behavior when needed.  

ACE's activities are divided into units, which are collections of exercises. Figure 1 
shows the main interaction window for the Plot Unit. We will focus on this unit 

throughout the paper because it is the most 
relevant to the eye tracker research presented in 
later sections. In the Plot Unit, a learner can 
explore the relationship between a function’s 
graph and equation by moving the graph in the 
Cartesian plane and observing how that affects 
the equation (displayed below the graph area). 
The student can also change the equation 
parameters and see how these affect the graph. 

All student interface actions are used to 
update the ACE student model, designed to 
assess if a student is exploring and learning 

effectively or if she needs help from ACE.  For more detail on ACE’s interface and 
coaching component see [2]. In the next subsection, we describe the high level 
structure of the ACE student model, and the components that allow the model to 
assess self-explanation behavior.  

2.1 The ACE Student Model 

ACE’s student model uses a Dynamic Bayesian Network to assess the effectiveness 
of a student’s exploratory behavior in ACE. The main source of evidence in the model 
comes from observing students perform  Relevant Exploration Cases in an exercise 
(e.g., changing the position of a function graph in the Plot Unit, so that it has a 
positive intercept with the x-axis; changing the equation so that it has an even 
exponent). Evidence of these cases is then propagated in the model, together with the 
current assessment of relevant student knowledge, to assess higher level dimensions 
of student exploration, such as exploration of exercises and of general domain 
concepts (e.g., the input/output relation for different types of functions) [2].  

For a student to effectively explore a case, she must both perform an action and 
self-explain changes that it generates in the environment [3]. Thus, the ACE student 
model includes self-explanation as one of the factors that influence the assessment of 
student exploration. 

2.2 Assessing Self-Explanation in the ACE Student Model  

Assessing whether a student is spontaneously self-explaining is a typical user 
modeling problem in which it is hard to achieve high bandwidth, unless we ask 
students to explicitly input their self-explanation in the system. Doing so, however, 
can be intrusive and annoying for those students who can self-explain on their own. 



The alternative is to gather information from sources that may provide indirect 
evidence on implicit self-explanation, i.e. self-explanation that happens in the 
student’s head.  

Figure 2 exemplifies how we leverage these sources in the part of the ACE student 
model that tracks implicit self-explanation. In Figure 2, nodes e0Case0, e0Case1 and 
e0Case2, represent three relevant exploration cases of a generic exercise e0. This 
model fragment corresponds to the learner having performed an action corresponding 
to the exploration of e0Case2. Nodes representing the assessment of self-explanation 
are shaded grey. As the figure shows, the two sources of information that the model 
uses to assess the occurrence of implicit self-explanation for a given exploration case 
are Stimuli to SE and SE-related-behavior. Stimuli to SE is the probability that the 
learner has stimuli to self-explain either from her general SE tendency or from one of 
the hints that ACE is designed to provide when a student is assessed to be a low self-
explainer (node Coach hint to SE). The node SE-related-behavior represents all the 
available evidence that a student is actually self-explaining the exploration case just 
generated. The first version of this model that we proposed in [3] only included time 
spent on each exploration case as behavioral evidence. The conditional probabilities 
defining the relation between time and self-explanation were based on our subjective 
judgment, to represent the  assumptions that (1) no self-explanation can happen if a 
student switches too rapidly from one exploration case to the next; (2) the longer a 
student dwells on a case the more likely it is that she is trying to self-explain it. Time, 
however, can be an ambiguous predictor. First, it is hard to define what “too rapidly” 
means for different students. Furthermore, a student may be completely distracted 
during a long interval between exploration cases.  
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Thus, we chose to explore an additional source of evidence of self-explanation 
behavior, i.e.,  the student’s attention patterns during the exploration of a given case. 
The intuition here is that self-explanation may be more likely if the student attends to 
the parts on the interface showing the effects of a specific exploratory action (if the 
student, for instance, switches attention from the graph area to the equation area after 
moving the graph in the Plot Unit).  To unobtrusively obtain evidence on student 
attention patterns we used real-time processing of eye-tracking data.  To collect 
empirical data on the mapping between actual student self-explanations, time and 
attention patterns, we ran a user study, described in the next section. 



