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Abstract— The estimation of static parameters in general non-linear
non-Gaussian state-space models is a long-standing problem. This is
despite the advent of Sequential Monte Carlo (SMC, aka particle
filters) methods, which provide very good approximations tothe optimal
filter under weak assumptions. Several algorithms based on SMC have
been proposed in the past 10 years to solve the static parameter
problem. However all the algorithms we are aware of suffer from the
so-called ‘degeneracy problem’. We propose here a methodology for
point estimation of static parameters which does not sufferfrom this
problem. Our methods take advantage of the fact that many state
space models of interest are ergodic and stationary: this allows us
to propose contrast functions for the static parameter which can be
consistently estimated and optimised using simulation-based methods.
Several types of contrast functions are possible but we focus here on
the average of a so-called pseudo-likelihood which we maximize using
on-line Expectation-Maximization type algorithms. In its basic form the
algorithm requires the expression of the invariant distribution of the
underlying state process. When the invariant distribution is unknown,
we present an alternative which relies on indirect inference techniques.

I. I NTRODUCTION

This paper is concerned with the on-line estimation of static
parameters in non-linear non-Gaussian state-space models. More
precisely, we consider models of the following form. For any
parameterθ ∈ Θ, the hidden/latent state process{Xn;n ≥ 1} ⊂
XN is a stationary and ergodicMarkov process, characterized by
its Markov transition probability distributionfθ (x′|x) admitting
πθ as invariant distribution,i.e. X1 ∼ πθ and forn ≥ 1,

Xn+1| (Xn = x) ∼ fθ ( ·|x) . (1)

Note that the assumptionX1 ∼ πθ is not restrictive under the er-
godicity assumption, and will furthermore simplify the presentation
of our methodology. As indicated by its name{Xn} is observed,
not directly, but through another process{Yn;n ≥ 1} ⊂ YN. The
observations are assumed to be conditionally independent given
{Xn}, and their common marginal probability distribution is of
the formgθ (y|x) ; i.e. for 1 ≤ n ≤ m,

Yn| (X1, . . . , Xn = x, . . . , Xm) ∼ gθ ( ·|x) . (2)

We give here a couple of standard examples used throughout this
paper.

Example 1. Linear Gaussian model

Xn+1 = φXn + σvVn+1, Vn
i.i.d.
∼ N (0, 1) ,

Yn = Xn + σwWn, Wn
i.i.d.
∼ N (0, 1) ,

whereΘ = (−1, 1)×R
+×R

+, θ =
(
φ, σ2

v, σ
2
w

)
denotes the static

parameter vector andN
(
x;µ, σ2

)
is the normal distribution with

argumentx, meanµ and varianceσ2. It can easily be checked
that πθ (x) = N

(
x;

σ2
v

1−φ2

)
, fθ (x′|x) = N

(
x′;φx, σ2

v

)
and

gθ (y|x) = N
(
y;x, σ2

w

)
.

Example 2. Stochastic volatility model[10]

Xn+1 = φXn + σvVn+1, Yn = β exp (Xn/2)Wn,

where Θ = (−1, 1) × R
+ × R

+ and θ =
(
φ, σ2

v, β
2
)

denotes
the static parameter vector. The transition probabilityfθ (x′|x) and
invariant distributionπθ (x) are identical to those of the previous
example but heregθ (y|x) = N

(
y; 0, β2 exp (x)

)
.

When the static parameterθ is known, sequential inference on
the process{Xn} is typically based on the sequence of joint
posterior distributions{pθ (x1:n|Y1:n)} which each summarizes all
the information collected aboutX1:n up to timen. Optimal filtering
is concerned with the sequential estimation of these distributions,
which can be - at least conceptually - easily achieved using the
following updating formula forn ≥ 2

pθ (x1:n|Y1:n) =
gθ (Yn|xn) fθ (xn|xn−1)

pθ (Yn|Y1:n−1)
pθ (x1:n−1|Y1:n−1) ,

(3)
and pθ (x1|Y1) ∝ gθ (Y1|x1)πθ (x1). Although simple, the recur-
sion formula in Eq. (3) rarely admits a closed form expression:
this is typically the case as soon asfθ or gθ are non-Gaussian,
or X is not a finite set. In such scenarios it is possible to
resort to numerical approximations. One such class of numerical
algorithms are Sequential Monte Carlo (SMC) methods (aka par-
ticle filters), which have recently proved to be efficient tools to
propagate sample approximations of these distributions’ marginals
{pθ (xn−L+1:n|Y1:n)} in time for a given integerL > 0 [5]. This
methodology is now well developed and the theory supporting this
approach is also well established [4].

