
Exploring Eye Tracking to Increase Bandwidth in User
Modeling

Cristina Conati, Christina Merten, Kasia Muldner, David Ternes

Department of Computer Science, University of British Columbia,
2366 Main Mall, Vancouver, BC, V6T1Z4, Canada

{conati, merten, kmuldner, ternes}@cs.ubc.ca

Abstract. The accuracy of a user model usually depends on the amount and
quality of information available on the user’s states of interest. An eye-tracker
provides data detailing where a user is looking during interaction with the
system. In this paper we present a study to explore how this information can
improve the performance of a model designed to assess the user’s tendency to
engage in a meta-cognitive behavior known as self-explanation.

1 Introduction

One of the key dimensions that characterizes a user modeling problem is model
bandwidth [15], i.e., the amount and quality of information available to the model to
assess the user’s states of interest (e.g., knowledge, goals, emotions). If a model
assesses a user’s task performance (or a user’s final states, following the
classification in [15]), high bandwidth is already achieved through information on
task-related interface actions. However, if the model must assess the higher level
mental states underlying a given behavior, high bandwidth requires explicit
information on these states, which are seldom fully observable. In this case,
bandwidth can be increased through interface mechanisms that force the user to make
the states of interest explicit (e.g., by showing all the steps used to generate a problem
solution). Unfortunately, this approach has the potential to be highly intrusive.

In this paper, we present research on exploring eye tracking as a means to
unobtrusively raise bandwidth in user models. In particular, we discuss findings from
a user study that explores the usage of users’ gaze patterns to understand whether
students engage in a meta-cognitive behavior known as self-explanation [4], during
interaction with an Intelligent Learning Environment for mathematical functions.

Retrospective analysis of eye movements has been long used in Cognitive
Psychology as a tool to help understand both motor and cognitive processes (e.g., [9]),
as well as in HCI for off-line interface evaluation (e.g., [8]). There has also been
fairly extensive research in using eye gaze as an alternative form of input to allow a
user to explicitly operate an interface (e.g., [8, 11]).

There is a much smaller body of work on real-time processing of a user’s gaze to
interpret a user’s behavior beyond interface operation to enable on-line adaptation of
the interaction. Some of this work uses gaze tracking to help assess user final states,

such as reading performance in a system for automatic reading remediation [13], or
what task a user is performing independently from the underlying application (e.g.,
reading email vs. reading a web page) [14]. Others have explored using gaze data to
assess user mental states such as interest in various elements of an interactive story
[7], or problem-solving strategies in a tutoring system for algebra [6]).

Our work extends this body of research by exploring if and how eye tracking can
help assess mental states related to the meta-cognitive, domain-independent skill of
self-explanation. Self-explanation is the process of explaining to oneself a piece of
instructional material, and has been shown to greatly improve learning [4]. It has also
been shown that many students tend to not self-explain spontaneously. For this
reason, there has been increasing interest in devising computer-based tools that can
help students self-explain. The support provided by most of these tools, however, is
not based on an explicit model of a student’s self-explanation behavior. The
Geometry Explanation Tutor prompts students to self-explain every problem-solving
step in an Intelligent Learning Environment (ILE) for geometry [1]. Normit-SE
prompts students to self-explain every new or incorrect problem-solving step in an
ILE for data normalization [10]. This approach is potentially intrusive, since it may
force spontaneous self-explainers to produce redundant and unnecessary self-
explanations. In contrast, [5] proposes a framework that provides individualized
support for self-explanation based on an explicit model of a student’s self-explanation
needs. The model uses information on both student knowledge and reading patterns to
assess self-explanation during example studying in the domain of Newtonian physics.
Reading patterns are tracked via a poor-man-eye-tracker interface that forces students
to explicitly uncover the various parts of the studied example via mouse movements.

