
Run the GAMUT:
A Comprehensive Approach to Evaluating Game-Theoretic Algorithms

Eugene Nudelman Jennifer Wortman Yoav Shoham
{eugnud;jwortman;shoham}@cs.stanford.edu Stanford University, Stanford, CA 94305

Kevin Leyton-Brown
kevinlb@cs.ubc.ca University of British Columbia, Vancouver, BC V6T 1Z4

Abstract

We present GAMUT1, a suite of game generators de-
signed for testing game-theoretic algorithms. We explain
why such a generator is necessary, offer a way of visual-
izing relationships between the sets of games supported by
GAMUT, and give an overview of GAMUT’s architecture.
We highlight the importance of using comprehensive test
data by benchmarking existing algorithms. We show sur-
prisingly large variation in algorithm performance across
different sets of games for two widely-studied problems:
computing Nash equilibria and multiagent learning in re-
peated games.2

1. Introduction

Researchers in multiagent systems have become increas-
ingly interested in game theory as a modeling tool. This
has led to growing interest in computational problems as-
sociated with game-theoretic domains. Two such problems
are computing Nash equilibria and learning to achieve good
payoffs in repeated games. It is often difficult to offer theo-
retical guarantees about such algorithms’ performance: the
computational complexity of many algorithms for comput-
ing Nash remains an interesting open problem [14], and
there is rarely anything that can be proven about the sort of
performance a learning algorithm will achieve without mak-
ing reference to the game it will play or the opponents it will
face. For these sorts of reasons, researchers needing to eval-
uate algorithms for game-theoretic problems often choose
to perform empirical tests.

One general lesson that has been learned by researchers
working in a wide variety of different domains is that an
algorithm’s performance can vary substantially across dif-
ferent “reasonable” distributions of problem instances, even

1 Available athttp://gamut.stanford.edu
2 This work was supported by NSF grant IIS-0205633 and DARPA

grant F30602-00-2-0598.

when problem size is held constant [9]. When we examine
the empirical tests that have been performed on algorithms
that take games as their inputs, we find that they have typi-
cally been small-scale and involved very particular choices
of games. Such tests can be appropriate for limited proofs-
of-concept, but cannot say much about an algorithm’s ex-
pected performance in new domains. For this, a compre-
hensive body of test data is required.

It is not obvious that a library of games should be diffi-
cult to construct. After all, games (if we think for the mo-
ment about normal-form representations) are simply matri-
ces with one dimension indexed by action for each player,
and one further dimension indexed by player. We can thus
generate games by taking the number of players and of ac-
tions for each player as parameters, and populate the corre-
sponding matrix with real numbers generated uniformly at
random. Is anything further required?

We set out to answer this question by studying sets of
games that have been identified as interesting by computer
scientists, game theorists, economists, political scientists
and others over the past 50 years. Our attempt to get a
sense of this huge literature led us to look at several hun-
dred books and papers, and to extract one or more sets of
games from more than a hundred sources. To our surprise,
we discovered two things.

First, forevery oneof the sets of games that we encoun-
tered, the technique described above would generate a game
from that set with probability zero. More formally, all of
these sets arenon-genericwith respect to the uniform sam-
pling procedure. It is very significant to find that an un-
biased method of generating games has only an infinitesi-
mal chance of generating any of these games that have been
considered realistic or interesting. Since we know that algo-
rithm performance can depend heavily on the choice of test
data, it would be unreasonable to extrapolate from an algo-
rithm’s performance on random test data to its expected per-
formance on real-world problems. It seems that test data for
games must take the form of a patchwork of generators of
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Figure 1. GAMUT Taxonomy (Partial)

different sets of games.

Second, we were surprised to find very little work that
aimed to understand, taxonomize or even enumerate non-
generic games in a holistic or integrative way. We came
across work on understandinggenericgames [7], and found
a complete taxonomy of two-player two-action games [15].
Otherwise, work that we encountered tended to fall into one
or both of two camps. Some work aimed to describe and
characterize particular sets of games that were proposed
as reasonable models of real-world strategic situations or
that presented interesting theoretical problems. Second, re-
searchers proposed novel representations of games, explic-
itly or implicitly identifying sets of games that could be
specified compactly in these representations.