We focus in this paper on the on-line estimation of the static
parameterθ. More precisely, assuming that there is a true parameter
valueθ∗ generating the data{Yn}, and that this value is unknown,
our aim is to compute point estimates ofθ∗ from {Yn} in an on-line
manner. This problem appears in numerous applications. First, in
most real-world scenariosθ∗ is indeed unknown and its estimation
is required before optimal filtering can be performed. Second, on-
line estimation is often the only realistic solution when the amount
of data to be processed is large. Although apparently simpler
than the optimal filtering problem, the static parameter estimation
problem has proved to be much more difficult; no closed form
solutions are, in general, available, even for linear Gaussian and
finite state-space hidden Markov models. There have already been
numerous attempts to solve it in control, signal processing, statistics
and related fields;e.g. [6], [7], [13]. However it remains largely
unsolved despite the possibilities offered by SMC techniques. We
propose here a general and principled methodology which allows
us to compute asymptotically consistent point estimates ofθ∗ for
a large class of dynamic models. Our approach is essentially based
upon the on-line maximization of a pseudo-likelihood function for
which Monte Carlo simulations might be needed. However, we
would like to stress at this point that the methodology developed
here does not necessarily require the use of such computationally
intensive approaches when more direct and simpler simulation
techniques are possible.



II. SMC METHODS FORSTATIC PARAMETER ESTIMATION

It is not our aim here to review SMC methods in details, but
simply to point out their intrinsic limitations which have funda-
mental practical consequences for the static parameter estimation
problem. Assuming that the static parameterθ is fixed for the time
being, we describe the simplest SMC algorithm available to approx-
imate{pθ (x1:n|Y1:n)} sequentially. More elaborate algorithms are
reviewed in [5], but crucially all such SMC algorithms suffer from
a common problem, namelypath degeneracy, as explained below.

A. Sampling Importance Resampling

Assume that at timen− 1, a collection ofN (N ≫ 1) random
samples{X̂(i)

1:n−1, i = 1, . . . , N}, called particles, distributed
approximately according topθ (x1:n−1|Y1:n−1) is available. The
empirical distribution

p̂N
θ (dx1:n−1|Y1:n−1) =

1

N

N∑

i=1

δ
X̂

(i)
1:n−1

(dx1:n−1) (4)

is an approximation ofpθ (dx1:n−1|Y1:n−1), whereδx0 (dx) rep-
resents the Dirac delta mass function located inx0. Now at timen,
we wish to produceN particles which will define an approximation
p̂N

θ (dx1:n|Y1:n) of pθ (dx1:n|Y1:n). A simple method to achieve
this consists of settingX̃(i)

1:n−1 = X̂
(i)
1:n−1 and then sample, for

example,X̃(i)
n ∼ fθ( ·| X̃

(i)
n−1). The resulting empirical distribution

of the particles{X̃(i)
1:n} is an approximation of the joint density

p (x1:n−1|Y1:n−1) fθ (xn|xn−1). We correct for the discrepancy
between this density and the targetpθ (x1:n|Y1:n) using importance
sampling. This yields the following approximation ofp (x1:n|Y1:n)

p̃N
θ (dx1:n|Y1:n) =

N∑

i=1

W (i)
n δ

X̃
(i)
1:n

(dx1:n) , (5)

whereW (i)
n ∝ gθ(Yn|X̃

(i)
n ) and

∑N
i=1W

(i)
n = 1.

To obtain an unweighted approximation ofp (x1:n|Y1:n) of the
form (4), we resample particles{X̃(i)

1:n} according to probabilities
proportional to their weights{W (i)

n }. The underlying idea is to get
rid of particles with small weights and multiply particles which are
in the regions with high probability masses; see [5].

B. Limitations of SMC Methods

Under relatively weak assumptions onfθ and gθ, it can be
proved that the resulting set of empirical posterior distributions{
p̂N

θ (dx1:n|Y1:n)
}

converge towards the true posteriors asN goes
to infinity. More precisely, it can easily be shown that for anyn ≥ 1
and any bounded test functionϕn : Xn → R there exists some
constantCθ,n (ϕn) <∞ such that for anyN ≥ 1

E

[(∫

Xn

ϕn (x1:n) ǫNθ (dx1:n|Y1:n)

)2
]
≤
Cθ,n (ϕn)

N
, (6)

where ǫNθ := pθ − p̂N
θ and the expectation is with respect to the

particle realizations, see [4]. Although at first sight reassuring, (6)
is practically useless since the boundCθ,n (ϕn) typically grows
polynomially or exponentially withn, and reflects a fundamental
weakness of SMC methods: with limited resources,i.e. N fixed
and finite, it is not possible to approximate properly the sequence
of distributions{pθ (x1:n|Y1:n)} .

