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ABSTRACT

Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video
annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and
sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality,
there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include
games of sports, air traffic, car traffic, street intersections, and cloud transformations.

Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games
where multiple moving players interact with each other on a constantly moving background due to camera motions. Ulti-
mately, such a computer system should be able to acquire reliable data by extracting the players’ motion as their trajectories,
querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on
the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the
scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we auto-
matically analyze the hockey scenes by estimating parameters(i.e., pan, tilt, and zoom) of the broadcast cameras, tracking
hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players.

Many technical problems in vision such as fast and unpredictable players’ motions and rapid camera motions make
our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems
for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would
hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for research in
automatic video annotation in this domain.
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1. INTRODUCTION

With the advance of information technologies and the increasing demand for managing the vast amount of visual data in
video, there is a great potential for developing reliable and efficient systems that are capable of understanding and analyzing
scenes. In order to design such systems that describe scenes in video, it is essential to compensate for camera motions by
estimating a planar projective transformation (i.e., homography).21–25 In this paper, we present our contributions for
automatically estimating homography and tracking multiple moving objects on a constantly changing background.

First, we present our algorithm19 for automatically computing homographies by combining the KLT tracking sys-
tem,26–28 RANSAC29 and the normailzed Direct Linear Transformation (DLT) algorithm.21 A new model-based correc-
tion system that fits projected images to the model is used to reduce projection errors produced by automatically computed
homography. The system detects features that lie on line segments of projected images and minimize the difference be-
tween projected images and the model using the normalized DLT algorithm. Similarly, Kolleret. al30 uses line segments
of moving vehicles to track them from road traffic scenes monitored by a stationary camera. Yamadaet. al31 uses line seg-
ments and circle segments of the soccer field to estimate camera parameters and mosaic a short sequence of video images
in order to track players and a ball in the sequence.
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Automated tracking of multiple objects is still an open problem in many settings, including car surveillance,10 sports12, 13

and smart rooms6 among many others.5, 7, 11 In general, the problem of tracking visual features in complex environments
is fraught with uncertainty.6 To track a varying number of hockey players on a sequence of digitized video from TV we
use a probabilistic method that relies on matching color histograms of the player’s appearance combined with a method for
tracking moving objects. Over the last few years, particle filters, also known as condensation or sequential Monte Carlo,
have proved to be powerful tools for image tracking.3, 8, 14, 15 We use a variation of particle filters, called a boosted particle
filter (BPF),20 which combines a mixture particle filter17 with a detection method based on cascaded Adaboost detectors18

to track multiple players.

Estimating homographies allows to transform a sequence of digitized video to the globally consistent rink map by
compensating for camera motions of a broadcast camera. BPF tracks multiple hockey players and estimates their poistions
in the coordinate of a original video sequence. Consequently, trajectories of tracked players are produced by combining
estimated homographies and tracking results. These trajectories, as visual information of hockey scenes are entered into
a database system that permits data mining33, 34 and analyzes descriptive information of scenes in order to eventually
recognize motions of hockey players being analyzed.

In the subsequent section, the theoretical background of the homography (also known as a plane projective transfor-
mation, or collineation) is described. The third section describes our algorithm for automatically computing homography
between successive frames in image sequences. The fourth section explains our model-based correction system for com-
pensating projection errors produced by automatic computation of homography. In the fifth section, we present how to
track hockey players by BPF. The result of our experiments is presented in the sixth section. The final section concludes
this paper and indicates future directions of our research.

2. HOMOGRAPHY

The definition of a homography21 (or more generallyprojectivity) is an invertible mapping of points and lines on the
projective planeP2. This gives a homography two useful properties. For a stationary camera with its fixed centre of
projection, it does not depend on the scene structure (i.e., depth of the scene points) and it applies even if the camera
“pans and zooms”, which means to change the focal length of the camera while it is rotating about its centre. With these
properties, a homography is applied under the circumstance which the camera pans, tilts, rotates, and zooms about its
centre.

2.1. Representation of Homography

Homogeneous representation is used for a pointx = (x, y, w)>, which is a 3-vector, representing a point(x/w, y/w)>

in Euclidean 2-spaceR2. As homogeneous vectors, points are also elements of the projective spaceP2. It is helpful
to consider the inhomogeneous coordinates of a pair of matching points in the world and image plane as(x/w, y/w)>

and(x′/w′, y′/w′)>, because points are measured in the inhomogeneous coordinates directly from the world plane. A
homography25is a linear transformation ofP2, which is expressed in inhomogeneous form as:

x′/w′ =
Ax + By + C

Px + Qy + R
, y′/w′ =

Dx + Ey + F

Px + Qy + R
(1)

where vectorsx andx′ are defined in homogeneous form, and a transformation matrixM as:
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x
y
w

 x′ =
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w′
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
wherex ↔ x′ denotes a pair of 2D point correspondences. Normally the scale factorw is chosen in such a way thatx/w
andy/w have order of 1, so that numerical instability is avoided.

