
Scalable Discovery of Hidden Emails from Large Folders

Giuseppe Carenini, Raymond T. Ng, Xiaodong Zhou
Department of Computer Science

University of British Columbia, Canada

{carenini, rng, xdzhou}@cs.ubc.ca

ABSTRACT
The popularity of email has triggered researchers to look
for ways to help users better organize the enormous amount
of information stored in their email folders. One challenge
that has not been studied extensively in text mining is the
identification and reconstruction of hidden emails. A hid-
den email is an original email that has been quoted in at
least one email in a folder, but does not present itself in the
same folder. It may have been (un)intentionally deleted or
may never have been received. The discovery and recon-
struction of hidden emails is critical for many applications
including email classification, summarization and forensics.
This paper proposes a framework for reconstructing hidden
emails using the embedded quotations found in messages
further down the thread hierarchy. We evaluate the robust-
ness and scalability of our framework by using the Enron
public email corpus. Our experiments show that hidden
emails exist widely in that corpus and also that our opti-
mization techniques are effective in processing large email
folders.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms, Performance

Keywords: text mining, hidden email, forensics

1. INTRODUCTION AND MOTIVATION
The popularity of email has triggered researchers to look

for ways to help users better organize and use their mail
folders, e.g., classification [7], task management [4] and user
interface [9]. One key difference between emails and other
types of documents is the threaded nature of emails. Ac-
cording to one study, over 60% of emails are threaded [5].

In this paper, we study a problem largely overlooked in
text mining - the problem of discovering and reconstructing
hidden emails. A hidden email is an original email that has
been quoted in subsequent emails kept in a user’s folder, but
is not itself present in the folder(s). Anyone who has ever

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

managed folders is accustomed to the tedium of manually
shunting messages between folders, as well as deciding which
messages to keep and which to delete. Accidental deletion
often occurs. Hidden emails also occur when new recipients
are included in an existing thread. Whether the original
email was deleted or never existed, it still may be found in
the quotation of subsequent emails.

Beyond helping users to better manage their ever growing
folders, hidden email reconstruction also find many foren-
sic applications. For instance, emails may be deliberately
deleted by a malicious user to avoid certain information to
be revealed. In this case, investigators will need to recon-
struct parts of the deleted emails that may be quoted in
other emails stored in other people’s folders.

The problem this paper attempts to solve is: how hid-
den emails can be discovered and reconstructed in a robust
and efficient way using the embedded quotations found in
messages further down the thread hierarchy.

As a concrete case study, we report in this paper the re-
sults of applying our framework to the Enron email corpus.
To the best of our knowledge, it is the biggest public accessi-
ble email dataset, which has been of great value for research
in many areas, including email classification. The two key
purposes of using this dataset are to verify the robustness
of our method on real data, and to ascertain its scalability.

While we discuss related work in Section 2, we describe the
overall framework to regenerate hidden emails by a running
example in Section 3. Although this basic framework can
deliver the functionality, it cannot deliver the efficiency, nor
the robustness, to deal with large real folders. In Section 4,
we develop two ways to optimize the performance of the al-
gorithms. Both are based on the use of word-indexing. They
are designed to scale up to large folders and long emails.

In Section 5, we report a comprehensive case study based
on the Enron dataset. We examine the prevalence of hidden
emails and fragments to assess the importance of the hidden
email reconstruction problem. We evaluate the robustness
of our algorithm when applied to real folders. Last, but not
least, we evaluate the success of our optimizations in scaling
up to the needs of large folders and long emails.

2. RELATED WORK
From a research perspective, email and newsgroups differ

from traditional documents in many aspects. A key differ-
ence is that there is a high level of hierarchical and refer-
ential relationship among emails in any folder, i.e., docu-
ment threading. This relationship has caught the attention
of many researchers. In [6], Lam et al. propose to sum-

Algorithm HiddenEmailFinder

Input: email folder MF , and reference email folders RF1, . . . , RFk

Output: a set of bulletized hidden emails in MF

1. For each email M ∈ MF , extract all the quoted fragments.

2. For each quoted fragment F , match F against all emails in MF

as well as those in RF1, . . . , RFk. In particular, identify the
LCS between F and M for every email M ∈ MF or M ∈ RFi

for some i. Depending on the length of the LCS, F may be
declared hidden or not.