We have been working on a similar model of self-explanation to aid the assessment
of the effectiveness of student exploratory behavior and consequent learning in the
Adaptive Coach for Exploration (ACE) [2, 3]. ACE is an ILE designed to help
students learn about mathematical functions through free exploration of interactive
simulations, rather than through more traditional problem solving activities. Like [5],
ACE could benefit from information on student attention patterns to more reliably
assess whether a student is self-explaining the phenomena observed in the interactive
simulations. However, because of the nature of the interaction, i.e. unconstrained
exploration, we felt that it would be too intrusive to use a poor-man-eye-tracker
mechanism to track user attention. Thus, we are exploring the usage of real-time eye-
tracker data to inform our model. In the rest of the paper, we first describe ACE. We
then provide a high level description of the ACE student model. Next, we illustrate a
user study that we have conducted to understand what information an eye-tracker can
provide about a student’s self-explanation behavior. Finally, we discuss the
implications of our findings.

2 The ACE Open Learning Environment

ACE is an adaptive open learning environment for the domain of mathematical

functions. Open learning environments rely on the assumption that if a learner can
freely explore the instructional material, she can acquire a deeper understanding of the

target domain. However, various studies have shown that not all students can explore
effectively on their own (e.g., [12]). Thus, ACE provides activities for students to
freely explore mathematical functions, tracks their exploratory behavior and provides
tailored suggestions to improve this behavior when needed.

ACE's activities are divided into units, which are collections of exercises. Figure 1
shows the main interaction window for the Plot Unit. We will focus on this unit

throughout the paper because it is the most
relevant to the eye tracker research presented in
later sections. In the Plot Unit, a learner can
explore the relationship between a function’s
graph and equation by moving the graph in the
Cartesian plane and observing how that affects
the equation (displayed below the graph area).
The student can also change the equation
parameters and see how these affect the graph.

All student interface actions are used to
update the ACE student model, designed to
assess if a student is exploring and learning

effectively or if she needs help from ACE. For more detail on ACE’s interface and
coaching component see [2]. In the next subsection, we describe the high level
structure of the ACE student model, and the components that allow the model to
assess self-explanation behavior.

2.1 The ACE Student Model

ACE’s student model uses a Dynamic Bayesian Network to assess the effectiveness
of a student’s exploratory behavior in ACE. The main source of evidence in the model
comes from observing students perform Relevant Exploration Cases in an exercise
(e.g., changing the position of a function graph in the Plot Unit, so that it has a
positive intercept with the x-axis; changing the equation so that it has an even
exponent). Evidence of these cases is then propagated in the model, together with the
current assessment of relevant student knowledge, to assess higher level dimensions
of student exploration, such as exploration of exercises and of general domain
concepts (e.g., the input/output relation for different types of functions) [2].

For a student to effectively explore a case, she must both perform an action and
self-explain changes that it generates in the environment [3]. Thus, the ACE student
model includes self-explanation as one of the factors that influence the assessment of
student exploration.

2.2 Assessing Self-Explanation in the ACE Student Model

Assessing whether a student is spontaneously self-explaining is a typical user
modeling problem in which it is hard to achieve high bandwidth, unless we ask
students to explicitly input their self-explanation in the system. Doing so, however,
can be intrusive and annoying for those students who can self-explain on their own.

The alternative is to gather information from sources that may provide indirect
evidence on implicit self-explanation, i.e. self-explanation that happens in the
student’s head.

Figure 2 exemplifies how we leverage these sources in the part of the ACE student
model that tracks implicit self-explanation. In Figure 2, nodes e0Case0, e0Case1 and
e0Case2, represent three relevant exploration cases of a generic exercise e0. This
model fragment corresponds to the learner having performed an action corresponding
to the exploration of e0Case2. Nodes representing the assessment of self-explanation
are shaded grey. As the figure shows, the two sources of information that the model
uses to assess the occurrence of implicit self-explanation for a given exploration case
are Stimuli to SE and SE-related-behavior. Stimuli to SE is the probability that the
learner has stimuli to self-explain either from her general SE tendency or from one of
the hints that ACE is designed to provide when a student is assessed to be a low self-
explainer (node Coach hint to SE). The node SE-related-behavior represents all the
available evidence that a student is actually self-explaining the exploration case just
generated. The first version of this model that we proposed in [3] only included time
spent on each exploration case as behavioral evidence. The conditional probabilities
defining the relation between time and self-explanation were based on our subjective
judgment, to represent the assumptions that (1) no self-explanation can happen if a
student switches too rapidly from one exploration case to the next; (2) the longer a
student dwells on a case the more likely it is that she is trying to self-explain it. Time,
however, can be an ambiguous predictor. First, it is hard to define what “too rapidly”
means for different students. Furthermore, a student may be completely distracted
during a long interval between exploration cases.