Now, Eq. (10) can be written as:
x′ = cMx (2)

wherec is an arbitrary nonzero constant. Homographies and points are defined up to a nonzero scalarc, and thus there are
8 degrees of freedom for homography. Often,R = 1 and the scale factor is set asw = 1. Eq. (2) can now be written
simply as:

x′ = Hx



(a) The original image (b) the correspondences on the rink map

(c) The transformation result

Figure 1. Homography Transformation. (a) shows the original image (320 × 240) to be transformed. (b) shows manually selected
points that are corresponding to those on the rink in the image, which are used only for the initial frame in a video sequence. (c) is the
result (1000× 425) of the transformation.

whereH is 3 × 3 matrix called a homography. Every correspondence (x, x′) gives two equations. Therefore, computing
a homography with this algorithm requires at least four correspondences. The normalized DLT algorithm21 is used to
compute frame-to-frame homographies. Figure 1 shows the result of homography transformation by the normalized DLT
algorithm based on manually selected correspondences.

3. COMPUTATION OF THE HOMOGRAPHY

Given a sequence of images acquired by a broadcast camera, the objective is to specify a point-to-point planar homography
map in order to remove the camera motion in images. Our algorithm has four major steps to automatically compute
homographies.

3.1. Reduce vision challenges

Since the source of our data is video clips of broadcast hockey games, there are various vision problems to deal with, namely
camera flashes that cause a large increase of image intensities and rapid motions of broadcast cameras for capturing highly
dynamic hockey scenes.

3.1.1. Flash Detection

In order to deal with camera flashes in digitized hockey sequences, automatic detection of those flashes is necessary. Figure
2 shows the average intensity of over 2300 consecutive frames.

In the graph, there are several sudden spikes which indicate that there is a camera flash for that particular frame.
With our observation of camera flashes, a simple flash detection method is derived by taking the difference of the average
intensity from two successive frames.

3.1.2. Prediction

Broadcast cameras often make rapid motions to capture dynamic hockey scenes during a game. The amount of motion,
however, can be reduced bypredicting the current camera motion based on the previous camera motion. For instance,
given a frame-to-frame homographyH1,2 that represents the camera motion from Frame 1 to Frame 2,H1,2 is used as the
estimation ofH2,3 to transform Frame 2 so that we can minimize the amount of motion between Frame 2 and Frame 3.
That is, to have the following assumption:

Hn,n−1 ≈ Hn+1,n
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Figure 2. The average intensities over 2300 frames.The vertical axis indicates the number of the intensity ranging from 130 to 230
where 130 indicates a darker pixel and 230 is a brighter pixel. The horizontal axis is the number of the frame.

where every successive frame is processed andHn−1,n means a homography from Framen− 1 to Framen. This assump-
tion holds only without skipping too many frames. In our experiments, our system processes every fourth frame of data
sampled at 30 frames per second, and shows that it is capable of compensating a large motion of a camera.

3.2. Acquisition of correspondences

For successful homography computation, it is crucial to have a reliable set of point correspondences that gives an accurate
homography. KLT26–28 gives those correspondences automatically by extracting features and tracking them. That is, those
features that are successfully tracked by KLT between images are ones that are corresponding to each other.

3.3. RANSAC: Elimination of outliers

Correspondences gained by KLT are yet imperfect to estimate a correct homography because they also include outliers.
Though an initial set of correspondences selected by KLT contains a good proportion of correct matches, RANSAC29 is
used to identify consistent subsets of correspondences and obtain a better homography. In RANSAC, a putative set of
correspondences is produced by a homography based on a random set of four correspondences, and outliers are eliminated
by the homography.

