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Abstract

This paper addresses the problem of automatically com-
puting homographies between successive frames in image
sequences and compensating for the panning, tilting and
zooming of the cameras. A homography is a projective map-
ping between two image planes and describes the trans-
formation created by a fixed camera as it pans, tilts, ro-
tates, and zooms around its optical centre. Our algorithm
achieves improved robustness for large motions by combin-
ing elements of two previous approaches: it first computes
the local displacements of image features using the Kanade-
Lucas-Tomasi (KLT) tracker and determines local matches.
The majority of these features are selected by RANSAC and
give the initial estimate of the homography. Our model-
based correction system then compensates for remaining
projection errors in the image to rink mapping. The system
is demonstrated on a digitized sequence of an NHL hockey
game, and it is capable of analyzing long sequences of con-
secutive frames from broadcast video by mapping them into
the rink coordinates.

1. INTRODUCTION

With the advance of information technologies and the in-
creasing demand for managing the vast amount of visual
data in video, there is a great potential for developing reli-
able and efficient systems that are capable of understanding
and analyzing scenes. In order to design such systems that
describe scenes in video, it is essential to compensate for
camera motions by estimating a planar projective transfor-
mation (i.e., homography) [3, 5, 6, 9, 12]. This paper has
two major contributions. One is to present an algorithm for
automatically computing homographies by combining the
KLT tracking system [1, 8, 10], RANSAC [2] and the nor-
mailzed Direct Linear Transformation (DLT) algorithm [3].
The other is to describe a new model-based correction sys-
tem that fits projected images to the model and reduces pro-
jection errors produced by automatically computed homog-
raphy. Our system detects features that lie on line segments
of projected images and minimize the difference between

projected images and the model using the normalized DLT
algorithm. Similarly, Kolleret. al [7] uses line segments
of moving vehicles to track them from road traffic scenes
monitored by a stationary camera. Yamadaet. al [11] uses
line segments and circle segments of the soccer field to es-
timate camera parameters and mosaic a short sequence of
video images in order to track players and a ball in the se-
quence.

In the subsequent section, the theoretical background of
the homography (also known as a plane projective transfor-
mation, or collineation) is described. The third section de-
scribes our algorithm for automatically computing homog-
raphy between successive frames in image sequences. The
fourth section explains our model-based correction system
for compensating projection errors produced by automatic
computation of homography. In the fifth section, the result
of our experiments is presented. The final section concludes
this paper and indicates future directions of our research.

2. HOMOGRAPHY

The definition of a homography (or more generallyprojec-
tivity) in [3] is an invertible mapping of points and lines on
the projective planeP2. This gives a homography two use-
ful properties. For a stationary camera with its fixed centre
of projection, it does not depend on the scene structure (i.e.,
depth of the scene points) and it applies even if the camera
“pans and zooms”, which means to change the focal length
of the camera while it is rotating about its centre. With these
properties, a homography is applied under the circumstance
which the camera pans, tilts, rotates, and zooms about its
centre.

2.1. Representation of Homography

Homogeneous representation is used for a pointx = (x, y, w)>,
which is a 3-vector, representing a point(x/w, y/w)> in
Euclidean 2-spaceR2. As homogeneous vectors, points are
also elements of the projective spaceP2. It is helpful to con-
sider the inhomogeneous coordinates of a pair of matching
points in the world and image plane as(x/w, y/w)> and



(x′/w′, y′/w′)>, because points are measured in the inho-
mogeneous coordinates directly from the world plane. Ac-
cording to [12], a homography is a linear transformation of
P2, which is expressed in inhomogeneous form as:

x′/w′ =
Ax + By + C

Px + Qy + R
, y′/w′ =

Dx + Ey + F

Px + Qy + R
(1)

where vectorsx andx′ are defined in homogeneous form,
and a transformation matrixM as:
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wherex ↔ x′ denotes a pair of 2D point correspondences.
Normally the scale factorw is chosen in such a way that
x/w andy/w have order of 1, so that numerical instability
is avoided.