3. Find possible overlaps between hidden fragments, split them if
necessary, and create a precedence graph G.

4. Decompose G into its weakly connected components.

5. For each weakly connected component GC, do:

(a) Process GC with Algorithm graph2email as described in
[1]. If the graph is complete and strict, output the recon-
structed hidden emails. Otherwise, use the heuristics to
deal with non-strictness and/or incompleteness. Output
the reconstructed hidden emails.

Figure 1: A Skeleton of HiddenEmailFinder

marize a set of emails based on their threading hierarchy.
They mention the existence of deleted emails in the hierar-
chy, which creates complications not present in newsgroups.
However, they do not study how to regenerate those deleted
emails. Newman [8] indicates the possibility of orphaned
quotations and warns that applications such as classifica-
tion and summarization would be adversely affected as a
result, but does not explore the issue further.

Carvalho et al. [2] studied the problem of signature and
quotation detection within an email. Their work can help
us to identify quotations.

In [1], we present a preliminary report on the hidden email
discovery and regeneration problem using a small synthetic
dataset. Section 3 describes the overall framework. How-
ever, this framework does not scale up to large real datasets
and long emails. Thus, the key contributions of the work
presented here is to devise robust and scalable algorithms,
as well as to evaluate them rigorously with real email folders.

Our research on the reconstruction of missing emails is
also relevant to the area of document forensics, where docu-
ment reconstruction from fragments is crucial. For instance,
Shanmugasundaram et al. in [10] propose the reconstruction
of totally ordered digital evidence from randomly scattered
fragments. With respect to our goal of reconstructing the
hidden email, as well as in document forensics, a total order
is not always possible. Forcing one where none exists may
be incorrect and even misleading. We believe that a partial
order representation, i.e., the bulletized model, constitutes
a reasonable solution that adequately compromises between
accuracy and completeness concerns.

3. A BASIC FRAMEWORK FOR RECON-
STRUCTING HIDDEN EMAILS

For any given email folder, some emails may contain quo-
tations from original messages that neither exist in the same
folder nor in a set of reference folders; the originals may have
been deleted or were never received at all. Each of those quo-
tations is considered a hidden fragment, as part of a hidden
email. Several hidden fragments may all originate from the
same hidden email, and a hidden fragment may be quoted
in multiple emails. Our goal is to reconstruct hidden emails
from the hidden fragments by finding the relative ordering

of the fragments and, where possible, piecing them together.
Figure 1 shows the overall algorithm called HiddenEmail-

Finder, which involves identifying hidden fragments (Step
1&2), creating a precedence graph to represent hidden frag-
ments and their relative orders (Step 3), reconstructing hid-
den emails based on a bulletized email model (Step 4&5).

HiddenEmailFinder summarizes our framework of recon-
tructing hidden emails. Due to the lack of space, the details
of the framework, e.g., formal definitions, theorems and al-
gorithms, can be found in [1], and are not discussed here. In
the following we only briefly introduce it by one example.

E 1

Subject: Re: Midterm Details

> a) I need to meet with a

> c) Warren and Qiang, can

No problem.

Do they need to sign on the list?

− Warren

> faculty recruit.

> you go SOWK directly?

> f) I will bring classlists.

Subject: Re: Midterm Details

> a) I need to meet with a

> e) The exam takes 48 minutes.

Do we have a seating plan

as last term?

Kevin

> faculty recruit.

> f) I will bring classlists.

Subject: Re: Midterm Details

> a) I need to meet with a

Sure.

I can help you carry it.

Is there a seating plan?

Don

> faculty recruit.

> b) Don, can you go LSK directly?

> d) I will bring the exams with me.

> f) I will bring classlists.

> b) Don, can you go LSK directly?