We now illustrate, with a toy example, the underlying phe-
nomenon which explains the growth of{Cθ,n (ϕn)}. The tree in
Fig. 1 represents a realization of the paths{X̂(i)

1:n} of N = 8
particles up to timen = 8 for a system for which the state
space isX = {−5,−4, . . . , 0, 1, . . . , 5}. The numbers at each node

represent the number of particles that effectively pass through it.
This realization of the particle process is representative of what
is generally observed in more complex scenarios: the paths tend
to coalesce as we follow the paths backward in time. As a result,
whereas{X̂(i)

8 } and{X̂(i)
7 } provide a good coverage ofX, which

will result in a good representation ofp (x8|Y1:8) andp (x7|Y1:8),
the sample representation deteriorates as we go back in time,
resulting in poor sample approximations ofp (x1:4|Y1:8), i.e. even
if the truep (x1:4|Y1:8) is not degenerate, the sample representation
is degenerate. This coalescence phenomenon is the result of the
resampling stage and has long been observed. As we shall see, this
inability of SMC methods to satisfactorily approximate (i.e. with a
constant computational budget per iteration) the sequence of joint
distributions{pθ (x1:n|Y1:n)} makes SMC-based on-line parameter
estimation algorithms inappropriate.

The success of SMC methods lies in the fact that results of
the following form can be obtained under the relatively general
assumptions detailed in [4]. LetL > 0 be an integer and let
ϕL : XL → R be a bounded test function, then there exists some
constantDθ,L (ϕL) <∞ such that for anyn ≥ 1,

E

[(∫

XL

ϕL (xn−L+1:n) ǫNθ (dxn−L+1:n|Y1:n)

)2
]
≤
Dθ,L (ϕL)

N
.

(7)
In summary, for a fixed computational budget per time instant, SMC
methods cannot properly approximate joint distributions sequences
of the form {pθ (x1:n|Y1:n)} sequentially in time because of the
paths’ coalescence phenomenon: as we shall see this is what makes
the direct application of SMC techniques inappropriate for static pa-
rameter inference. However, under ergodic assumptions, for a given
lag L > 0, SMC methods can consistently approximate sequences
of distributions{pθ (xn−L+1:n|Y1:n)} for a fixed numberN of
particles: this is the type of property that we shall use in this paper
in order to perform consistent on-line static parameter estimation.
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Fig. 1. Realistic sequential methods suffer from path degeneracy.

C. Difficulties with Static Parameters

Various strategies have been proposed in order to deal with static
parameter in an SMC context. These methods are reviewer in the
extended version of this paper, and we focus here on a popular
method where one sets a prior onθ and SMC is used to estimate
the joint posteriorp (θ, x1:n|Y1:n) . Diversity among particles in
the parameter space is introduced using MCMC steps of invariant
distributions p (θ|Y1:n, x1:n). This is certainly one of the most
elegant method, as the model of interest is not artificially altered.
This algorithm takes a simple form whenp (Y1:n|x1:n, θ) can be
summarized by a set of low-dimensional sufficient statistics [1],
[6], [7]. However, as noticed in [1] and in light of the limitations
of SMC methods outlined previously, this approach is inefficient.
This is demonstrated by the following example.



Example 1 Linear Gaussian model(cont.). For the sake of
simplicity, we set a uniform prior distribution on the stability
domain (−1, 1) for φ and we assume thatX1 ∼ N

(
0, σ2

0

)

for someσ2
0 > 0. In this case, the full conditional distribution

p (φ|Y1:n, x1:n) is a truncated Gaussian distribution restricted to
(−1, 1) with meanmn and varianceσ2

n given by

mn = σ2
n

(
n∑

k=2

xkxk−1

)
andσ−2

n =

n−1∑

k=1

x2
k ,

The problem with this approach is that the SMC estimates of
the sufficient statistics necessary to perform the MCMC updates
degrade asn increases because they are based on the approx-
imation of the joint distributionpφ∗

(x1:n|Y1:n). For the ideal
case whereφ = φ∗ = 0.5 we present in Figure 2 the quan-
tity n−1∑n

k=1 E
[
X2

k

∣∣ Y1:n

]
computed exactly using the Kalman

smoother and estimated using an SMC method. Initially the SMC
estimate displays good performance but, as expected, performs
very poorly asn increases: this stems from the fact that the joint
distributions{pφ∗ (x1:n|Y1:n)} cannot be consistently estimated
over time, as pointed out earlier. In Figure 2, we display the
parameter estimate obtained using the SMC algorithm coupled with
Gibbs sampling updates. We see that at first the parameter seems
to converge towards the correct region but then drifts away as the
sufficient statistics used in the MCMC update are not properly
estimated. A similar problem occurs with the method proposed in
[13] since it is also based on such sufficient statistics.
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Fig. 2. Top: sufficient statistics computed exactly through the Kalman
filter (solid line) and the SMC algorithm (dotted line). Bottom: parameter
estimated using SMC methods combined with Gibbs steps

III. POINT ESTIMATION METHODS

We present here an alternative strategy to the static parameter
estimation problem, which aims to give point estimates ofθ∗ rather
than a series of estimates of the posterior distributions{p(θ|Y1:n)}.
As a result no particle method is required in the parameter space,
and it should also be pointed out that particle methods in the state
spaceX are also not always necessary. The most natural approach
to point estimation for the parameterθ∗ consists of recursively
maximizing the series of likelihoods{p(Y1:n|θ)}. We start this
section with a discussion in which we highlight the difficulties
associated with this type of strategy and this leads us to instead
focus on a pseudo-likelihood approach which is well suited to
Monte Carlo approximations. We then go on to develop efficient
algorithms for maximizing the pseudo likelihood recursively. We
first describe a gradient algorithm in brief, and then focus mainly
on on-line EM (Expectation-Maximization) type algorithms which
benefit from numerical stability.