e0

S tim uli
to SE

e0Case2

K no wledge

SE Tendency

Im plicit SE

e0Case0

e0Case1

C oach
h in t to SE

SE-related
behavior

Fig. 2 . The A C E student m odel

Thus, we chose to explore an additional source of evidence of self-explanation
behavior, i.e., the student’s attention patterns during the exploration of a given case.
The intuition here is that self-explanation may be more likely if the student attends to
the parts on the interface showing the effects of a specific exploratory action (if the
student, for instance, switches attention from the graph area to the equation area after
moving the graph in the Plot Unit). To unobtrusively obtain evidence on student
attention patterns we used real-time processing of eye-tracking data. To collect
empirical data on the mapping between actual student self-explanations, time and
attention patterns, we ran a user study, described in the next section.

3 User Study

In this study, we collected data from 18 students using ACE while their gaze was
tracked by an Eyelink I eye-tracker, developed by SR Research Ltd., Canada. This is
a fairly intrusive head mounted eye tracker, that we used because it was available to
us through the psychology department at the University of British Columbia.
However, the same data could be easily obtained through a completely non-intrusive
remote eye-tracker, consisting of a small camera which sits on top of the monitor or
on some other flat surface (e.g. IView X Red from SensoMotoric Instruments, USA). �

All the study participants were non-science university students (i.e. students that
had not taken high school calculus or first-year college math). Each participant
received a brief introduction to ACE and instructions to try and verbalize all his/her
thought processes while using the system. The participant then went through a
calibration phase with the eye tracker, and finally used the system for as much time as
needed to go through all the units. This varied from 20 minutes to close to an hour.
All the student exploration cases were logged (567 in total), along with raw data from
the eye tracker, as well as complete video and audio data of the interaction.

3.1 Data analysis

To understand how attention patterns and time per exploration case relate to self-
explanation, we needed to obtain from the study data points on actual explicit positive
and negative self-explanation episodes. (Here, “negative self-explanation” indicates
situations in which students did not self-explain, not situations in which students self-
explained incorrectly, consistent with the original definition of self-explanation [6].)

We had two observers analyze the recorded audio protocols in search of such
episodes, and then create the link between the verbal episodes and the corresponding
exploration cases in the log files. This turned out to be a much more laborious process
than expected, due to two factors.

First, we quickly realized that not all verbal episodes could be unambiguously
classified as positive or negative self-explanations. This is not surprising because,
although there has been extensive research on what constitutes self-explanation in
various problem solving domains (e.g., Newtonian physics, statistics, geometry), ours
is the first attempt to understand self-explanation in an exploratory learning
environment for mathematical functions. We tackled this problem by having the two
observers independently label a subset of the audio data, then compare their
classifications, possibly reconcile them and devise a detailed coding scheme based on
this discussion. The coding scheme was then used to analyze the rest of the data, and
only episodes on which the coders fully agreed were used in the rest of the analysis
(the intercoder reliability was 93% in this phase). In the coding scheme, students
utterances were classified as self-explanation if they expressed a conclusion about a
domain-specific principle related to the exploration process (e.g., “when I increase the
coefficient here, the line gets steeper”) regardless of correctness, or if they predicted
the result of an action just before it occurred (e.g., “putting a negative sign here will

turn the curve upside-down”). It is assumed here that if a student predicts the result of
an action, she will watch to see if she is right and thus self-explain after the action.
Simply narrating the outcome of each action once it happened (e.g., “this number just
changed to a 3”), or isolated statements of confusion (e.g., “I don’t understand”) were
not considered self-explanation. However, tentative explanations followed by
expressions of confusion were coded as self-explanation.