      

3 User Study  

In this study, we collected data from 18 students using ACE while their gaze was 
tracked by an Eyelink I eye-tracker, developed by SR Research Ltd., Canada. This is 
a fairly intrusive head mounted eye tracker, that we used because it was available to 
us through the psychology department at the University of British Columbia. 
However, the same data could be easily obtained through a completely non-intrusive 
remote eye-tracker, consisting of a small camera which sits on top of the monitor or 
on some other flat surface (e.g. IView X Red from SensoMotoric Instruments, USA). �

All the study participants were non-science university students (i.e. students that 
had not taken high school calculus or first-year college math). Each participant 
received a brief introduction to ACE and instructions to try and verbalize all his/her 
thought processes while using the system. The participant then went through a 
calibration phase with the eye tracker, and finally used the system for as much time as 
needed to go through all the units. This varied from 20 minutes to close to an hour. 
All the student exploration cases were logged (567 in total), along with raw data from 
the eye tracker, as well as complete video and audio data of the interaction.  

 

3.1 Data analysis 

To understand how attention patterns and time per exploration case relate to self-
explanation, we needed to obtain from the study data points on actual explicit positive 
and negative self-explanation episodes. (Here, “negative self-explanation” indicates 
situations in which students did not self-explain, not situations in which students self-
explained incorrectly, consistent with the original definition of self-explanation [6]. ) 

We had two observers analyze   the recorded audio protocols in search of such 
episodes, and then create the link between the verbal episodes and the corresponding 
exploration cases in the log files. This turned out to be a much more laborious process 
than expected, due to two factors. 

First, we quickly realized that not all verbal episodes could be unambiguously 
classified as positive or negative self-explanations. This is not surprising because, 
although there has been extensive research on what constitutes self-explanation in 
various problem solving domains  (e.g., Newtonian physics, statistics, geometry), ours 
is the first attempt to understand self-explanation in an exploratory learning 
environment for mathematical functions. We tackled this problem by having the two 
observers independently label a subset of the audio data, then compare their 
classifications, possibly reconcile them and devise a detailed coding scheme based on 
this discussion. The coding scheme was then used to analyze the rest of the data, and 
only episodes on which the coders fully agreed were used in the rest of the analysis 
(the intercoder reliability was 93% in this phase). In the coding scheme, students 
utterances were classified as self-explanation if they expressed a conclusion about a 
domain-specific principle related to the exploration process (e.g., “when I increase the 
coefficient here, the line gets steeper”) regardless of correctness, or if they predicted 
the result of an action just before it occurred (e.g., “putting a negative sign here will 



turn the curve upside-down”). It is assumed here that if a student predicts the result of 
an action, she will watch to see if she is right and thus self-explain after the action.  
Simply narrating the outcome of each action once it happened (e.g., “this number just 
changed to a 3”), or isolated statements of confusion (e.g., “I don’t understand”) were 
not considered self-explanation. However, tentative explanations followed by 
expressions of confusion were coded as self-explanation. 

The second factor that increased the complexity of data analysis was difficulty in 
determining which action each coded utterance corresponded to. The observers at first 
assumed that subjects’ utterances always pertained to whatever exploratory action 
they had just taken. However, while analyzing the video data they realized that this 
was not always the case, particularly for users who showed great reluctance to think 
aloud. These learners had to be repeatedly prompted by the observers to speak, so 
some of the conclusions they shared weren’t reached as they spoke, but related to self 
explanation that occurred a few minutes earlier. The observers solved this problem by 
looking at every coded episode and matching it to its corresponding action. Thirteen 
coded episodes were discarded because the match was ambiguous. 

While both parts of the above coding process resulted in the elimination of data 
points, the factor that had the greatest impact on the amount of data that we could get 
from the study was students’ willingness to verbalize their thoughts. We found that a 
number of students were incapable or unwilling to think aloud, even if they were 
periodically reminded to do so.  Without such verbalizations, the coders could not tell 
whether a student had self-explained or not. Thus, of the 567 exploration cases 
recorded in the log files for all students, only 149 could be classified in terms of 
associated self-explanation.  

Once positive and negative self-explanation episodes were identified and mapped 
onto specific exploration cases, we proceeded to analyze the correspondence between 
these episodes, gaze information, and time students devoted to each case. 