A. Likelihood and Pseudo-Likelihood Functions

The log likelihood function corresponding to model (1)-
(2) is given, for n ≥ 1 observations bylog pθ (Y1:n) =∑n

k=1 log pθ (Yk|Y1:k−1) with the conventionY1:0 = ∅ and
where

pθ (Yk|Y1:k−1) =

∫

X

gθ (Yk|xk) pθ (xk|Y1:k−1) dxk .

Under regularity assumptions, it can be shown that the average log-
likelihood satisfies the following ergodicity property

limn→∞ n−1 log pθ (Y1:n) = l (θ) ,
l (θ) :=

∫
Y×P(X)

log
(∫

X
gθ (y|x)µ (dx)

)
λθ,θ∗ (dy, dµ) ,

whereP (X) is the set of probability distributions defined onX.
In this expressionλθ,θ∗ is the invariant distribution of the Markov
chain{Yk, pθ (xk|Y1:k−1)}. It can be shown that the set of global
maxima of this function includes the true valueθ∗. This follows
from the fact that maximizingl (θ) is equivalent to minimizing
the Kullback-Leibler divergenceK (θ, θ∗) := l (θ∗) − l (θ) ≥ 0.
Based upon this remark, we suggest the use of noisy gradient
algorithms to maximizel (θ); see [2] for a review. There are,
however, two major problems with this approach. First, such an
approach requires one to estimate the derivative of the optimal
filter with respect toθ. Non-standard particle methods are required
to estimate this signed measure and their robust implementation
via SMC has a computational complexity inO

(
N2
)
, whereN is

the number of samples used for the SMC [11]. Second it can be
difficult to properly scale the gradient components. More elegant
and robust algorithms have been proposed that rely on on-line
versions of the EM algorithm, typically when the joint distribution
pθ (x1:n, y1:n) belongs to the exponential family. This approach
has the advantage that the filter derivative is not required and
that it is, in general, numerically well-behaved. Furthermore, it
is conceptually and practically straightforward to implement an
on-line EM algorithm to maximizel (θ) using SMC methods.
However, this requires estimating sufficient statistics based on joint
probability distributions whose dimension is increasing over time.
So similarly to SMC approaches that use the MCMC steps described
earlier, such an approach can lead to unsatisfactory results in
practice.

To circumvent this problem we propose to introduce here another
contrast function. More precisely, we focus on a pseudo-likelihood
function as originally proposed in [12] for finite state space HMMs
(refered to in this paper as “split-data likelihood”). This pseudo-
likelihood is defined as follows. Formally, consider for a given time
lag L ≥ 1 and anyk ≥ 0 “slices” Xk = XkL+1:(k+1)L and
Yk = YkL+1:(k+1)L of {Xn} and{Yn}. Because of our stationarity
assumption, the vectors{Xk,Yk} are identically distributedand
their common distributionpθ (xk, yk) is given by

πθ(xkL+1)gθ(ykL+1|xkL+1)

(k+1)L∏

n=kL+2

fθ(xn|xn−1)gθ(yn|xn) .

(8)
The likelihood of a blockYk of observations is given by

pθ (Yk) =

∫

XL

pθ (xk,Yk) dxk , (9)

and we define the log pseudo-likelihood form slices of observations

by
m−1∑
k=0

log pθ (Yk) which compared to the true likelihood essen-

tially ignores the dependence between data slices. The parameter
L should be large enough to ensure identifiability. Note also that



there will be here an efficiency/computational complexity trade-off
associated toL. As L increases, the maximum pseudo-likelihood
estimate properties will become comparable to that of the standard
ML estimate, but as we shall see this might result in more complex
and computationally intensive algorithms.

Under ergodicity assumptions, the average log pseudo–likelihood
satisfies

limm→∞
1
m

∑m−1
k=0 log pθ (Yk) = l̄ (θ) ,

l̄ (θ) :=
∫

YL log (pθ (y)) pθ∗(y)dy .

It can be shown that the set of parameters maximizingl̄ (θ) includes
the true parameter [12]. This follows from the fact that maximizing
l̄ (θ) is equivalent to minimizing the following Kullback-Leibler
divergenceK̄ (θ, θ∗) = l̄ (θ∗) − l̄ (θ) ≥ 0. In this article, we
propose to maximizēl (θ) recursively using on-line EM type
algorithms and stochastic approximation techniques.

Whereas the maximization of the true average log-likelihood
function requires complex SMC methods in order to either evaluate
the filter derivative or estimate expectations with respect to distrib-
utions defined onXn at timen, the key advantage (detailed further)
of the average log pseudo-likelihood function is that it only requires
the estimation of expectations with respect to distributions defined
on XL. A direct stochastic steepest descent algorithm to minimize
K̄ (θ, θ∗) is possible using Fisher’s identity. We will not detail this
approach here, but will focus on on-line EM type algorithms as
they are more numerically stable and widely applicable to models
used in practice.