The second factor that increased the complexity of data analysis was difficulty in
determining which action each coded utterance corresponded to. The observers at first
assumed that subjects’ utterances always pertained to whatever exploratory action
they had just taken. However, while analyzing the video data they realized that this
was not always the case, particularly for users who showed great reluctance to think
aloud. These learners had to be repeatedly prompted by the observers to speak, so
some of the conclusions they shared weren’t reached as they spoke, but related to self
explanation that occurred a few minutes earlier. The observers solved this problem by
looking at every coded episode and matching it to its corresponding action. Thirteen
coded episodes were discarded because the match was ambiguous.

While both parts of the above coding process resulted in the elimination of data
points, the factor that had the greatest impact on the amount of data that we could get
from the study was students’ willingness to verbalize their thoughts. We found that a
number of students were incapable or unwilling to think aloud, even if they were
periodically reminded to do so. Without such verbalizations, the coders could not tell
whether a student had self-explained or not. Thus, of the 567 exploration cases
recorded in the log files for all students, only 149 could be classified in terms of
associated self-explanation.

Once positive and negative self-explanation episodes were identified and mapped
onto specific exploration cases, we proceeded to analyze the correspondence between
these episodes, gaze information, and time students devoted to each case.

Raw eye tracker data was parsed by a pattern detection algorithm we developed to
detect switches of attention (“gaze shifts”) among the graph panel, the equation area,
and any other non-conspicuous areas in the Plot Unit. As we mentioned earlier, these
are the gaze patterns that we hypothesize to be associated with self-explanation in the
plot unit. A sample gaze switch appears in figure 3. Here a student’s eye gaze (shown

Fig. 3. Sample gaze shift Fig. 4. ROC curve for time as a filter for
self-explanation

as the dotted line) starts in some untracked area below the screen, moves to the
equation region and then hovers around the graph region above. The data-parsing
algorithm uses fixation coordinates from the eye-tracker and matches them to the
appropriate ACE interface region. Next, it searches the data for the pattern of making
changes in one region and then looking at the other to observe the outcome, i.e.
having a gaze shift. When this pattern is found, a tag is placed in the ACE log file to
synchronize the switch with the appropriate exploration case.

To analyze the relationship between time per exploration case and self-explanation,
we first compared average time spent on exploration cases that were accompanied by
self-explanation (24.7 seconds) and those that were not (11.6 seconds). The difference
is statistically significant at the 0.05 level, suggesting that time per case is actually a
fairly reliable indicator of self-explanation.

To turn time into a predictor of self-explanation, we then determined a threshold T
so that an action could be classified as self-explained if the student spent more than T
seconds on it. To choose the optimal threshold, we built a Receiver Operating
Characteristic (ROC) curve (figure 4). The ROC curve is a standard technique used in
machine learning to evaluate the extent to which an information filtering system can
successfully distinguish between relevant data (episodes the filter correctly classifies
as positive, or true positives) and noise (episodes the filter incorrectly classifies as
positive, or false positives), given a choice of different filtering thresholds. Figure 4
shows the ROC curve we obtained for time, where each point on the curve represents
a different threshold value. As it is standard practice, we chose as our final threshold
the point on the curve that corresponds to a reasonable tradeoff between creating too
many false positives and creating too few true positives (16 seconds, labeled by an
asterisk on the curve in figure 4).

3.2 Results

Figure 5 categorizes our 149 data points into episodes with and without self-
explanation (99 circles and 50 triangles, respectively). The vertical line further
categorizes the points into those with and without a gaze shift (GS) between graph
and equation pane in the plot unit. The horizontal line separates points with elapsed
time above or below 16 seconds. The raw data is also presented in a table adjacent to
the histogram. ROC curves were used to find that when time is used in combination
with eye tracking data, 16 seconds continues to be the optimal threshold.

Table 1 shows different measures of self-explanation classification accuracy if we
use as predictor: (i) the eye-tracker to detect gaze shift; (ii) time per self-explanation
case; (iii) both predictors. Accuracy is reported in terms of true positive rate (i.e.
percentage of self-explanation cases correctly classified as such, or sensitivity of the
predictor) and true negative rate (i.e. percentage of “no self-explanation” cases
correctly classified as such, or specificity of the predictor). We also report a combined
measure, which is the average of the two accuracies. As the table shows, time alone
has a higher sensitivity than gaze shift, i.e. the episodes involving self-explanation
were more likely to take over 16 seconds than to include a gaze shift. However, the
eye-tracker alone has comparably higher specificity, i.e. the cases without self-

explanation were more likely to involve the absence of a gaze shift than shorter time
per exploration case. The two predictors have comparable combined accuracy.