Don, I�’ll go with you too.

E E 32

(a) Folder MF

> a

> d

> f

> b
... ...

... ...

> a
> b

> e
> f

... ...

d e

a

b

f

c

a
* b
 > d
 > e
* c
f

> a

> f

> c
... ...

(b) The precedence graph and the hidden email

Figure 2: Example for HiddenEmailFinder

Figure 2(a) shows a folder MF containing three emails
E1, E2, E3, each of which quotes from the same hidden email
which is absent from MF . In Step 1 of HiddenEmailFinder,
we extract the quoted fragments of every email in MF .
For the ease of representation we use the first item num-
ber in each fragment to represent it. For example, E1 has
two quoted fragments [ac], [f], and the rest are non-quoted
fragments. In Step 2, for each quoted fragment F we need
to identify whether or not it is a hidden fragment. In or-
der to adapt to the complications of quoted fragments, e.g.,
deletion, insertion and forwarded messages, we use Longest
Common Substring (LCS) to identify a match (more details
are given in Section 4.2). Let τ represent the LCS of two
fragments F, F ′, where F ′ is a non-quoted fragment. Hence,
F = [F1; τ ;F2], F

′ = [F ′
1; τ ; F ′

2]. If τ is longer than a given
threshold minLen, τ is not considered as a hidden fragment
and is removed from F . F is replaced by F1 and F2. In this
example, if we set minLen to 10, the only hidden fragments
identified at the end of Step 2 are: [ac], [f], [ab], [d] and [ef].

Since multiple emails may quote the same hidden email,
we need to group hidden fragments quoting the same hidden
email and piece them together in an appropriate order. In
Step 3, we build a precedence graph to achieve this goal. We
assume that if the overlapping of two hidden fragments is
sufficiently long, the fragments originate from the same hid-
den email. Similar to Step 2, let τ represent the LCS of two
hidden fragments F, F ′ and F = [F1; τ ; F2], F

′ = [F ′
1; τ ;F ′

2].

If τ is longer than minLen, i.e., F and F ′ overlap long
enough, F and F ′ are replaced by new hidden fragments
{F1, F2, F

′
1, F

′
2, τ}. For example, when we compare hidden

fragments [ac] with [ab], [ab] is replaced by two hidden frag-
ments [a] and [b] and similarly [ac] is replaced by [a] and
[c]. In this way, we end up with 6 distinct hidden fragments,
[a], [b], [c], [d], [e], [f], in Step 3.

Next, we build a precedence graph G = (V, E) as follows.
Each node in V represents a distinct hidden fragment and
each edge (F, F ′) ∈ E shows that there exists at least one
email M containing both F and F ′ in the same textual order.
Figure 2(b) shows the precedence graph built for the hidden
fragments in Figure 2(a).

In Step 4, the graph is decomposed into its weakly con-
nected components (only one in the example). Because a
user can quote emails freely and arbitrarily, each compo-
nent is not guaranteed to be a simple chain of nodes. As
shown in Figure 2(b), the textual ordering of b&c and d&e
is undetermined. We call such nodes incompatible nodes. In
order to reconstruct and display the hidden email, we need
to represent those partial ordering.

However, users usually read a document sequentially and
are not accustomed to reading graphical representations of
document fragments. We propose the bulletized email model
to solve this problem. We use bullets to represent incom-
patible nodes and offsets to represent nested relationships
among bulletized items. Figure 2(b) shows the bulletized
email reconstructed in Step 5. In the regenerated hidden
email, fragments [b], [c] and [d], [e] are bulletized to repre-
sent the partial ordering between them respectively. [d], [e]
are also indented with offsets which show that [b] precedes
both [d] and [e].

In [1], we give precise conditions under which a weakly
connected precedence graph can be exactly represented by
one bulletized email. Moreover, we also give heuristics to
deal with situations in which those conditions are not satis-
fied.