B. On-line EM Algorithm: Known Invariant Distribution

We first assume in this section that the invariant distributionπθ is
known analytically. To introduce the on-line EM in this scenario, we
first present an “ideal” batch EM algorithm to minimizēK (θ, θ∗)
with respect toθ or equivalently to maximizēl (θ) . At iteration
k + 1, given an estimateθk of θ∗, we update our estimate via

θk+1 = arg max
θ∈Θ

Q (θ, θk) ,

where

Q (θ, θk) =

∫

XL×YL

log (pθ (x, y)) pθk
(x|y) pθ∗(y)dxdy .

Now since for anyθ ∈ Θ Q (θk+1, θk)−Q (θk, θk)−K̄ (θk, θ
∗)+

K̄ (θk+1, θ
∗) is equal to

∫

XL×YL

log

(
pθk+1 (x|y)

pθk
(x|y)

)
pθk

(x|y) pθ∗(y)dxdy

and since the second term on the RHS is negative by Jensen’s
inequality, we see that an iteration of this “ideal” EM algorithm
decreases the value of̄K (θ, θ∗), and the stationary points corre-
spond to the zeros of̄K (θ, θ∗). In practice for the models which we
will consider, it is necessary to compute a set of sufficient statistics
Φ (θk, θ

∗) at timek in order to computeQ.
Example 2. Stochastic volatility model(cont.) In this case, we

have (with≡ meaning “equal up to a constant”)

Q (θ, θk−1) ≡ − log
(
1 − φ2

)
+ L log

(
σ2

vβ
2
)

+ 1
β2ϕ4 (θk−1, θ

∗)

+ 1
σ2

v

[
ϕ1 (θk−1, θ

∗) +
(
1 + φ2

)
ϕ2 (θk−1, θ

∗) − 2φϕ3 (θk−1, θ
∗)
]

where the sufficient statistics Φ (θk−1, θ
∗) =

[ϕ1 (θk−1, θ
∗) , ϕ2 (θk−1, θ

∗) , ϕ3 (θk−1, θ
∗) , ϕ4 (θk−1, θ

∗)]T

are given by Φ (θk−1, θ
∗) = Eθk−1,θ∗ [Ψ (X,Y)] and where

the expectation is with respect topθk−1 (x|y) pθ∗(y) and
Ψ (X,Y) = [ψ1 (X,Y) , ψ2 (X,Y) , ψ3 (X,Y) , ψ4 (X,Y)]T

with ψ1 (X,Y) = X2
1 + X2

L, ψ2 (X,Y) =
∑L−1

i=2 X2
i ,

ψ3 (X,Y) =
∑L

i=2XiXi−1, ψ4 (X,Y) =
∑L

i=1 Y
2

i exp (−Xi) .
Given Φ (θk−1, θ

∗), it is possible to maximizeQ (θ, θk−1)
analytically whenL ≥ 2 and findθk = Λ(Φ (θk−1, θ

∗)) whereΛ
is not given here for sake of brevity.

In practice,Q cannot be computed as the expectations appearing
in the expression forΦ (θk, θ

∗) are with respect to a measure depen-
dent on the unknown parameter valueθ∗. However, this ideal batch
algorithm can be approximated using the following on-line scheme.
Indeed, thanks to the ergodicity and stationarity assumptions, the
observations{Yk} provide us with samples frompθ∗(y) which can
be used for the purpose of Monte Carlo integration. More precisely
we recursively approximate the sufficient statisticsΦ (θk, θ

∗) with
the following update, given here at timek,

Φ̂k = (1 − γk) Φ̂k−1 + γkEθk−1(Ψ (X,Yk)|Yk) , (10)

where Eθk−1 ( ·|Yk) denotes the expectation with respect to
pθk−1 (x|Yk). We then substitutêΦk for Φ (θk, θ

∗) and obtainθk =

Λ(Φ̂k). If θk was constant andγk = k−1 then Φ̂k would simply
compute the arithmetic average of{Eθk−1(Ψ (X,Yk)|Yk)}, and
converge towardsΦ (θk, θ

∗) by ergodicity. In fact, convergence is
in general ensured for any non-increasing positive stepsize sequence
{γk} such that

∑
γk = ∞ and

∑
γ2

k < ∞; we can select
γk = C.k−α whereC > 0 andα ∈

(
1
2
, 1
]
.

To summarize, the vector of sufficient statisticsΦ̂−1 is arbitrarily
initialized and the on-line EM algorithm proceeds as follows for the
data slice indexed byk ≥ 0.