Raw eye tracker data was parsed by a pattern detection algorithm we developed to 
detect switches of attention (“gaze shifts”) among the graph panel, the equation area, 
and any other non-conspicuous areas in the Plot Unit. As we mentioned earlier, these 
are the gaze patterns that we hypothesize to be associated with self-explanation in the 
plot unit. A sample gaze switch appears in figure 3. Here a student’s eye gaze (shown 

 
 

Fig. 3. Sample gaze shift Fig. 4. ROC curve for time as a filter for   
self-explanation  

 



      

as the dotted line) starts in some untracked area below the screen, moves to the 
equation region and then hovers around the graph region above.  The data-parsing 
algorithm uses fixation coordinates from the eye-tracker and matches them to the 
appropriate ACE interface region. Next, it searches the data for the pattern of making 
changes in one region and then looking at the other to observe the outcome, i.e. 
having a gaze shift. When this pattern is found, a tag is placed in the ACE log file to 
synchronize the switch with the appropriate exploration case.  

To analyze the relationship between time per exploration case and self-explanation, 
we first compared average time spent on exploration cases that were accompanied by 
self-explanation (24.7 seconds) and those that were not (11.6 seconds). The difference 
is statistically significant at the 0.05 level, suggesting that time per case is actually a 
fairly reliable indicator of self-explanation.  

To turn time into a predictor of self-explanation, we then determined a threshold T 
so that an action could be classified as self-explained if the student spent more than T 
seconds on it. To choose the optimal threshold, we built a Receiver Operating 
Characteristic (ROC) curve (figure 4). The ROC curve is a standard technique used in 
machine learning to evaluate the extent to which an information filtering system can 
successfully distinguish between relevant data (episodes the filter correctly classifies 
as positive, or true positives) and noise (episodes the filter incorrectly classifies as 
positive, or false positives), given a choice of different filtering thresholds. Figure 4 
shows the ROC curve we obtained for time, where each point on the curve represents 
a different threshold value. As it is standard practice, we chose as our final threshold 
the point on the curve that corresponds to a reasonable tradeoff between creating too 
many false positives and creating too few true positives (16 seconds, labeled by an 
asterisk on the curve in figure 4). 

3.2 Results 

Figure 5 categorizes our 149 data points into episodes with and without self-
explanation (99 circles and 50 triangles, respectively). The vertical line further 
categorizes the points into those with and without a gaze shift (GS) between graph 
and equation pane in the plot unit. The horizontal line separates points with elapsed 
time above or below 16 seconds.  The raw data is also presented in a table adjacent to 
the histogram. ROC curves were used to find that when time is used in combination 
with eye tracking data, 16 seconds continues to be the optimal threshold. 

Table 1 shows different measures of self-explanation classification accuracy if we 
use as predictor: (i) the eye-tracker to detect gaze shift; (ii) time per self-explanation 
case; (iii) both predictors. Accuracy is reported in terms of true positive rate (i.e. 
percentage of self-explanation cases correctly classified as such, or sensitivity of the 
predictor) and true negative rate (i.e. percentage of “no self-explanation” cases 
correctly classified as such, or specificity of the predictor). We also report a combined 
measure, which is the average of the two accuracies. As the table shows, time alone 
has a higher sensitivity than gaze shift, i.e. the episodes involving self-explanation 
were more likely to take over 16 seconds than to include a gaze shift. However, the 
eye-tracker alone has comparably higher specificity, i.e. the cases without self-



explanation were more likely to involve the absence of a gaze shift than shorter time 
per exploration case. The two predictors have comparable combined accuracy. 

This may suggest that the gain of using an eye tracker is not worth the cost of 
adding this information to the ACE model. However, there are a few 
counterarguments to this conclusion.   

First, it should be noted that time accuracy here is probably artificially high. One of 
the drawbacks of using time as predictor of self-explanation is that the amount of time 
elapsed tells the model nothing about the student’s behavior between actions. During 
a long time spent on a given case, a student may be doing or thinking of something 
completely unrelated to ACE. This seldom occurs in our data, but we should bear in 
mind that students were in a laboratory setting with little available distractions, in the 
presence of an observer and wearing a rather intrusive device on their head. All these 
factors are likely to have made it more difficult for the students’ thoughts to wander 
from the task at hand, resulting in time being a more reliable indicator of self-
explanation than it would be in actual practice. 