4. OPTIMIZATIONS FOR LARGE FOLD-
ERS AND LONG EMAILS

Even though HiddenEmailFinder delivers all the required
functionalities, a preliminary experimental evaluation re-
vealed two bottlenecks in the hidden fragment identification
steps (Step 2 in Figure 1) when dealing with large folders
and long emails. The first bottleneck is due to the large
number of matches that may need to be performed between
quoted fragments and other emails in the folders, while the
second bottleneck is due to how efficiently LCS matching
is performed (as discussed in Section 3.1 in [1]). Below we
describe two optimizations to overcome these bottlenecks.

4.1 Email Filtering by Indexing
Step 2 of HiddenEmailFinder requires that a quoted frag-

ment F be matched against every single email M in the
primary folder MF , as well as with every email in the refer-
ence folders RF1, . . . , RFk. The reference folders are useful
because a fragment may be hidden from MF simply because
the user filed the original email into another folder.

The matching in Step 2 stops when either a match is found
(in which case the quoted fragment F is not a hidden frag-
ment), or a match is not found anywhere (in which case F is
considered hidden). When the folders are small, a straight-

Algorithm EmailFiltering

Input: a word index, a frequent word list FW , a quoted fragment F

Output: a list of email ids possibly matching F

1. Tokenize F to a set of words w, and remove all the stop-words.

2. For each w not in the list FW , use the word index to identify
Lw.

3. Return the unioned list, i.e., ∪w∈F∧w 6∈F W Lw.

Figure 3: A Skeleton of Algorithm EmailFiltering

forward string comparison is acceptable. But this does not
scale up to large folders.

The first optimization is to use a word index. Each in-
dex entry is of the form: 〈w, Lw〉, where w is a word in
the email corpus, and Lw is a list of ids of emails contain-
ing at least one occurrence of w. For example, the word
“available” may have the following entry in the word index:
〈available, 〈id = 17, id = 278〉〉. Like information retrieval
systems, the word index does not contain high frequency
closed-class terms (i.e., stop-words) such as the definite ar-
ticle “the”. In general, the index is created by one complete
pass over all the emails in the corpus.

Given the word index and a quoted fragment F to be
matched, the quoted fragment is first tokenized to words
with all the stop-words removed. Then for each word w,
the word index is used to return the list Lw. To support
LCS matching between a quoted fragment and an email, a
match is allowed even if not all the words are found in the
email. Thus, we take the union of the lists, i.e., ∪w∈F Lw.
This filtering process guarantees no false dismissals in the
sense that only emails in the unioned list can ever match F
(unless F is made up of stop-words only!).

Figure 3 shows a skeleton of this process. It incorporates
an additional optimization to reduce the size of the unioned
list ∪w∈F Lw . Specifically, it further excludes the most fre-
quent open-class words (i.e., non-stop-words) in the corpus.
Hereafter, we denote this list of words as FW . By doing so,
we only obtain the unioned list ∪w∈F∧w 6∈F W Lw. We define
the length of FW as frequent word threshold ft, i.e., the top-
ft most frequent words are kept in FW . In Section 5.4, we
show that the choice of frequent word threshold has a great
impact on the runtime.

4.2 LCS-Anchoring by Indexing
Let us now review the role of LCS in Step 2 of algorithm

HiddenEmailFinder. Suppose that the original email is a
sequence of fragments OM = 〈F1, F2 . . . , F5〉. When the
user quotes this email, the user might perform various ac-
tions to this sequence, as she can edit the fragments as
free text. She can quote the exact sequence verbatim; or
she can delete the beginning and/or the end parts (e.g.,
QF1 = 〈F2, F3, F4〉). In a more sophisticated setting, she
may quote QF2 = 〈F2, F4〉 to reduce the length. Further-
more, she may copy another fragment F6 from another email
to form QF3 = 〈F2, F6, F4〉.