E-step: Φ̂k = (1 − γk)Φ̂k−1 + γkEθk−1 (Ψ (X,Yk)|Yk).
M-step: θk = Λ(Φ̂k).
In scenarios whereEθk

(Ψ (X,Yk)|Yk) does not admit an an-
alytical expression, a further Monte Carlo approximation can be
used. Assume that a good approximationqθ (·|Yk) of pθ (·|Yk) is
available, and that it is easy to sample fromqθ (·|Yk). In this case
the algorithm presented above can be altered as follows.

E-stepX
(i)
k ∼ qθk−1 (·|Yk) for i = 1, . . . , N

Φ̂k = (1−γk)Φ̂k−1+γk

∑N
i=1W

(i)
k Ψ(X

(i)
k ,Yk) whereW (i)

k ∝
pθk−1

(X
(i)
k

|Yk)

qθk−1
(X

(i)
k

|Yk)
, and

∑N
i=1W

(i)
k = 1.

M-step: θk = Λ(Φ̂k).
As N increases the importance sampling approximation con-

verges towards the true expectation. Moreover the bias is of order
N−1. Note that if it is possible to sample frompθk−1 (x|Yk) exactly
then it is not necessary to have a large numberN of samples and a
single sample might even be sufficient. Indeed it is only necessary
to have an unbiased estimate ofEθk−1 (Ψ (X,Yk)|Yk) .

Observe also that it is alternatively possible to use SMC tech-
niques to approximate this expectation or to sample approximately
from pθ (x|Yk). We stress that in this context, as SMC is used to
sample from a distribution of fixed dimensionL, there will be no
path degeneracy problem.

C. On-line EM Algorithm: Unknown Invariant Distribution

In the previous section we required not only the existence of
πθ but also its analytical expression. This can be a restriction in
some situations since whereas ergodicity can be established for
many Markov processes of interest, and the existence ofπθ proved,
closed form expression for this distribution is rarely available due
to algebraic intractability. However in many cases, it is easy to
sample realizations of the process{Xn, Yn} for a fixed value ofθ,
especially in situations where the process is defined recursively as

Xn+1 = ϕθ (Xn, Vn+1) , Yn = γθ (Xn,Wn) , (11)



where for anyθ ∈ Θ, ϕθ : X×V → X, γθ : X×W → X for some
spacesV and W, with {Vn} ⊂ VN and {Wn} ⊂ WN being i.i.d.
sequences from standard distributions not dependent onθ. Here we
will consider the situation where we can sample realizations of the
process{Xn, Yn} for a fixed value ofθ to develop an algorithm
based on theindirect inferenceprinciple;e.g.[8]. The main idea of
indirect inference consists of the following three key steps. First a
proxy model parameterized byξ ∈ Ξ is fitted to the observed data
{Y ∗

n }, generated withθ = θ∗. We will hereafter denoteξ∗ = ξ (θ∗)
the corresponding estimate. The proxy model is generally chosen
so that inference is easy, but sufficiently close to the original model
in order to capture its full complexity. Second, given a parameter
estimateθ̂ of the true parameterθ∗ one can simulate artificial data
{Ŷn} using (11) withθ = θ̂, and the aforementioned proxy model
is also fitted to{Ŷn} to produce an estimatêξ = ξ(θ̂). Third,
the parameter estimatêθ is updated to decrease a distance measure
betweenξ̂ and ξ∗. These three steps are repeated untilξ̂ = ξ∗.
Many criteria are possible for matching, and we chose here the
commonly used criterion

J (θ) := (ξ − ξ∗)
T

Σ (ξ − ξ∗) , (12)

whereξ = ξ(θ) andΣ is a positive definite matrix; see [8] and the
references therein for a discussion of the validity of the approach.
There is, in general, no analytical expression for the minimizer of
J , and we will resort here to a steepest descent algorithm, which
requires the computation of the gradient

1

2
∇J (θ) = ∇ξ Σ (ξ − ξ∗) . (13)

Note that here∇ denotes the derivative with respect toθ and that
∇z will denote the gradient with respect to any other variablez.
Note also that for annz-dimensional variablez = [z1 . . . znz

] and
an nh−dimensional functionh = [h1 . . . hnh

]T, we will use the
notation∇zh to denote thenz×nh matrix with elements[∇zh]i,j =
∂hj/∂zi. This methodology is very general and good performance
is in general obtained if the auxiliary model is “close” to the true
model. We suggest here a proxy modelp̄ξ (xk, yk) which differs
from the true model (8) only in thatαξ replaces the invariant
distributionπθ. Hereξ andθ coincide,i.e. ξ ∈ Ξ = Θ, if αξ = α.
Following the developments of Section III-B, we introduce the
following cost function for any(ξ, θ) ∈ Ξ × Θ

l̃θ (ξ) :=

∫

YL

log (p̄ξ (y)) pθ (y) dy ,

and for θ̂, θ∗ ∈ Θ define the “pseudo-estimates”̂ξ, ξ∗ as

ξ̂ := arg max
ξ∈Ξ

l̃θ̂ (ξ) andξ∗ := arg max
ξ∈Ξ

l̃θ∗ (ξ) .