3.3.1. Sample Selection

Distributed spatial sampling is used to avoid choosing too many collinear points to produce degenerate homography. In
the sampling, a whole image is divided into four sub-regions of an equal size so that each correspondence is sampled from
a different sub-region. Once four point correspondences are sampled with a good spatial distribution, a homography is
computed based on those correspondences and use the homography to select an initial set of inliers. For inlier classification,
we use the symmetric transfer errord2

transfer, defined21:
Let x ↔ x′ be the point correspondence andH be a homography such thatx′ = Hx, then

d2
transfer = d(x,H−1x′)2 + d(x′,Hx)2 (3)

whered(x,H−1x′) represents the distance betweenx andH−1x′. After the symmetric transfer error is estimated from
each point correspondence, we then calculate the standard deviation of the sum of the symmetric errors from all correspon-
dences, which is denoted byσerror and defined as follows:

Suppose there areN point correspondences and each one of them has the symmetric transfer error{d2
transfer}i=1...N ,

then:

σerror =

√∑
1≤i≤N ({d2

transfer}i − µ)2

N − 1
(4)

whereµ is the mean of the symmetric errors. Now we can classify an outlier as any pointxi that satisfies the following
condition:

γ(xi) =

{
0 {d2

transfer}i ≥
√

5.99 ∗ σerror (outlier)
1 Otherwise (inlier)

(5)



whereγ is a simple binary function that determines whether the pointxi is an outlier. The distance threshold is chosen
based on a probability of the point being an inlier. The constant real number,

√
5.99, is, therefore, derived by computing

the probability distribution for the distance of an inlier based on the model of which this case is the homography matrix.21

3.3.2. Adaptive termination of sampling

After sampling four spatially distributed correspondences and classifying inliers and outliers, the termination of sampling
needs to be determined in order to save unnecessary computation. An adaptive algorithm21 for determining the number
of RANSAC samples is implemented for that purpose. The adaptive algorithm gives us a homography that produces the
largest number of inliers by adaptively determining the termination of the algorithm with respect to the probability of at
least one of the random samples being free from outliers and that of any selected data point being an outlier.

3.4. Selection of best inliers

The set of inliers selected by RANSAC sometimes contains a large number of matches. This set is further refined by
eliminating points with a large amount of the symmetric transfer error in Eq.(3) and making a set of better inlying matches.
The aim of this further estimation is, therefore, to obtain an improved estimate of a homography with better inliers selected
by randomly selected 100 point correspondences, instead of being selected by only randomly selected four point corre-
spondences in RANSAC. We limit the number of point correspondences to 100 since least squares solution of more than
100 correspondences is too costly. If the set of inliers contains less than 100 matches, then this process is skipped.

The process of the further estimation is that at each iteration, a homography is estimated with a set of 100 randomly
selected point correspondences that are considered to be inliers, classify a set of all correspondences based on our simple
classifier in Eq.(5) and update a set of inliers. the process is repeated until the symmetric error of all the inlier becomes
less than

√
5.99 ∗ σerror. An important remark of this estimation process is to take an initial set of correspondences into

account without eliminating any one of them, and to consider some outliers being re-designated as inliers.

4. MODEL FITTING

In order to reduce projection errors from automatic computation of a homography, model fitting is applied to the result
of the homography transformation. The rink dimensions and our model are strictly based on the official measurement
presented in.32 Our model consists of features on lines and circles of the rink. There are 296 point features in total on lines
and circles: 178 features on four End-Zone circles, 4 features on centre ice face-off spots around the centre circle, and 114
features on lines.

4.1. Edge search

This section describes how to fit projected images to our model of the rink and reduce projection errors produced by
automatic computation of homography. In order to fit the projected images to the model, a local search is performed on
each model point appearing within the region of each projected image. The local search is conducted to find the nearest
edge pixel in the image. Figure 3 shows how to fit the projected image to our rink model.

For edge detection, the search is performed locally only on high gradient regions in the original sequence where
there are most likely edges in order to save on the computational time. In the search on high gradient regions, edge
orientation is considered to find a most likely edge pixel. Given an image,I, the image gradient vectorg is represented as:
g(x) = ( ∂

∂x (I), ∂
∂y (I)). The gradient vector represents the orientation of the edge. The orientation is perpendicular to the

direction of the local line or circle segment. Since lines and circles of the hockey rink are not single edges but thick lines,
they give two peaks of gradients. The image gradient vectorg is computed from the original image because the projected
image may not give accurate gradients due to resampling effects. Figure 4 shows how the edge search is conducted.