Now, Eq. (1) can be written as:

x′ = cMx (2)

wherec is an arbitrary nonzero constant. Homographies and
points are defined up to a nonzero scalarc, and thus there
are 8 degrees of freedom for homography. Often,R = 1
and the scale factor is set asw = 1. Eq. (2) can now be
written simply as:

x′ = Hx

whereH is 3 × 3 matrix called a homography. Every cor-
respondence (x, x′) gives two equations. Therefore, com-
puting a homography with this algorithm requires at least
four correspondences. The normalized DLT algorithm [3]
is used to compute frame-to-frame homographies. Figure 1
shows the result of homography transformation by the nor-
malized DLT algorithm based on manually selected corre-
spondences.

3. COMPUTATION OF THE HOMOGRAPHY

Given a sequence of images acquired by a broadcast cam-
era, the objective is to specify a point-to-point planar ho-
mography map in order to remove the camera motion in
images. Our algorithm has four major steps to automati-
cally compute homographies.

3.1. Reduce vision challenges

Since the source of our data is video clips of broadcast
hockey games, there are various vision problems to deal
with, namely camera flashes that cause a large increase of
image intensities and rapid motions of broadcast cameras
for capturing highly dynamic hockey scenes.

(a) The original image

(b) the correspondences on the rink map

(c) The transformation result

Fig. 1. Homography Transformation. (a) shows the
original image (320 × 240) to be transformed. (b) shows
manually selected points that are corresponding to those on
the rink in the image, which are used only for the initial
frame in a video sequence. The correspondences are paired
up by the numeric number. (c) is the result (1000× 425) of
the transformation.

3.1.1. Flash Detection

In order to deal with camera flashes in digitized hockey se-
quences, automatic detection of those flashes is necessary.
Figure 2 shows the average intensity of over 2300 consecu-
tive frames.

In the graph, there are several sudden spikes which in-
dicate that there is a camera flash for that particular frame.
With our observation of camera flashes, a simple flash de-
tection method is derived by taking the difference of the
average intensity from two successive frames.

3.1.2. Prediction

Broadcast cameras often make rapid motions to capture dy-
namic hockey scenes during a game. The amount of motion,
however, can be reduced bypredicting the current camera
motion based on the previous camera motion. For instance,
given a frame-to-frame homographyH1,2 that represents
the camera motion from Frame 1 to Frame 2,H1,2 is used
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Fig. 2. The average intensities over 2300 frames.The
vertical axis indicates the number of the intensity ranging
from 130 to 230 where 130 indicates a darker pixel and 230
is a brighter pixel. The horizontal axis is the number of the
frame.

as the estimation ofH2,3 to transform Frame 2 so that we
can minimize the amount of motion between Frame 2 and
Frame 3. That is, to have the following assumption:

Hn,n−1 ≈ Hn+1,n

where every successive frame is processed andHn−1,n means
a homography from Framen− 1 to Framen. This assump-
tion holds only without skipping too many frames. In our
experiments, our system processes every fourth frame of
data sampled at 30 frames per second, and shows that it is
capable of compensating a large motion of a camera.

3.2. Acquisition of correspondences

For successful homography computation, it is crucial to have
a reliable set of point correspondences that gives an accu-
rate homography. KLT gives those correspondences auto-
matically by extracting features and tracking them. That is,
those features that are successfully tracked by KLT between
images are ones that are corresponding to each other.

3.3. RANSAC: Elimination of outliers

Correspondences gained by KLT are yet imperfect to esti-
mate a correct homography because they also include out-
liers. Though an initial set of correspondences selected by
KLT contains a good proportion of correct matches, RANSAC
is used to identify consistent subsets of correspondences
and obtain a better homography. In RANSAC, a putative
set of correspondences is produced by a homography based
on a random set of four correspondences, and outliers are
eliminated by the homography.