In most cases analytical expressions forξ̂, ξ∗ and∇ξ̂ = ∇ξ|θ=θ̂

are not available, and we resort to iterative methods. Following the
developments of Section III-B, we again suggest the use of an on-
line EM algorithm in order to construct sequences{ξ̂k} and{ξ∗k}
which converge to estimates of̂ξ and ξ∗. Typically, for a given
θ ∈ Θ, {ξk} is defined recursively asξk = Λ(Ψ (ξk−1, θ)) where
Ψ (ξ, θ) is a vector of sufficient statistics andΛ a deterministic
mapping.

In most cases of interest this “ideal” algorithm cannot be imple-
mented as the expectations do not admit closed-form expressions
and, in particular,θ∗ is itself unknown. However, we can again
resort to on-line Monte Carlo approximations. For anyθ, integration
with respect topθ(y) can be performed by generating artificial data

{Yk} from (11) and using the recursion

Φk = (1 − γk) Φk−1 + γk

∫

XL

Ψ (x,Yk) p̄ξk−1 (x|Yk) dx , (14)

for a stepsize sequence{γk} ⊂ (0, 1)N. The sequence{ξk} is
constructed by lettingξk = Λ(Φk) for any k ≥ 1. We refer to this
algorithm as the on-line EM algorithm. Similarly integration with
respect topθ∗(y) is straightforward, since here{Y ∗

k } provides us
directly with samples which can be used for Monte Carlo integration
and fed into a recursion identical to (14) to produce{Φ∗

k}. If
integration with respect tōpξ (x|y), denoted hereafterEξ(·|y), is
not possible analytically, it can be performed using importance
sampling or more generally any other Monte Carlo technique,
similarly to that in Section III-B. We now focus on a technique
to construct sequences{∇ξ̂k} which converges to an estimate of
∇ξ̂ , as this quantity is required in order to minimizeJ (θ).

To this end, for anyk ≥ 1 we consider the gradient with respect
to θ of ξk produced by the on-line EM algorithm for a set of obser-
vations{Yn} generated by (11) withθ. First it is worth recalling
thatξk is obtained at iterationk by a deterministic transformation of
the estimated sufficient statisticsΦk of Φ (ξk−1, θ), ξk = Λ(Φk).
As a consequence the derivative with respect toθ is of the form

∇ξk = ∇Φk.∇Φk
Λ(Φk) . (15)

A sequence{∇Φk} of gradients of the sufficient statistics can be
recursively constructed by differentiating (14), leading to

∇Φk = (1 − γk)∇Φk−1+γk∇

∫

XL

Ψ (xk,Yk) p̄ξk−1 (xk|Yk) dxk ,

(16)
where{Yk} is generated usingθ. Under regularity assumptions, it
follows that∇

∫
XL Ψ (xk,Yk) p̄ξk−1 (xk|Yk) dx is equal to

∫

XL

∇Yk.∇YΨ (xk,Yk) p̄ξk−1 (xk|Yk) dxk

+

∫

XL

∇p̄ξk−1 (xk|Yk) .Ψ (xk,Yk)T dxk ,

where∇ log p̄ξk−1 (xk|Yk) is given by

∇ log p̄ξk−1 (xk,Yk) − (18)∫

XL

∇ log p̄ξk−1 (xk,Yk) p̄ξk−1 (xk|Yk) dxkp̄ξk−1 (xk|Yk)

providing us with an expression for (17) in terms of expectations
Eξk−1(·|Yk). Finally we have∇ log p̄ξk−1 (xk,Yk) equal to

(k+1)L∑

n=kL+2

∇ log fξk−1(xn|xn−1) +

(k+1)L∑

n=kL+1

∇ log gξk−1(Yn|xn) ,

and∇ log fξk−1(xn|xn−1) = ∇ξk−1.∇ξk−1 log fξk−1(xn|xn−1),

∇ log gξk−1(Yn|xn) = ∇Yn.∇y log gξk−1(Yn|xn)

+∇ξk−1.∇ξk−1 log gξk−1(Yn|xn) .

The sequence{∇Yn} required for{∇Yk} corresponds to a path
derivative [9]. Assuming that we can sample{Vn} and {Wn}
exactly (recall these are independent ofθ) and that the functions
ϕθ and γθ are differentiable with respect to their first argument,
the sequence can be recursively computed as follows∇X0 = 0,
∇Y0 = 0 and forn > 0

∇Xn+1 = ∇Yn.∇xϕθ (Xn, Vn+1) + ∇ϕθ (Xn, Vn+1) ,(19)

∇Yn = ∇Xn.∇xγθ (Xn,Wn) + ∇γθ (Xn,Wn) . (20)



Assuming that all the above expectations with respect to
p̄ξk−1 (xk|Yk) can be calculated analytically, (14) forθ = θ̂, θ∗

will allow us to compute sequences{ξ̂k} and {ξ∗k} that will
converge to estimates of̂ξ andξ∗ and (20) forθ = θ̂ will allow us
to compute a sequence{∇ξ̂k} that will converge to∇ξ̂, therefore
allowing us to compute an estimate of1

2
∇J |θ=θ̂.