In this paper we aim to fill this gap: to identify interest-
ing sets of non-generic games comprehensively and with as
little bias as possible. In the next section we describe this
effort, highlighting relationships between different sets of
games we encountered in our literature search and describ-
ing issues that arose in the identification of game generation
algorithms. In section 3 we give experimental proof that a
comprehensive test suite is required for the evaluation of
game-theoretic algorithms. For our two example problems,
computing Nash equilibria and learning in repeated games,

we show that performance for different algorithms varies
dramatically across different sets of games even when the
size of the game is held constant, and that performance on
random games can be a bad predictor of performance on
other games. Finally, in the appendix, we briefly describe
GAMUT’s architecture and implementation, including dis-
cussion of how new games may easily be added.

2. GAMUT

For the initial version of GAMUT we considered only
games whose normal-form representations can be comfort-
ably stored in a computer. Note that this restriction does not
rule out games that are presented in a more compact rep-
resentation such as extensive form or graphical games; it
only rules outlarge examples of such games. It also rules
out games with infinite numbers of agents and/or of ac-
tions and Bayesian games. We make no requirement that
games mustactually be stored in normal form; in fact,
GAMUT supports a wide array of representations (see the
appendix). Some arecomplete(able to represent any game)
while otherincompleterepresentations support only certain
sets of games. We will say that a given representation de-
scribes a set of gamescompactlyif its descriptions of games



in the set are exponentially shorter than the games’ descrip-
tions in normal form.

In total we identified 122 interesting sets of games in
our literature search, and we were able to find finite time
generative procedures for 71. These generative sets ranged
from specific two-by-two matrix games with little variation
(e.g., Chicken) to broad classes extensible in both number
of players and number of actions (e.g., games that can be
encoded compactly in the Graphical Game representation).

2.1. The Games

To try to understand the relationships between these dif-
ferent sets of non-generic games, we set out to relate them
taxonomically. We settled on identifying subset relation-
ships between the different sets of games. Our taxonomy
is too large to show in full, but a fragment of it is shown
in Figure 1. To illustrate the sort of information that can
be conveyed by this figure, we can see that all Dispersion
Games [6] are Congestion Games [17] and that all Conges-
tion Games have pure-strategy equilibria.

Besides providing some insight into the breadth of gen-
erators included in GAMUT and the relationships between
them, our taxonomy also serves a more practical purpose:
allowing the quick and intuitive selection of a set of gener-
ators. If GAMUT is directed to generate a game from a set
that does not have a generator (e.g., supermodular games
[13]; games having unique equilibria) it chooses uniformly
at random among the generative descendants of the set and
then generates a game from the chosen set. GAMUT also
supports generating games that belong to multiple intersect-
ing sets (e.g., symmetric games having pure-strategy equi-
libria); in this case GAMUT chooses uniformly at random
among the generative sets that are descendants of all the
named sets.

The data we collected in our literature search—including
bibliographic references, pseudo-code for generating games
and taxonomic relationships between games—will be use-
ful to some researchers in its own right. We have gathered
this information into a database which is publicly avail-
able fromhttp://gamut.stanford.edu as part of
the GAMUT release. Besides providing more information
about references than we can fit into a conference-length pa-
per, this database also allows users to navigate according to
subset/superset relationships and to perform searches.