3.3.1. Sample Selection

Distributed spatial sampling is used to avoid choosing too
many collinear points to produce degenerate homography.
In the sampling, a whole image is divided into four sub-
regions of an equal size so that each correspondence is sam-
pled from a different sub-region. Once four point corre-
spondences are sampled with a good spatial distribution, a
homography is computed based on those correspondences
and use the homography to select an initial set of inliers.
For inlier classification, we use the symmetric transfer error
d2

transfer, defined in [3]:
Let x ↔ x′ be the point correspondence andH be a

homography such thatx′ = Hx, then

d2
transfer = d(x,H−1x′)2 + d(x′,Hx)2 (3)

whered(x,H−1x′) represents the distance betweenx and
H−1x′. After the symmetric transfer error is estimated
from each point correspondence, we then calculate the stan-
dard deviation of the sum of the symmetric errors from all
correspondences, which is denoted byσerror and defined as
follows:

Suppose there areN point correspondences and each one
of them has the symmetric transfer error{d2

transfer}i=1...N ,
then:

σerror =

√∑
1≤i≤N ({d2

transfer}i − µ)2

N − 1
(4)

whereµ is the mean of the symmetric errors. Now we can
classify an outlier as any pointxi that satisfies the following
condition:

γ(xi) =

{
0 {d2

transfer}i ≥
√

5.99 ∗ σerror (outlier)
1 Otherwise (inlier)

(5)
whereγ is a simple binary function that determines whether
the pointxi is an outlier. The distance threshold is chosen
based on a probability of the point being an inlier. The con-
stant real number,

√
5.99, is, therefore, derived by comput-

ing the probability distribution for the distance of an inlier
based on the model of which this case is the homography
matrix [3].

3.3.2. Adaptive termination of sampling

After sampling four spatially distributed correspondences
and classifying inliers and outliers, the termination of sam-
pling needs to be determined in order to save unnecessary
computation. An adaptive algorithm [3] for determining the
number of RANSAC samples is implemented for that pur-
pose. The adaptive algorithm gives us a homography that
produces the largest number of inliers by adaptively deter-
mining the termination of the algorithm with respect to the



probability of at least one of the random samples being free
from outliers and that of any selected data point being an
outlier.

3.4. Selection of best inliers

The set of inliers selected by RANSAC sometimes contains
a large number of matches. This set is further refined by
eliminating points with a large amount of the symmetric
transfer error in Eq.(3) and making a set of better inlying
matches. The aim of this further estimation is, therefore, to
obtain an improved estimate of a homography with better
inliers selected by randomly selected 100 point correspon-
dences, instead of being selected by only randomly selected
four point correspondences in RANSAC. The number, 100,
is chosen because a least square solution of more than 100
point correspondences requires inefficient amount of com-
putation. If the set of inliers contains less than 100 matches,
then this process is skipped.

The process of the further estimation is that at each it-
eration, a homography is estimated with a set of 100 ran-
domly selected point correspondences that are considered
to be inliers, classify a set of all correspondences based on
our simple classifier in Eq.(5) and update a set of inliers.
the process is repeated until the symmetric error of all the
inlier becomes less than

√
5.99 ∗ σerror. An important re-

mark of this estimation process is to take an initial set of
correspondences into account without eliminating any one
of them, and to consider some outliers being re-designated
as inlilers.

4. MODEL FITTING

In order to reduce projection errors from automatic com-
putation of the homography, model fitting is applied to the
result of the homography transformation. The rink dimen-
sions and our model are strictly based on the official mea-
surement presented in [4]. Our model consists of features
on lines and circles of the rink. There are 296 features in
total: 178 features on four End-Zone circles, 4 features on
centre ice face-off spots around the centre circle, and 114
features on lines.

4.1. Edge search

This section describes how to fit projected images to our
model of the rink and reduce projection errors produced by
automatic computation of homography. In order to fit the
projected images to the model, a local search is performed
on each model point appearing within the region of each
projected image. The local search is conducted to find the
nearest edge pixel in the image. Figure 3 shows how to fit
the projected image to our rink model.

Fig. 3. Fitting a projected image to our model of the
rink. Dotted lines represent the projected image and solid
lines represent the model. Although only two examples of
matching a projected point to a model point are presented
in this image, a local search is performed for finding the
nearest edge pixel (i.e., a projected point) from all model
points appearing within the projected image.