This may suggest that the gain of using an eye tracker is not worth the cost of
adding this information to the ACE model. However, there are a few
counterarguments to this conclusion.

First, it should be noted that time accuracy here is probably artificially high. One of
the drawbacks of using time as predictor of self-explanation is that the amount of time
elapsed tells the model nothing about the student’s behavior between actions. During
a long time spent on a given case, a student may be doing or thinking of something
completely unrelated to ACE. This seldom occurs in our data, but we should bear in
mind that students were in a laboratory setting with little available distractions, in the
presence of an observer and wearing a rather intrusive device on their head. All these
factors are likely to have made it more difficult for the students’ thoughts to wander
from the task at hand, resulting in time being a more reliable indicator of self-
explanation than it would be in actual practice.

Second, we found that the sensitivity of the eye-tracker may be higher than our
data shows. The program that synchronizes gaze shifts with actions assumes that a

student performs an exploratory action and then carries out a gaze shift to observe the
changes it generates. Thus, each gaze shift or lack thereof is associated with the
preceding action. In our logger, an action involving a change in the function equation
would be captured only when a student finishes typing and presses “enter”. However,

__SE___
Yes No

Total

GS
No GS

61
38

12
38

73
76

Time > 16
Time ? 16

71
28

16
34

87
62

GS or Time >= 16
No GS and Time < 16

85
14

19
31

104
45

Total 99 50 149

Fig. 5. Dual histogram (left) and raw time/GS data (right)

Table 1. Classification accuracy of different predictors

 Eye-tracker Time Eye-tracker + Time
True Positive Rate (sensitivity) 61.6% 71.7% 85.8%
True Negative Rate (specificity) 76.0% 68.0% 62.0%
Combined Accuracy 68.8% 69.85% 73.9%

it is possible that in some cases the student wanted to catch the change in the graph
when it happened, and thus would look up at the graph region after typing but before
pressing enter. Our logger would incorrectly record this gaze shift to be associated
with the action before the current one. Of the 38 false negatives generated by the eye-
tracker, 21 had a gaze shift associated with the preceding action in the log file, and are
thus consistent with the above scenario. If we were to switch the matching of these
gaze shifts with the following log file action, the sensitivity of the eye-tracker would
increase to 86.8%, and that of eye tracker plus time would reach 92.5%. We plan to
run more subjects with a revised logger to clarify this issue.

Third, combining gaze shift and time into one predictor substantially improves
sensitivity. That is, if an action is classified as self-explained when there is either a
gaze shift or more than 16 seconds elapsed time, most of the self-explanation
episodes (85.8%) are correctly recognized. This increase also causes the combined
accuracy to improve. However, as sensitivity increases, specificity is reduced and
only 62% of the episodes that lack self-explanation are discovered by the model. This
situation is shown in figure 5. With the combined model, all data points to the right of
the vertical line or above the horizontal time threshold line are classified as self-
explained. As a result, most of the episodes with self-explanation are found but many
of those without self-explanation are incorrectly classified.

Here a tradeoff appears between sensitivity and specificity. Depending on how the
system is used, it may be most important to correctly classify self-explanation when it
occurs than to detect the lack thereof. This is the situation when letting natural self-
explainers explore without interruption is given highest priority. Here, using the
combination of eye-tracker and time data is best. Alternatively, it may be more
important to make sure that the system intervenes wherever it is necessary. Then
failing to identify lack of self-explanation is a bigger problem than failing to detect it
when it occurs. In this case, the eye-tracker alone is a more appropriate predictor
because students who need help will be more likely to get it..

3.3 Discussion and Future Work

In this paper, we have presented a study to ascertain whether using eye tracking
information can increase the accuracy of a user model that needs to assess the meta-
cognitive skill known as self-explanation. An alternative, easier to obtain source of
evidence for this assessment is time per relevant interface action. In the study, we
have collected data to compare the two sources.