Second, we found that the sensitivity of the eye-tracker may be higher than our 
data shows. The program that synchronizes gaze shifts with actions assumes that a 

student performs an exploratory action and then carries out a gaze shift to observe the 
changes it generates. Thus, each gaze shift or lack thereof is associated with the 
preceding action. In our logger, an action involving a change in the function equation 
would be captured only when a student finishes typing and presses “enter”. However, 
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Fig. 5. Dual histogram (left) and raw time/GS data (right) 

 
Table 1. Classification accuracy of different predictors 

 Eye-tracker Time  Eye-tracker + Time 
True Positive Rate (sensitivity) 61.6% 71.7% 85.8% 
True Negative Rate (specificity) 76.0% 68.0% 62.0% 
Combined Accuracy 68.8% 69.85% 73.9% 

 



      

it is possible that in some cases the student wanted to catch the change in the graph 
when it happened, and thus would look up at the graph region after typing but before 
pressing enter. Our logger would incorrectly record this gaze shift to be associated 
with the action before the current one. Of the 38 false negatives generated by the eye-
tracker, 21 had a gaze shift associated with the preceding action in the log file, and are 
thus consistent with the above scenario.  If we were to switch the matching of these 
gaze shifts with the following log file action, the sensitivity of the eye-tracker would 
increase to 86.8%, and that of eye tracker plus time would reach 92.5%. We plan to 
run more subjects with a revised logger to clarify this issue. 

Third, combining gaze shift and time into one predictor substantially improves 
sensitivity. That is, if an action is classified as self-explained when there is either a 
gaze shift or more than 16 seconds elapsed time, most of the self-explanation 
episodes (85.8%) are correctly recognized. This increase also causes the combined 
accuracy to improve. However, as sensitivity increases, specificity is reduced and 
only 62% of the episodes that lack self-explanation are discovered by the model. This 
situation is shown in figure 5. With the combined model, all data points to the right of 
the vertical line or above the horizontal time threshold line are classified as self-
explained. As a result, most of the episodes with self-explanation are found but many 
of those without self-explanation are incorrectly classified. 

Here a tradeoff appears between sensitivity and specificity. Depending on how the 
system is used, it may be most important to correctly classify self-explanation when it 
occurs than to detect the lack thereof. This is the situation when letting natural self-
explainers explore without interruption is given highest priority. Here, using the 
combination of eye-tracker and time data is best. Alternatively, it may be more 
important to make sure that the system intervenes wherever it is necessary. Then 
failing to identify lack of self-explanation is a bigger problem than failing to detect it 
when it occurs. In this case, the eye-tracker alone is a more appropriate predictor 
because students who need help will be more likely to get it.. 

3.3 Discussion and Future Work 

In this paper, we have presented a study to ascertain whether using eye tracking 
information can increase the accuracy of a user model that needs to assess the meta-
cognitive skill known as self-explanation. An alternative, easier to obtain source of 
evidence for this assessment is time per relevant interface action. In the study, we 
have collected data to compare the two sources. 

Our results have shown that, in a laboratory setting, time is actually a much better 
predictor of self-explanation than expected. However, our data suggests that eye 
tracking data combined with time can increase the model bandwidth when a system 
that uses this model is mostly concerned with detecting the presence of self-
explanation to avoid interfering with students who spontaneously self-explain. 
Furthermore, the eye-tracker alone may be more appropriate when the system priority 
is to detect when students do not self-explain. The data analysis also uncovered 
possible sources of inaccuracies in the data collection that may underestimate the 
value of eye tracker data.  



Given these considerations, we plan to continue exploring the usage of eye tracker 
data with further experiments. One goal is to improve our data collection procedure to 
more reliably assess accuracy of eye-tracker data. A second goal is to collect data to 
test the addition to the ACE student model of nodes to represent evidence from both 
eye tracker and time. We plan to experiment by adding a naive Bayesian classifier 
structure. The advantage of this structure is that it is highly modular, allowing the 
eye-tracker and time data to be included or ignored as needed. In addition, the 
necessary conditional probabilities are readily available   from sensitivity/ specificity 
frequencies in our data. We are also planning to perform the analysis described in this 
paper for the data collected on the other ACE units during the study. This will require 
extending the gaze detection algorithm to attention patterns relevant for those units. 
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