So given a quoted fragment, the task is to match it against
other emails. In the case of QF1, a simple substring search-
ing is sufficient to determine that QF1 originates from OM .
However, substring searching is not able to handle QF2

and QF3. In contrast, LCS matching can correctly handle
QF1, QF2 and QF3. Here the question is whether a simple
substring matching is sufficient for real data. In our ex-
perimentation with the Enron dataset, we find that many
quoted fragments contain quotations from more than one

Algorithm LCS-Anchoring

Input: the word index, the frequent word list FW , a quoted fragment
F , and an email M

Output: the LCS between F and M

1. Tokenize F to a set of words w, removing the stop-words and
keeping only those not in FW .

2. If M does not appear in any of the lists Lw for all the remaining
w’s, return the empty string.

3. Otherwise, for each such w,
(a) for each anchor position posi

i. Align w at posi in M and F .

ii. Expand the matched substring forward and back-
ward as much as possible.

4. Return the longest matched substring in the nested loop.

Figure 4: A Skeleton of Algorithm LCS-Anchoring

email. Thus, to maximize the robustness of HiddenEmail-
Finder, it is necessary to use LCS.

The problem with LCS is that its complexity is quadratic
in the length of the fragment and the email. For long emails
and/or quotations, implementing LCS naively is not scal-
able. We propose to extend the word index from the email
filtering step to tackle this problem. In particular, for each
email in the list Lw, we also record the positions at which
the word w occurs in the corresponding email, i.e., each en-
try in Lw is of the form 〈id, {pos1, . . . , posk}〉. For example,
the word “available” may have the following index entry:
〈available, 〈〈id = 17, pos = {89, 3475}〉, 〈id = 278, pos =
{190, 345, 3805}〉〉〉.

Then given a quoted fragment F , as before, F is tok-
enized to words. For each word w, and each email M in
Lw , we can use the list {pos1, . . . , posk} as “anchors” to fa-
cilitate the matching between F and M . For example, let
us say that F contains the word “available.” Then position
89 in email 17 is used as an anchor to match up the word
“available” in F and email 17. By expanding forward and
backward from the anchor position as much as possible, the
longest common substring with respect to the anchor posi-
tion is formed. Similar anchoring and expansion occurs at
position 3475 in email 17, and the three specified positions
in email 278. If the quoted fragment is tokenized to multi-
ple words, the above process is conducted for each word w,
and the longest common substring is picked. Figure 4 gives
a skeleton of this optimization step called LCS-anchoring.
This optimization is intended to be used in Step 2 of Hid-
denEmailFinder. It can also be used in Step 3 to optimize
the identification of possible overlaps between hidden frag-
ments.

5. THE ENRON CASE STUDY

5.1 The Data and the Setup
The Enron email dataset was made public by the US Fed-

eral Energy Regulatory Commission during the ex-Enron
investigation. A detailed description can be found at www-
2.cs.cmu.edu/˜enron. To the best of our knowledge, this is
the largest public accessible email dataset. This dataset con-
tains about half a million messages belonging to 150 users
and 3500 folders with all attachments deleted. Many analy-
ses and preprocessing studies have been done on the Enron
dataset. For example, the SIAM’05 Workshop on Link Anal-
ysis, Spam Detection and Anti-terrorism published several
indexes of the Enron dataset. In our experiments, we use

their word indexes instead of building our own. The word
index contains 160,203 unique words. Recall that whenever
we refer to a frequent word threshold (ft), we mean that
the top-ft words are considered too frequent to be used in
EmailFiltering or LCS-Anchoring. Below we vary ft from
1000 to 80,000, corresponding to about 0.6% and 50% re-
spectively.

For most of the results reported below, we focus on the
inbox folders of the users. Of the 150 users, 137 have an
inbox folder. The number of emails in those folders ranges
from 3 to 1466. The average and median number of emails
are 327 and 223 respectively.

5.2 Prevalence of Hidden Fragments
For each user in the Enron dataset, we identify all the

hidden fragments in the inbox folder. Figure 5(a) shows the
number of emails that contains at least one hidden fragment.
Due to lack of space, we only show the largest 50 inbox
folders sorted by ascending folder size (ranging from 338 to
1466 emails). As can be seen from this figure, there are 5
inbox folders with more than 300 emails containing at least
one hidden fragment.