2.2. The Generators

Roughly speaking, the sets of games that we enumer-
ated in the taxonomy can be partitioned into two classes, re-
flected by different colored nodes in Figure 1. For some sets
we were able to come up with an efficient algorithmic pro-
cedure that can, in finite time, produce a sample game from

Arms Race Grab the Dollar Polymatrix Game
Battle of the Sexes Graphical Game Prisoner’s Dilemma
Bertrand Oligopoly Greedy Game Random Games
Bidirectional LEG Guess 2/3 Average Rapoport’s Distribution

Chicken Hawk and Dove Rock, Paper, Scissors
Collaboration Game Local-Effect Game Shapley’s Game
Compound Game Location Game Simple Inspection Game
Congestion Game Majority Voting Traveler’s Dilemma

Coordination Game Matching Pennies Uniform LEG
Cournot Duopoly Minimum Effort Game War of Attrition
Covariant Game N-Player Chicken Zero Sum Game
Dispersion Game N-Player Pris Dilemma

Table 1. Game Generators in GAMUT

that set, and that has the ability to produce any game from
that set. We call such setsgenerative. For others, we could
find no reasonable procedure. One might consider a rejec-
tion sampling approach that would generate games at ran-
dom and then test whether they belong to a given setS.
However, ifS is non-generic—which is true for most of our
sets, as discussed above—such a procedure would fail to
produce a sample game in any finite amount of time. Thus,
we do not consider such procedures as generators.

Cataloging the relationships among sets of games and
identifying generators prepared us for our next task, creat-
ing game generators. The wrinkle was that generative al-
gorithms were rarely described explicitly in the literature.
While in most cases coming up with an algorithm was
straightforward, we did encounter several interesting issues.

Sometimes an author defined a game too narrowly
for our purposes. Many traditional games (e.g., Pris-
oner’s Dilemma) are often defined in terms of precise
payoffs. Since our goal was to construct a generator ca-
pable of producing an infinite number of games be-
longing to the same set, we had to generalize these
games. In the case of Prisoner’s Dilemma, we can gener-
ate any game (

R,R S, T
T, S P, P

)

which satisfiesT > R > P > S andR > (S +T )/2. (The
latter condition ensures that all three of the non-equilibrium
outcomes are Pareto optimal.) Thus, an algorithm for gen-
erating an instance of Prisoner’s Dilemma reduces to gener-
ating four numbers that satisfy the given constraints. There
is one subtlety involved with this approach to generalizing
games. It is a well-known fact that a positive affine transfor-
mation of payoffs does not change strategic situation mod-
eled by the game. It is also a common practice to normal-
ize payoffs to some standard range before reasoning about
games. We ensure that no generator ever generates instances
that differ only by a positive affine transformation of pay-
offs.

In other cases the definition of a set was too broad,
and thus had to be restricted. In many cases, this could be
achieved via an appropriate parametrization. An interesting
example of this is the set of Polymatrix Games [5]. These
aren-player games with a very special payoff structure: ev-



ery pair of agents plays a (potentially different) 2-player
game between them, and each agent’s utility is the sum of
all of his payoffs. The caveat, however, is that the agent
must play thesameaction in all of his two-player games. We
realized that these games, though originally studied for their
computational properties, could be generalized and used es-
sentially as a compact representation for games in which
each agent only plays two-player games against somesub-
set of the other agents. This led to a natural parametriza-
tion of polymatrix games with graphs. Nodes of the graph
now represent agents, and edges are labeled with different
2-player games.3 Thus, though we still can sample from the
set of all polymatrix games using a complete graph, we are
now able also to focus on more specific and, thus, even more
structured subsets.

Sometimes we encountered purely algorithmic difficul-
ties. For example, in order to implement geometric games
[18] we needed data structures capable of representing and
performing operations on abstract sets (such as finding in-
tersection, or enumerating subsets).

In some cases one parameterized generator was able to
generate games from many different sets. For example, we
implemented a single generator based on work by Rapoport
[15] which demonstrated that there are only 85 strategically
different 2x2 games, and so did not need to implement gen-
erators for individual 2x2 games mentioned in the litera-
ture. We did elect to create separate generators for several
very common games (e.g., Matching Pennies; Hawk and
Dove). We also used our taxonomy to identify similar sets
of games, and either implemented them with the same gen-
erator or allowed their separate generators to benefit from
sharing common algorithms and data structures. In the end
we built 35 parameterized generators to support all of the
generative sets in our taxonomy; these are listed in Table 1.