As shown in the figure, the edge search does not perfectly detect all the edge pixels on the rink surface. For instance,
in (b) of Figure 4, there is one edge pixel that does not belong to any lines in the left bottom face-off circle. Furthermore,
there are not many edge points detected on the centre circle since there are many gradient peaks detected on the line of
the circle, the edges of the logo, and the edges of the letters. In order to avoid finding edge points that are not on the
edge of the circles or lines on the rink, our edge search ignores ambiguous regions with many edges by detecting multiple
gradient peaks in the search region. Givenn edge points found by our edge search, these points can be used to compute



Model point

Projected point

Figure 3. Fitting a projected image to our model of the rink. Dotted lines represent the projected image and solid lines represent
the model. Although only two examples of matching a projected point to a model point are presented in this image, a local search is
performed for finding the nearest edge pixel (i.e., a projected point) from all model points appearing within the projected image.

(a) local edge search (b) Edge points found by the search

Figure 4. Searching edges. (a) shows the search regions (lighter points) and high gradient regions (darker points). It is shown that
edges lie on high gradient regions. (b) is the result of the edge search. It shows how successfully our search detects edge points for each
model point.

a transformation,Hcorr, to rectify a projected image to the model. The normalized DLT algorithm is used to compute
Hcorr based on 2D to 2D point correspondences{xEdge

i ↔ xModel
i }i=1...n where{xEdge

i }i=1...n denoten edge points
detected by our edge search and{xModel

i }i=1...n aren corresponding model points. Overall, our edge search gives us
reliable performance and can prove that our model fitting system works well. Figure 5 shows how effective our model
fitting is for reducing accumulative projection errors over a sequence of frames.

5. TRACKING HOCKEY PLAYERS

We use a particle filter method, Boosted Particle Filter (BPF),20 based on the multiple target method of,17 augmented
by the cascaded Adaboost algorithm.18 Adaboost provides a detection step that can re initialize tracks when they fail.
When one or more new objects appear in the scene, they are detected by Adaboost and automatically initialized with an
observation model. Using a different color-based observation model allows us to track different colored objects.

5.1. Observation Model

We adopt a multi-color observation model14 based on Hue-Saturation-Value (HSV) color histograms. Since HSV decou-
ples the intensity (i.e., value) from color (i.e., hue and saturation), it is reasonably insensitive to illumination effects. An
HSV histogram is composed ofN = NhNs + Nv bins and we denotebt(d) ∈ {1, . . . N} as the bin index associated with
the color vectoryt(k) at a pixel locationd at timet. Figure 6 shows two instances of the color histogram.



(a) The result without fitting the model (b) The result with fitting the model

Figure 5. The result of our model fitting. (a) is the result after 323 frames without using the model fitting. (b) is the result after 323
frames with the model fitting. (b) clearly shows a more accurate projection over 300 frames.

(a) Color histogram of a player(white uniform) (b) Color histogram of a player(red uniform)

Figure 6. Color histograms: This figure shows two color histograms of selected rectangular regions, each of which is from a different
region of the image. The player on left has uniform whose color is the combination of dark blue and white and the player on right has
red uniform. One can clearly see concentrations of color bins due to limited number of colors. In (a) and (b), we set the number of bins,
N = 110, whereNh, Ns, andNv are set to 10.

If we define the candidate region in which we formulate the HSV histogram asR(xt) , lt + stW , then a kernel density
estimateK(xt) , {k(n;xt)}n=1,...,N of the color distribution at timet is given by1, 14:

k(n;xt) = η
∑

d∈R(xt)

δ[bt(d)− n] (6)

whereδ is the delta function,η is a normalizing constant which ensuresk to be a probability distribution,
∑N

n=1 k(n;xt) =
1, and a locationd could be any pixel location withinR(xt). Eq. (6) definesk(n;xt) as the probability of a color binn at
time t.

If we denoteK∗ = {k∗(n;x0)}n=1,...,N as the reference color model andK(xt) as a candidate color model, then
we need to measure the data likelihood (i.e., similarity) betweenK∗ andK(xt). As in,1, 14 we apply the Bhattacharyya
similarity coefficient to define a distanceξ on HSV histograms. The mathematical formulation of this measure is given
by1:

ξ[K∗,K(xt)] =

[
1−

N∑
n=1

√
k∗(n;x0)k(n;xt)

] 1
2

(7)

Statistical properties of near optimality and scale invariance ensure that the Bhattacharyya coefficient is an appropriate
choice of measuring similarity of color histograms.1 Once we obtain a distanceξ on the HSV color histograms, we use
the following likelihood distribution given by14:

p(yt|xt) ∝ e−λξ2[K∗,K(xt)] (8)

whereλ = 20. λ is suggested in,14, 17 and confirmed also on our experiments. Also, we set the size of binsNh, Ns, and
Nv as 10.