While Figure 5(a) shows the absolute values, Figure 5(b)
displays the percentage of emails containing at least one
hidden fragment (i.e., relative to the folder size). Because
percentages may not make sense for small folders, we exclude
folders with less than 50 emails. The x-axis of the graph
shows the percentage, ranging from 0% to 60%. The y-axis
shows the number of users with the given percentage. It is
interesting to see that about half of the users are within the
range of 15% to 30%.

The reader may wonder whether hidden fragments just
represent a phenomenon of the user being diligent in filing
her emails into an appropriate folder. To examine this effect,
we check other folders of the same user. Hereafter, we refer
to a hidden fragment as “global” if it is a fragment that
cannot be found in all the folders of the user. We refer
to a hidden fragment as “local” if it is a hidden fragment
within the (inbox) folder, but is otherwise found in some
other folder of the user. Let us denote the numbers of global
and local hidden fragments by ng and nl respectively. We
define the recollection rate as the ratio of nl/(nl +ng). That
is to say, the closer the ratio is to 1, the smaller is the number
of global hidden fragments.

Figure 5(c) shows a histogram of the recollection rates for
all the users. It is interesting to see that most users have
a recollection rate of less than 15%. That is to say, there
is less than 15% of hidden fragments that can be found in
the other folders of the user. Thus, hidden fragments do
not seem to be simply a phenomenon of the user filing the
emails to other folders; they are truly missing from the user’s
folders.

While it is clear that hidden fragments are prevalent in
the Enron corpus, the immediate question here is how gen-
eral this phenomenon is for a “typical” real user. Let us
review how the Enron dataset was prepared. As reported
in [3], emails were deliberately deleted from the first pub-
lished version of the Enron dataset on the users’ request for
privacy and redaction purposes. It is estimated that about
8% of the emails were deleted to form the current version.
Consider the following two aspects:

• First, the deleted emails are believed to be more per-
sonal in nature. It is reasonable to assume that they

0

100

200

300

400

500

600

user folder(sorted by the folder size)

of

 e
m

ai
ls

 c
on

ta
in

in
g

hi
dd

en
 fr

ag
m

en
ts

of emails containing hidden fragments

(a) Emails with hidden fragments

0 10 20 30 40 50 60
0

5

10

15

20

25

percentage of emails containing hidden fragments (%)

nu
m

be
r o

f u
se

rs

(b) % of emails w/hidden fragments

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

recollection rate(%)

nu
m

be
r o

f u
se

rs

(c) Recolletion rates

Figure 5: Prevalence of Hidden Emails

were less likely to be quoted in many Enron business
emails.

• Second, as will be discussed later in Section 5.3, the av-
erage number of reconstructed hidden emails per user
is about 60. Given that the average inbox folder size is
327 emails, if the 8% of the deleted emails were evenly
distributed in the inbox folder of each user, this would
correspond to 26 emails in the folder. The gap between
26 and 60 is significant.

The question of whether hidden fragments are prevalent
in a typical user’s folder is hard to be answered definitively.
But for the two reasons discussed above, the abundance of
(global) hidden fragments we found in the Enron corpus may
well generalize to other real datasets.

There is actually another interesting point to make here.
Emails were deleted partly to protect privacy. However,
some of these deleted emails may be recoverable from emails
in other folders. Thus, if there is an initial set of emails
to be protected, the framework that we develop here can
help to strengthen the protection by identifying other emails
quoting the initial set.

5.3 Robustness
A key parameter in HiddenEmailFinder(Step 2&3) is the

the choice of minLen, the threshold for considering an over-
lap significant in identifying hidden fragments and in creat-
ing the precedence graph. A larger minLen can avoid in-
correct matching of common sentences and quotations, and
hence the resulting precedence graph is less connected. On
the other hand, it may also miss short quotations, and cre-
ate more hidden fragments. The following table shows the
average and median number of reconstructed hidden emails
with respect to minLen across all the inbox folders. As
minLen increases from 40 to 160, there is only a very slight
increase in the number of reconstructed hidden emails. This
shows that our algorithmic framework is stable with respect
to the choice of minLen.

minLen 40 60 80 100 120 160

average 61.5 63.5 64.8 65.4 65.8 66.6
median 38 38.5 40 40 41 41

Recall from Step 3 of HiddenEmailFinder that when we
build the precedence graph, if two hidden fragments overlap
sufficiently, we assume that they quote the same original
message. However, this may include some false positives by
some common phrases contained in two unrelated emails.