The process of writing generators presented us with a
nontrivial software engineering task in creating a coherent
and easily-extensible software framework. Once the frame-
work was in place, incrementally adding new generators be-
came easy. Some of these implementation details are de-
scribed in the Appendix.

3. Running the GAMUT

At the beginning of this paper we claimed that it is neces-
sary to evaluate game-theoretic algorithms on a wide range
of distributions before empirical claims can be made about
the algorithms’ strengths and weaknesses. Of course, such
a claim can only be substantiated after a test suite has been
constructed. In this section we show that top algorithms for

3 Note that this is a strict subset of graphical games, where payoffs for
each player also depend only on the actions of its neighbors, but it is
not assumed that payoffs have the additive decomposition.

two computational problems in game theory do indeed ex-
hibit dramatic variation across distributions, implying that
small performance tests would be unreliable.

All our experiments were performed using a cluster of
12 dual-CPU 2.4GHz Xeon machines running Linux 2.4.20,
and took about 120 CPU-days to run. We capped runs for all
algorithms at 30 minutes (1800 seconds).

3.1. Computation of Nash Equilibria

One of the most interesting computational problems in
game theory is computing Nash equilibria. All evidence
suggests that this is a hard problem (e.g., [4, 3]), yet the
precise complexity class into which the problem falls is un-
known [14]. In this section we use GAMUT to evaluate
three algorithms’ empirical properties on this problem.

3.1.1. Experimental SetupThe best-known game theory
software package is Gambit [12], a collection of state-
of-the-art algorithms. For two-player games the Lemke-
Howson algorithm [8] is best and is used by default in Gam-
bit. Forn-player games Gambit uses an algorithm based on
Simplicial Subdivision [19]. In both cases, Gambit performs
iterative removal of dominated strategies as a preprocess-
ing step. Govindan and Wilson [5] introduced an alterna-
tive algorithm based on a continuation method. We use a
recent optimized implementation, the GameTracer package
[1]. This work also included speedups for the Govindan-
Wilson algorithm on the special cases of compact graphi-
cal games and MAIDs, but because we expanded all games
to their full normal forms Govindan-Wilson did not bene-
fit from these extensions in our experiments.

One factor that can have a significant effect on an algo-
rithm’s runtime is the size of its input. Since our goal was
to investigate the extent to which runtimes vary as the re-
sult of differences between distributions, we studied fixed-
size games. To make sure that our findings were not artifacts
of any particular problem size we compared results across
several fixed problem sizes. We ran the Lemke-Howson al-
gorithm on games with 2 players, 150 actions and 2 play-
ers, 300 actions. Because Govindan-Wilson is very simi-
lar to Lemke-Howson on two-player games and is not opti-
mized for this case [1], we did not run it on these games. We
ran Govindan-Wilson and Simplicial Subdivision on games
with 6 players, 5 actions and 18 players, 2 actions. For each
problem size and distribution, we generated 100 games.

Both to keep our machine-time demands manageable
and to keep the graphs in this paper from getting too clut-
tered, we chose not to useall of the GAMUT generators.
Instead, we chose a representative slate of 22 distributions
from GAMUT. Some of our generators (e.g., Graphical
Games, Polymatrix games, and Local Effect Games–LEGs)
are parameterized by graph structure; we split these into
several sub-distributions based on the kind of graph used.