The HSV color histogram is a reliable approximation of the color density on the tracked region. However, a better
approximation is obtained when we consider the spatial layout of the color distribution. If we define the tracked region
as the sum ofr sub-regionsR(xt) =

∑r
j=1 Rj(xt), then we apply the likelihood as the sum of the reference histograms

{k∗j }j=1,...,r associated with each sum-region by14:

p(yt|xt) ∝ e
Pr

j=1 −λξ2[K∗
j ,Kj(xt)] (9)

Eq. (9) shows how the spatial layout of the color is incorporated into the data likelihood. In Figure 7, we divide up the
tracked regions into two sub-regions in order to use spatial information of the color in the appearance of a hockey player.
For hockey players, their uniforms usually have a different color on their jacket and their pants and the spatial relationship

Figure 7. Multi-part color likelihood model: This figure shows our multi-part color likelihood model. We divide our model into two
sub-regions and take a color histogram from each sub-region so that we take into account the spatial layout of colors of two sub-regions.

of different colors becomes important.

5.2. The Filtering Distribution

We denote the state vectors and observation vectors up to timet by x0:t , {x0 . . .xt} andy0:t. Given the observation and
transition models, the solution to the filtering problem is given by the following Bayesian recursion3:

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)

=
p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y0:t−1)dxt−1∫

p(yt|xt)p(xt|y0:t−1) dxt
(10)

To deal with multiple targets, we adopt the mixture approach of.17 The posterior distribution,p(xt|y0:t), is modelled
as anM -component non-parametric mixture model:

p(xt|y0:t) =
M∑

j=1

Πj,tpj(xt|y0:t) (11)

where the mixture weights satisfy
∑M

m=1 Πm,t = 1. Using the the filtering distribution,pj(xt−1|y0:t−1), computed in the
previous step, the predictive distribution becomes

p(xt|y0:t−1) =
M∑

j=1

Πj,t−1pj(xt|y0:t−1) (12)

wherepj(xt|y0:t) =
∫

p(xt|xt−1)pj(xt−1|y0:t−1)dxt−1. Hence, the updated posterior mixture takes the form



p(xt|y0:t) =

∑M
j=1 Πj,t−1pj(yt|xt)pj(xt|y0:t−1)∑M

k=1 Πk,t−1

∫
pk(yt|xt)pk(xt|y0:t−1) dxt

=
M∑

j=1

[
Πj,t−1

∫
pj(yt|xt)pj(xt|y0:t−1) dxt∑M

k=1 Πk,t−1

∫
pk(yt|xt)pk(xt|y0:t−1) dxt

]

×
[

pj(yt|xt)pj(xt|y0:t−1)∫
pj(yt|xt)pj(xt|y0:t−1) dxt

]
=

M∑
j=1

Πj,tpj(xt|y0:t)

(13)

where the new weights (independent ofxt) are given by:

Πj,t =

[
Πj,t−1

∫
pj(yt|xt)pj(xt|y0:t−1) dxt∑M

k=1 Πk,t−1

∫
pk(yt|xt)pk(xt|y0:t−1) dxt

]

Unlike a mixture paritcle filter by,17 we haveM different likelihood distributions,{pj(yt|xt)}j=1...M . When one
or more new objects appear in the scene, they are detected by Adaboost and automatically initialized with an observation
model. Using a different color-based observation model allows us to track different colored objects.

5.3. Boosted Particle Filtering

In standard particle filtering, we approximate the posteriorp(xt|y0:t) with a Dirac measure using a finite set ofN par-
ticles {xi

t}i=1···N . To accomplish this, we sample candidate particles from an appropriate proposal distributionx̃i
t ∼

q(xt|x0:t−1,y0:t) (In the simplest scenario, it is set asq(xt|x0:t−1,y0:t) = p(xt|xt−1), yielding the bootstrap filter3) and
weight these particles according to the following importance ratio:

wi
t = wi

t−1

p(yt|x̃i
t)p(x̃i

t|xi
t−1)

q(x̃i
t|xi

0:t−1,y0:t)
(14)

where, in BPF, the expression for the proposal distribution is given by the following mixture instead of the transition priors:

q(x̃t|x0:t−1,y1:t) = αqada(x̃t|xt−1,yt) + (1− α)p(x̃t|xt−1) (15)

whereqada is assumed to be a Gaussian distribution that consists of a set of Adaboost detections. The parameterα can be
set dynamically without affecting the convergence of the particle filter (it is only a parameter of the proposal distribution
and therefore its influence is corrected in the calculation of the importance weights). Whenα = 0, our algorithm reduces
to the MPF of.17 By increasingα we place more importance on the Adaboost detections. We can adapt the value ofα
depending on tracking situations, including crossovers, collisions and occlusions.