One significant example is the usage of signature files of
users, public email systems, etc. In the Enron dataset, there
is also the copyright claim. We need to avoid such cases to
be counted as overlap in the generation of the precedence
graph.

One solution is to automatically identify and exclude sig-
nature files and copyright claims before matching quoted
fragments. This is itself a research problem [2]. In our ex-
perimentation, we did manual detection on the Enron users
and recognized that a large majority of the signature files
and copyright claims were enclosed in two identical lines of
asterisks. Thus, we programmed a simple regular expression
filter to remove all such matches. They were excluded from
all the results reported here.

5.4 Effectiveness of Optimizations
The intent is to observe the tradeoff between runtime effi-

ciency and output quality. We design our experiments in the
following way. In the first round of experiments, we only ap-
ply the heuristic of EmailFiltering and change the frequent
word threshold (ft). We vary ft from 500 to 80,000. In the
second round of experiments, we apply both EmailFiltering
and LCS-Anchoring. For both rounds, we record the run-
time and the number of reconstructed hidden emails for all
the inbox folders.

Figure 6(a) shows the median runtime performance. The
x-axis is drawn in log scale of the frequent word threshold
ft. Let us first focus on the curve applying only the Email-
Filtering algorithm. The basic, unoptimized version of Hid-
denEmailFinder corresponds to the case when ft = 0. The
median runtime for this case is about 10 minutes, which
is not shown in this figure. As the value of ft increases,
the runtime improves by as much as 2 orders of magnitude,
down to less than 10 seconds for ft = 10, 000.

The second curve in Figure 6(a) shows the additional gain
in efficiency when LCS-Anchoring is applied on top of Email-
Filtering. The gap between the two curves shows that there
is a definite bonus in applying LCS-Anchoring. The gain be-
comes smaller as ft increases because EmailFiltering alone
has already eliminated a lot of emails required for matching,
thereby reducing the number of times that LCS-Anchoring
is performed.

The question is whether the significant gain in efficiency
is achieved through reduced quality. Figure 6(b) shows that
the number of reconstructed hidden emails when ft changes
from 1000 to 80,000. As ft increases from 1000 to 80,000,
the number of reconstructed hidden emails increases very
slightly, reflecting the reduced connectivity of the prece-

0

20

40

60

80

100

120

140

1000 10000 100000

frequent word threshold (in log scale)

ru
n

tim
e

(s
e

c)
median: EmailFiltering

median: EmailFiltering + LCS-Anchoring

(a) Runtime

0

5

10

15

20

25

30

35

40

45

50

1000 10000 100000

frequent word threshold (in log scale)

#
 o

f
re

co
lle

ct
e

d
 h

id
d

e
n

 e
m

a
ils

median: EmailFiltering + LCS-Anchoring
median: EmailFiltering

(b) Reconstructed hidden emails

0

200

400

600

800

1000

1200

1400

1600

1800

1000 10000 100000

frequent word threshold (in logscale)

ru
n
tim

e
 (

se
c)

median: EmailFiltering

median: EmailFiltering + LCS-Anchoring

(c) Top-10 largest folders

Figure 6: Effectiveness of Optimizations

dence graph. Given that the two curves in Figure 6(b) al-
most completely coincide, it is clear that both EmailFilter-
ing and LCS-Anchoring can bring about a gain in efficiency
without causing a degradation in the output quality.