Suffixes “-CG”, “-RG”, “-SG”, “-SW” and “-Road” indi-
cate, respectively, complete, random, star-shaped, small-
world, and road-shaped (see [20]) graphs. Another distribu-
tion that we decided to split was the Covariant Game distri-
bution, which implements the random game model of [16].
In this distribution, payoffs for each outcome are generated
from a multivariate normal distribution, with correlation be-
tween all pairs of players held at some constantρ. With
ρ = 1 these games are common-payoff, whileρ = −1

n−1
yields minimum correlation and leads to zero-sum games
in the two-player case. Rinott and Scarsini show that the
probability of the existence of a pure strategy Nash equi-
librium in these games varies as a monotonic function of
ρ, which makes the games computationally interesting. For
these games, suffixes “-Pos”, “-Zero”, and “-Rand” indicate
whetherρ was held at0.9, 0, or drawn uniformly at ran-
dom from[ −1

n−1 , 1].
Lemke-Howson, Simplicial Subdivision and Govindan-

Wilson are all very complicated path-following numerical
algorithms that offer virtually no theoretical guarantees.
They all have worst-case running times that are at least ex-
ponential, but it is not known whether this bound is tight.
On the empirical side, very little previous work has at-
tempted to evaluate these algorithms. The best-known em-
pirical results [11, 21] were obtained for generic games
with payoffs drawn independently uniformly at random (in
GAMUT, this would be theRandomGamegenerator). Our
work may therefore represent the first systematic attempt
to understand the empirical behavior of these algorithms on
non-generic games.

3.1.2. Experimental ResultsFigure 2 shows each algo-
rithm’s performance across distributions for two different
input sizes. TheY -axis shows CPU time measured in sec-
onds and plotted on a log scale. Column height indicates
median runtime over 100 instances, with the error bars
showing the 25th and 75th percentiles. The most impor-
tant thing to note about this graph is that each algorithm
exhibits highly variable behavior across our distributions.
This is less visible for the Govindan-Wilson algorithm on
18-player games, only because this algorithm’s runtime ex-
ceeds our cap for a majority of the problems. However, even
on this dataset the error bars demonstrate that the distribu-
tion of runtimes varies substantially with the distribution.
Moreover, for all three algorithms, we observe that this vari-
ation is not an artifact of one particular problem size.

Figure 3 illustrates runtime differences both across and
among distributions for 6-player 5-action games. (Though
we do not have space to show them here, we observed qual-
itatively similar results for different input sizes and for the
Lemke-Howson algorithm.) Each dot on the graph corre-
sponds to a single run of an algorithm on a game. This graph
shows that the distribution of algorithm runtimes varies sub-
stantially from one distribution to another, and cannot easily
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Figure 2. Effect of Problem Size on Solver
Performance

be inferred from 25th/50th/75th quartile figures such as Fig-
ure 2. The highly similar Simplicial Subdivision runtimes
for Traveler’s Dilemma and Minimum Effort Games are ex-
plained by the fact that these games can be solved by it-
erated elimination of dominated strategies—a step not per-
formed by the GameTracer implementation of Govindan-
Wilson. We note that distributions that are related to each
other in our taxonomy (e.g., all kinds of Graphical Games,
LEGs, or Polymatrix Games) usually give rise to similar—
but not identical—algorithmic behavior.

Figure 3 makes it clear that algorithms’ runtimes exhibit
substantial variation and that algorithms often perform very
differently on the same distributions. However, this figure
makes it difficult for us to reach conclusions about the ex-
tent to which the algorithms are correlated. For an answer to
this question, we turn to Figure 4. Each data point represents
a single 6-player, 5-action game instance, with theX-axis
representing runtime for Simplicial Subdivision and theY -
axis for Govindan-Wilson. Both axes use a log scale. This
figure shows that when we focus on instances rather than
on distributions, these algorithms are very highly uncorre-
lated. Simplicial Subdivision does strictly better on 67.2%
of the instances, while timing out on 24.7%. Govindan-
Wilson wins on 24.7% and times out on 36.5%. It is in-
teresting to note that if a game is easy for Simplicial Sub-
division, then it will often be harder for Govindan-Wilson,
but in general neither algorithm dominates.
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Figure 3. Runtime Distribution for 6-player, 5-
action Games

3.2. Multiagent Learning in Repeated Games

The last few years have seen a surge of research into mul-
tiagent learning, resulting in the recent proposal of several
new algorithms. This research area is still at a very early
stage, particularly with respect to the identification of the
best metrics and standards of performance to use for eval-
uating algorithms. As a result, we do not claim that our re-
sults demonstrate anything about the relative merit of the al-
gorithms we study. We believe it is clear, however, that our
results show that these algorithms’ performance depends
crucially on the distributions of games on which they are
run, and thus that GAMUT will be a useful tool for re-
searchers in the multiagent learning community.