The mixture proposal is applied only whenqada is overlaid on a transition distribution modeled by autoregressive
state dynamics. However, if these two different distributions are not overlapped, there is a distance between the mean of
these distributions. If there is no overlap between the Monte Carlo estimation of a mixture particle filter for each mixture
component and clusters given by the Adaboost detection, then we setα = 1 so that our proposal distribution takes only a
transition distribution of a mixture particle filter.

We resample the particles using their importance weights to generate an unweighted approximation ofp(xt|y0:t). In
the mixture approach of,17 the particles are used to obtain the following approximation of the posterior distribution:

p(xt|y0:t) ≈
M∑

j=1

Πj,t

∑
i∈Ij

wi
tδxi

t
(xt)

whereIj is the set of indices of the particles belonging to thej-th mixture component.



6. EXPERIMENTS

This section presents the result of our experiments on the two aspects of our work: homography estimation and player
tracking.

6.1. Homography Experiments

(a) Frame 1 (b) Frame 600

(c) Frame 1200 (d) Frame 1850

Figure 8. Automatic rectification result. The figure shows the result of our algorithm on over 1800 frames on hockey data. The left
column shows the original image (320× 240) to be transformed and on the right, it shows a rectified image that is superimposed on the
model of the rink map.

In Figure 8, our system is demonstrated on a sequence of 1900 frames that is digitized from a video clip of NHL hockey
games on TV. The system processes every fourth frame and rectifies them by computing 1200 KLT features from which the
best inliers are selected. Once a set of correspondences are manually selected only on the very first frame of the sequence to
compute the transformation between the image and rink mapping, homographies between the rest of the sequence and rink
mapping are automatically computed by our algorithm. Our non-optimized implementation in C on a 2.8 GHz Pentium IV
takes about an hour to process 1900 frames of data. Figure 8 shows the successful automatic rectification. Although our
system is demonstrated on Hockey data at this time, our algorithm is also applicable to other domains of sports such as
soccer and football or any other planar surface scenes with identifiable features.

6.2. Tracking Experiments

This section shows tracking results on hockey players in a digitized video sequence from TV. In our experments, we used
digitized data of video sequences and all experiments are done by our non-optimized implementation in C on a 2.8 GHz
Pentium IV.

Figure 9 shows the result of BPF over 95 frames of a digitized video sequence. As it is clear on the figure, BPF is
capable of tracking a different number of objects: i.e., it has an ability of successfully detecting objects that appear or
disappear from the scene. Figure 10 is the result of combining homography estimation in Figure 8 and tracking result from
Figure 9. BPF tracking gives players’ positions, and homographies can transform their positions to the rink map.

7. CONCLUSIONS

This paper describes an automatic system of computing homographies over a long image sequence and rectifying the
sequence by compensating for the panning, tilting and zooming of the cameras. Since our model-based correction system
performs a local search of both straight and circular line segments and distinguishes them by their orientation, it does not
require direct methods of conic detection or line detection. It achieves robustness by combining a number of different
methods that would not be sufficient on their own.



Frame 1 Frame 25

Frame 50 Frame 95

Figure 9. BPF tracking result: The results of BPF tracking are shown over 80 frames of a digitized video sequence.

Figure 10. Combined trajectories of several hockey players in Figure 9

Our system is easily applicable to different scenes such as soccer, football, or many other scenes that have a planer
surfaces with identifiable features and line segments.

We have also devised an approach to combining the strengths of Adaboost for object detection with those of mixtures
of particle filters for multiple-object tracking. We have experimented with this boosted particle filter in the context of
tracking hockey players in video from broadcast television. The results show that most players are successfully detected
and tracked, even as players move in and out of the scene.

Trajectories of hockey players being tracked are automatically generated by using estimated homographies and trans-
forming positions of hockey players to the globally consistent rink map. Such visual information of scenes are then inserted
into a database system that permits querying and analysis of the motion trajectories. Our automatic system of generating
visual information of hockey scenes introduced in this work is therefore a critical part of our automatic hockey annotatin
system that unltimately analyzes scenes of hockey games, recoginizes and predicts motions of hockey players.
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