One can therefore, in theory, construct a sequence{θ̂l} that will
converge to the set of stationary points of1

2
∇J using the recursion

θ̂l = θ̂l−1 − γl ∇ξ̂
l Σ (ξ̂l − ξ∗) , (21)

where forl ≥ 1 ξ̂l := limk→∞ ξ̂l
k, ξ

∗ := limk→∞ ξ̂∗k and∇ξ̂l :=
limk→∞ ∇ξ̂l

k with {ξ̂l
k} estimated forθ = θ̂l−1, θ

∗ and {∇ξ̂l
k}

estimated forθ = θ̂l−1. This is clearly impossible in practice. A first
step towards preserving the on-line nature of our algorithm would
be to redefinêξl := ξ̂l

kl
, ξ∗ := ξ̂∗kl

and∇ξ̂l := ∇ξ̂l
kl

for a sequence
of integers{kl} such thatliml→∞ kl = ∞. This is however still
unsatisfactory since the computational cost per iteration (21) grows
to infinity with l and the algorithm does not “recycle” estimatesξ̂l

from one iteration to the next.
An elegant way around these two problems consists of using a

two-time scale scheme, where the auxiliary model if fitted on a fast
timescale whereas the estimate of the true parameter is updated
on a slow timescale. This scheme requires the choice of two non-
decreasing positive stepsize sequences{γk} , {βk} such that

∑

k≥1

γk =
∑

k≥1

βk = ∞ ,
∑

k≥1

γ2
k <∞ ,

∑

k≥1

β2
k <∞ ,

and for someδ > 0,
∑

k≥1 β
δ
kγ

−δ
k < ∞. A typical choice is

γk = C1k
−ν , βk = C2k

−ζ for 1 > ζ > ν > 0.5. The algorithm is
initialized with arbitrary valuesX̂0, Ŷ0,∇X̂0,∇Ŷ0,Φ

∗
−1 and Φ̂−1

and then proceeds as follows fork ≥ 0.
EM for the true data/proxy model

Φ∗
k = (1 − γk)Φ∗

k−1 + γkEξ∗
k−1

(Ψ(X,Y∗
k)|Y∗

k) , ξ∗k = Λ(Φ∗
k) .

Sampling of artificial dataForn = kL+1, kL+2, . . . , (k + 1)L,
sampleV̂n andŴn then set

X̂n = ϕθ̂k−1
(X̂n−1, V̂n) , Ŷn = γθ̂k−1

(X̂n, Ŵn) .

EM for the artificial data/proxy model

Φ̂k = (1 − γk)Φ̂k−1 + γkEξ̂k−1
(Ψ(X, Ŷk)|Ŷk) , ξ̂k = Λ(Φ̂k) .

Model Matching, compute∇ξ̂k using (15) to (20) and

θ̂k = θ̂k−1 − βk ∇ξ̂k Σ (ξ̂k − ξ∗k) ,

The expectations with respect tōpξ∗
k−1

(x|Y∗
k) andp̄ξ̂k−1

(x| Ŷk))

appearing inEξ∗
k−1

(Ψ(X,Y∗
k)|Y∗

k) and Eξ̂k−1
(Ψ(X, Ŷk)|Ŷk), re-

spectively, cannot typically be performed in closed-form. Monte
Carlo methods similar to those described in the previous section
can be used. A Monte Carlo approximation ofp̄ξ̂k−1

(x| Ŷk) can

also be used to estimate∇ξ̂k in (18).

IV. A PPLICATION

We have applied our algorithms to the stochastic volatility model
given in Example 2. Simulation results for the algorithm based
on indirect inference are presented in the extended version of this
article. The sampling distributionqθ was chosen to be a Gaussian
approximation ofpθ as described in [10]. In Figure 3, we present a
simulation for the case whereL = 10,N = 100 φ = 0.8, σ2

v = 0.1
and β2 = 1, for a number of observationsT = 250, 000 and
γk = 1/k1/2. We also present results corresponding to the on-line

EM algorithm and a modified version of it using the Polyak-Ruppert
averaging procedure. In this case, this proves very useful for the
parameterβ. The algorithm converges to the true parameter. We
also display in Figure 3 the Kullback-Leibler divergence between
the estimated parameters and the true parameters.

0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

φ=0.8 / L=10 / Ls=10

Bloc number

Estim
ate o

f φ

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

σ
v
2=0.1 / L=10 / Ls=10

Bloc number

Estim
ate o

f σ v2

0 0.5 1 1.5 2 2.5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
β=1 / L=10 / Ls=10

Bloc number

Estim
ate o

f β

0 0.5 1 1.5 2 2.5

x 10
4

−50

−40

−30

−20

−10

0

10

Fig. 3. From top to bottom: Convergence ofφ, σ2
v andβ2 and comparison

(up to additive constants) of the KL divergence under the estimated
parameters (red) and the true parameters (blue).
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