3.2.1. Experimental SetupWe used three learning algo-
rithms: Minimax-Q [10], WoLF [2], and a version of the
original Q-learning algorithm for single agent games [22]
modified for use by an individual player in a repeated game
setting. These algorithms have received much study in re-
cent years; they each have very different performance guar-
antees, strengths and weaknesses. Single-agent Q-learning
assumes away the multiagent component, and thus is not
guaranteed to converge at all against an adaptive opponent.
Minimax-Q plays a safety-level strategy, and so does not
necessarily converge to a best response. WoLF is a variable-
learning-rate policy-hill-climbing algorithm thatisdesigned
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to converge to a best response. Previous work in the litera-
ture has established that each of these algorithms is very
sensitive to its parameter settings (e.g., learning rate) and
that the best parameter settings usually vary from one game
to the next. Since it is infeasible to perform per-game pa-
rameter tuning in an experiment involving tens of thousands
of games, we determined parameter values that reproduced
previously-published results from [10, 2, 22] and then fixed
these parameters for all experiments.

In our experiments we chose to focus on a set of 13 dis-
tributions. As before, we keep game sizes constant, this time
at 2 actions and 2 players for each game. Although it would
also be interesting to study performance in larger games, we
decided to focus on a simpler setting in which it would be
easier to understand the results of our experiments. For each
distribution we generated 100 game instances. For each in-
stance we performed nine different pairings (each possible
pairing of the three algorithms, including self-pairings, and
in the case of non-self-pairings also allowing each algorithm
to play once as player 1 and once as player 2). We ran the al-
gorithms on each pairing ten times, since we found that al-
gorithm performance varied based on the outcomes of coin
flips. On each run, we repeated the game 100,000 times. The
first 90,000 rounds allow the algorithms to settle into their
long-run behavior; we then compute each algorithm’s pay-
off for each game as its average payoff over the following
10,000 rounds. We did this to approximate the offline per-
formance of the learned policy and to minimize the effect
of relative differences in the algorithms’ learning rates.

3.2.2. Experimental ResultsThere are numerous ways in
which learning algorithms can be evaluated. In this section
we focus on just two of them. A more comprehensive set
of experiments would be required to judge the relative mer-
its of algorithms, but this smaller set of experiments is suf-
ficient to substantiate our claim that algorithm performance
varies significantly from one distribution to another.
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Figure 5. Pairwise Comparison of Algorithms

Figure 5 compares the pairwise performance of three al-
gorithms. The height of a bar along theY -axis indicates the
(normalized) fraction of games in which the corresponding
algorithm received a weakly greater payoff than its oppo-
nent. In this metric we ignore the magnitude of payoffs,
since in general they are incomparable across games. The
overall conclusion that we can draw from this graph is that
there is great variation in the relative performance of algo-
rithms across distributions. There is no clear “winner”; even
Minimax-Q, which is usually outperformed by WoLF, man-
ages to win a significant fraction of games across many dis-
tributions, anddominatesit on Traveler’s Dilemma. WoLF
and single-agent Q come within10% of a tie most of the
time—suggesting that these algorithms often converge to
the same equilibria—but their performance is still far from
consistent across different distributions.

Figure 6 compares algorithms using a different metric.
Here theY -axis indicates the average payoff for an algo-
rithm when playing as player 1, with column heights indi-
cating the median and error bars indicating 25th and 75th
percentiles. Payoffs are normalized to fall on the range
[−1, 1]. Despite this normalization, it is difficult to make
meaningful comparisons of payoff values across distribu-
tions. This graph is interesting because, while focusing on
relative performance rather than trying to identify a “win-
ning” algorithm, it demonstrates again that the algorithms’
performance varies substantially along the GAMUT. More-
over, this metric shows Minimax-Q to be much more com-
petitive than was suggested by Figure 5.