Our results have shown that, in a laboratory setting, time is actually a much better
predictor of self-explanation than expected. However, our data suggests that eye
tracking data combined with time can increase the model bandwidth when a system
that uses this model is mostly concerned with detecting the presence of self-
explanation to avoid interfering with students who spontaneously self-explain.
Furthermore, the eye-tracker alone may be more appropriate when the system priority
is to detect when students do not self-explain. The data analysis also uncovered
possible sources of inaccuracies in the data collection that may underestimate the
value of eye tracker data.

Given these considerations, we plan to continue exploring the usage of eye tracker
data with further experiments. One goal is to improve our data collection procedure to
more reliably assess accuracy of eye-tracker data. A second goal is to collect data to
test the addition to the ACE student model of nodes to represent evidence from both
eye tracker and time. We plan to experiment by adding a naive Bayesian classifier
structure. The advantage of this structure is that it is highly modular, allowing the
eye-tracker and time data to be included or ignored as needed. In addition, the
necessary conditional probabilities are readily available from sensitivity/ specificity
frequencies in our data. We are also planning to perform the analysis described in this
paper for the data collected on the other ACE units during the study. This will require
extending the gaze detection algorithm to attention patterns relevant for those units.

References

1. Aleven, V. and K.R. Koedinger, An Effective Meta-Cognitive Strategy: Learning by Doing

and by Explaining with a Computer-Based Cognitive Tutor. Cognitive Science, 2002. 26(2):
147-179.

2. Bunt, A. and C. Conati, Probabilistic Student Modelling to Improve Exploratory Behaviour.
Journ of User Modeling and User-Adapted Interaction, 2003. 13(3): 269-309.

3. Bunt, A., C. Conati, and K. Muldner. Scaffolding self-explanation to improve learning in
exploratory learning environments. in 7th Int Conf on Intelligent Tutoring Systems. 2004.
Maceio, Brazil.

4. Chi, M.T.H., et al., Self-explanations: How students study and use examples in learning to
solve problems. Cognitive Science, 1989. 15: 145-182.

5. Conati, C. and K. VanLehn, Toward Computer-based Support of Meta-cognitive Skills: A
Computational Framework to Coach Self-Explanation. Int Journ of Artificial Intelligence in
Education, 2000. 11.

6. Gluck, K.A. and J.R. Anderson, What role do cognitive architectures play in intelligent
tutoring systems?, in Cognition & Instruction: Twenty-five years of progress, D. Klahr and
S.M. Carver, Editors. 2001, Erlbaum. 227-262.

7. Iqbal, S.T. and B.P. Bailey. Using Eye Gaze Patterns to Identify User Tasks (to appear). in
The Grace Hopper Celebration of Women in Computing. 2004.

8. Jakob, R., The Use of eye movements in human computer interaction techniques: what you
look at is what you get, in Readings in Intelligent User Interfaces, M.T.a.W. Maybury, W.,
Editor. 1998, Morgan Kaufmann Press: San Francisco. 65-83.

9. Just, M. and P. Carpenter, The Psychology of Reading and Language Comprehension, ed.
A.a. Bacon. 1986, Boston.

10. Mitrovic, T. Supporting Self-Explanation in a Data Normalization Tutor. in Supplementary
Proc of AIED2003. 2003.

11. Salvucci, D. and J. Anderson. Intelligent Gaze-Added Interfaces. in SIGCHI conf on Human
factors in computing systems. 2000. The Hague, The Netherlands.

12. Shute, V.J. and R. Glaser, A large-scale evaluation of an intelligent discovery world.
Interactive Learning Environments, 1990. 1: 51-76.

13. Sibert, J.L., M. Gokturk, and R.A. Lavine. The reading assistant: eye gaze triggered
auditory prompting for reading remediation. in 13th annual ACM symposium on User
interface software and technolog. 2000. San Diego, California: ACM Press.

14. Starker, I. and R.A. Bolt. A Gaze-Responsive Self- Disclosing Display. in CHI: Human
Factors in Computing Systems. 1990. Seattle, WA: ACM.

15.VanLehn, K., Student modeling, in Foundations of Intelligent Tutoring Systems, M. Polson
and J. Richardson, Editors. 1988, Lawrence Erlbaum Associates: Hillsdale, NJ. 55-78.