For edge detection, the search is performed locally only
on high gradient regions in the original sequence where
there are most likely edges in order to save on the compu-
tational time. In the search on high gradient regions, edge
orientation is considered to find a most likely edge pixel.
Given an image,I, the image gradient vectorg is repre-
sented as:

g(x) =

(
∂
∂x (I)
∂
∂y (I)

)
The gradient vector represents the orientation of the edge.
The orientation is perpendicular to the direction of the lo-
cal line or circle segment. Figure 4 shows the orientation of
two edges that form a thick line in the image. Since lines
and circles of the hockey rink are not single edges but thick
lines, they give two peaks of gradients. The image gradi-
ent vectorg is computed from the original image because
the projected image may not give accurate gradients due to
resampling effects. Figure 5 shows how the edge search is
conducted.

As it is shown in the figure, the edge search does not per-
fectly detect all the edge pixels on the rink surface. For
instance, in (b) of Figure 5, there is one edge pixel that
does not belong to any lines in the left bottom face-off cir-
cle. Furthermore, there are not many edge points detected
on the centre circle since there are many gradient peaks
detected on the line of the circle, the edges of the logo,
and the edges of the letters. In order to avoid finding edge
points that are not on the edge of the circles or lines on the
rink, our edge search ignores ambiguous regions with many
edges by detecting multiple gradient peaks in the search re-
gion. Givenn edge points found by our edge search, these
points can be used to compute a transformation,Hcorr, to
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Fig. 4. Edge orientation. The orientation of the edge is
represented as the normal vector (i.e., gradient vector) that
is perpendicular to the edge. The threshold is set as20◦ to
match the orientation.

(a) local edge search

(b) Edge points found by the search

Fig. 5. Searching edges. (a) shows the search regions
(lighter points) and high gradient regions (darker points).
It is shown that edges lie on high gradient regions. (b) is
the result of the edge search. It shows how successfully our
search detects edge points for each model points.

(a) The result without fitting the model

(b) The result with fitting the model

Fig. 6. The result of our model fitting. (a) is the result
after 323 frames without using the model fitting. (b) is the
result after 323 frames with the model fitting. (b) clearly
shows a more accurate projection over 300 frames.

rectify a projected image to the model. The normalized
DLT algorithm is used to computeHcorr based on 2D to
2D point correspondences{xEdge

i ↔ xModel
i }i=1...n where

{xEdge
i }i=1...n denoten edge points detected by our edge

search and{xModel
i }i=1...n aren corresponding model points.

Overall, our edge search gives us reliable performance and
can prove that our model fitting system works well. Fig-
ure 6 shows how effective our model fitting is for reducing
accumulative projection errors over a sequence of frames.

5. EXPERIMENTS

This section presents the result of our experiments. In Fig-
ure 7, our system is demonstrated on a sequence of 1900
frames that is digitized from a video clip of NHL hockey
games on TV. The system processes every fourth frame and
rectifies them by computing 1200 KLT features from which
the best inliers are selected. Once a set of correspondences
are manually selected only on the very first frame of the se-
quence to compute the transformation between the image
and rink mapping, homographies between the rest of the
sequence and rink mapping are automatically computed by
our algorithm. Our non-optimized implementation in C on
a 2.8 GHz Pentium IV takes about an hour to process 1900
frames of data. Figure 7 shows the successful automatic rec-
tification. Although our system is demonstrated on Hockey
data at this time, our algorithm is also applicable to other
domains of sports such as soccer and football or any other
planar surface scenes with identifiable features.



6. CONCLUSION

This paper describes an automatic system of computing ho-
mographies over a long image sequence and rectifying the
sequence by compensating for the panning, tilting and zoom-
ing of the cameras. Since our model-based correction sys-
tem performs a local search of both straight and circular
line segments and distinguishes them by their orientation, it
does not require direct methods of conic detection or line
detection. It achieves robustness by combining a number of
different methods that would not be sufficient on their own.

Our system is easily applicable to different scenes such
as soccer, football, or many other scenes that have a planer
surfaces with identifiable features and line segments. Among
many directions and improvements considered in future, the
speed up of computation is primarily required to make our
system a practical application.
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(a) Frame 1

(b) Frame 600

(c) Frame 1200

(d) Frame 1850

Fig. 7. Automatic rectification result. The figure shows
the result of our algorithm on over 1800 frames on hockey
data. The left column shows the original image (320×240)
to be transformed and on the right, it shows a rectified image
that is superimposed on the model of the rink map.