Figure 6(a) does not include the average runtime because
there is a large discrepancy between folders on how long
it takes to process them. Figure 6(c) shows the extreme
case of the top-10 largest folders. Among these top-10 fold-
ers, the median folder contains 1,152 emails, with 37 emails
each longer than 1,000 words. Large folders and long emails
take significantly more time than the smaller ones. The
two curves in the figure show the median runtime across
the 10 folders when EmailFiltering alone and when Email-
Filtering and LCS-Anchoring are applied. Like in Figure
6(a), it is clear that both techniques are effective. But un-
like in Figure 6(a), this time the gap is far more significant
when LCS-Anchoring is applied. This convincingly shows
the importance of LCS-Anchoring for long emails and large
folders.

6. CONCLUSION
This paper studies the problem of reconstructing hidden

emails using the embedded quotations found in messages
further down the thread hierarchy. We optimize the basic
HiddenEmailFinder algorithm to deal with large folders and
long emails. The two optimizations are based on word index-
ing to reduce the number of emails that need to be matched
and to reduce the amount of effort required to find the LCS
between the fragment and the email under consideration.
As a side benefit, given an initial set of emails to be pro-
tected, HiddenEmailFinder may be used to strengthen the
protection by identifying other emails quoting the initial set.

Another key contribution of this paper is the Enron case
study. From our experimentation, many valuable lessons are
learned. First, we observe that global hidden fragments are
prevalent in the Enron corpus. This prevalence may well
generalize to other real datasets. Second, we show that our
framework is robust in dealing with real folders. Last but
not least, we show that both the EmailFiltering and the
LCS-Anchoring techniques are effective in providing scala-
bility to large folders and long emails.

Our future plans include applying natural language under-
standing techniques to make even more intelligent decisions
about piecing fragments together and representing them to
the user. This work is an integral part of a larger project on
text mining. The goal is to help users better manage their
emails. We plan to develop email summarization and clas-
sification tools. These tools will be based on various kinds

of graphs extracted from the emails, in a style similar to the
precedence graph that HiddenEmailFinder generates.

7. REFERENCES
[1] Giuseppe Carenini, Raymond Ng, Xiaodong Zhou

and Ed Zwart. Discovery and Regeneration of
Hidden Emails. ACM Symposium on Applied
Computing(SAC), Santa Fe, New Mexico, USA,
March, 2005, pp. 503–510.

[2] Vitor R. Carvalho and William W. Cohen. Learning
to Extract Signature and Reply Lines from Email.
First Conferences on Emails and Anti-spam,
Mountain View, CA, USA, July, 2004.

[3] US Federal Energy Regulatory Commission.
http://www.ferc.gov/industries/electric/indus-act/
wem/pa02-2/info-release.asp

[4] Gwizdka, J, Chignell. M.H. Individual Differences
and Task-based User Interface Evaluation: A Case
Study of Pending Tasks in Email. Interacting with
Computers, Elsevier Science, Minneapolis,
Minnesota, USA , 2004, v.16(4) pp. 550–551.

[5] Bryan Klimt and Yiming Yang. The Enron corpus: a
new dataset for email classification research.
European Conference on Machine Learning (ECML),
Italy, 2004, pp. 217–226.

[6] Derek Lam, Steven L. Rohall, Chris Schmandt and
Mia K. Stern. Exploiting E-mail structure to improve
summarization. CSCW’02 Poster Session, New
Orleans, Louisiana, United States, 2002,

[7] Ani Nenkova and Amit Bagga. Email classification
for contact centers. ACM Symposium on Applied
Computing(SAC), Melbourne, Florida, 2003, pp.
789–792.

[8] Paula S. Newman. Exploring discussion lists: steps
and directions. Proceedings of the second
ACM/IEEE-CS joint conference on Digital libraries,
Portland, Oregon, USA, 2002, pp. 126–134.

[9] Steven L. Rohall. Reinventing email. CSCW’02
Workshop: Redesigning email for the 21st centry,
Portland, Oregon, USA, November, 2002.

[10] Kulesh Shanmugasundaram and Nasir D. Memon.
Automatic Reassembly of Document Fragments via
Context Based Statistical Models ACSAC, 2003, pp.
152–159.