4. Conclusion

In this paper we presented GAMUT, a game theory test
suite. We surveyed hundreds of books and papers to compile
a comprehensive database of structured non-generic games
and the relationships between them. We built a highly mod-
ular and extensible software framework, and used it to im-
plement generators for these sets of games. Finally, we
demonstrated the importance of comprehensive test data
to game-theoretic algorithms by showing how performance
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Figure 6. Median Payoffs as Player 1

depends crucially on the distribution of instances on which
an algorithm is run. We hope that GAMUT will become
a useful tool for researchers working at the intersection of
game theory and computer science.
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Appendix: GAMUT Implementation

The GAMUT software was built using an object-oriented
framework and implemented in Java4. Our framework con-
sists of objects in four basic categories: game generators,
graphs, functions, and representations. Our main design ob-
jective was to make it as easy as possible for end users to
write new objects of any of the four kinds, in order to al-
low GAMUT to be extended to support new sets of games
and representations.

Currently, GAMUT contains 35 implementations of
Game objects, which correspond the 35 procedures we
identified in 2.2. They are listed in Table 1. While the in-
ternal representations and algorithms used vary depend-
ing on the set of games being generated, all of them must
be able to return the number of players, the number of ac-
tions for each player, and the payoff for a each player for
any action profile.Outputter classes then encode gener-
ated games into appropriate representations.

Many of our generators depend on random graphs (e.g.,
Graphical Games, Local Effect Games, Polymatrix Games)
and functions (e.g., Arms Race, Bertrand Oligopoly, Con-
gestion Games).Graph andFunction classes, listed in
Table 2, have been implemented to meet these needs in a

4 Seehttp://gamut.stanford.edu for detailed software docu-
mentation.



GAMUT Graph Classes:

Barabasi-Albert PLOD Power-Law Out-Degree
Complete Graph Random Graph

N-Ary Tree Ring Graph
N-Dimensional Grid Small World Graph

N-Dimensional Wrapped Grid Star Graph

GAMUT Function Classes:

Exponential Function Polynomial Function
Log Function Table Function

Decreasing Wrapper Increasing Polynomial

GAMUT Outputter Classes:

Complete Representations Incomplete Representations
Default GAMUT Payoff List Local-Effect Form

Extensive Form Two-Player Readable Matrix Form
Gambit Normal Form

Game Tracer Normal Form
Graphical Form

Table 2. GAMUT Support Classes

modular way. As with games, additional classes of func-
tions and graphs can be easily added.

Outputter classes encapsulate the notion of represen-
tation. GAMUT allows for representations to be incom-
plete and to work only with compatible generators; how-
ever, most output representations work with all game gen-
erators. Table 2 lists the complete and incomplete represen-
tations that are currently supported by GAMUT.

In keeping with our main goal of easy extensibility,
GAMUT also implements a wide range of support classes
that encapsulate common tasks. For example, GAMUT uses
a powerful parameter handling mechanism. Users who want
to create a new generator can specify types, ranges, default
values and help strings for parameters. Given this informa-
tion, user help, parsing, and even randomization will all be
handled automatically. Since a large (and mundane) part of
the user’s job now becomes declarative, it is easy to focus
on the more interesting and conceptual task of implement-
ing the actual generative algorithm.

Other support utilities offer the ability to convert
games into fixed-point arithmetic and to normalize pay-
offs. The former, besides often being more efficient,
sometimes makes more sense game-theoretically: the no-
tion of a Nash equilibrium can become muddy with floating
point, since imprecision can lead to equilibrium instabil-
ity. As mentioned in section 2.2, games’ strategic properties
are preserved under positive affine transformations. Nor-
malization allows payoff magnitudes to be compared and
can avoid machine precision problems.
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