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Abstract

The problem considered in this paper is the fully au-
tomatic construction of panoramas. Fundamentally, this
problem requires recognition, as we need to know which
parts of the panorama join up. Previous approaches have
used human input or restrictions on the image sequence
for the matching step. In this work we use object recog-
nition techniques based on invariant local features to se-
lect matching images, and a probabilistic model for veri-
fication. Because of this our method is insensitive to the
ordering, orientation, scale and illumination of the images.
It is also insensitive to ‘noise’ images which are not part
of the panorama at all, that is, it recognises panoramas.
This suggests a useful application for photographers: the
system takes as input the images on an entire flash card or
film, recognises images that form part of a panorama, and
stitches them with no user input whatsoever.

1. Introduction

Panoramic image mosaicing has an extensive research
literature and there are several commercial offerings that
come bundled with today’s digital cameras. The geometry
of the problem is well understood, and consists of estimat-
ing a3 × 3 camera matrix or homography for each image
[7, 15]. However, this estimation process needs an initial-
isation. In commercial applications this usually takes the
form of user input, or a fixed ordering to the images. For
example, the PhotoStitch software bundled with Canon dig-
ital cameras requires a horizontal or vertical sweep, or a
square matrix of images. The REALVIZ Stitcher [1] has a
user interface to roughly position the images with a mouse,
before automatic registration proceeds.

In the research literature methods for automatic im-
age matching / geometry estimation fall broadly into two
camps: direct and feature based. Feature based meth-
ods [16, 6] begin by establishing correspondences between
points, lines or other geometrical entities. For example, a

typical approach would be to extract Harris corners and use
a normalised cross-correlation of the local intensity values
to match them. Direct methods [8, 14] attempt to itera-
tively estimate the camera parameters by minimising an er-
ror function based on the intensity difference in the area of
overlap. Direct methods have the advantage that they use
all of the available data and hence can provide very accu-
rate registration, but they depend on the fragile ‘brightness
constancy’ assumption, and being iterative require initiali-
sation. However (assuming that conventional features are
used) neither of these methods are robust to image zoom,
change in illumination or to ‘noise’ images which are not
part of the sequence.

Recently there has been great progress in the use of in-
variant features [12, 2, 4] for object recognition and match-
ing. These features can be found more repeatably and
matched more reliably than traditional methods such as
cross-correlation using Harris corners. Harris corners are
not invariant to scaling of the image, and cross-correlation
of image patches is not invariant to rotation. However in-
variant features are designed to be invariant to these trans-
formations. In this work we use Lowe’s [9] Scale Invari-
ant Feature Transform (SIFT features), which are geomet-
rically invariant under similarity transforms and invariant
under affine changes in intensity.

Although matching n images may seem to have
quadratic complexity, it can be reduced toO(n log n). This
is done by matching features using an approximate nearest
neighbour algorithm [3]. A similar approach was taken by
Schaffalitzky and Zisserman [11] in the context of struc-
ture from motion. Our work differs from this in our use
of panoramic image geometry. In addition we introduce a
probabilistic model for image match verification. This gives
us a principled framework for rejecting noise images and
recognising multiple panoramas in an unordered image set.

The process of optimising over the camera parameters
to minimise the matching error is known as bundle adjust-
ment [17]. We use as our objective function a robustified
sum squared error of all feature matches. This yields a



non-linear least squares problem which we solve using the
Levenberg-Marquadt algorithm. To seamlessly blend the
panorama we use a multi-band blending strategy as pro-
posed by Burt and Adelson [5]. This enables smooth transi-
tions between the images with different overall intensities,
whilst preserving sharp detail even in the presence of small
mis-registrations.

2. Feature Matching

The first step in the panoramic recognition algorithm
is to extract and match SIFT features between all of the
images. SIFT features are located at scale-space max-
ima/minima of a difference of Gaussian function. At each
feature location, a characteristic scale and orientation is es-
tablished. This gives a similarity-invariant frame in which
to make measurements. Although simply sampling inten-
sity values in this frame would be similarity invariant, the
invariant descriptor is actually computed by accumulating
local gradients in orientation histograms. This allows edges
to shift slightly without altering the descriptor vector, giving
some robustness to affine change. The vector of gradients is
normalised, and since it consists of differences of intensity
values, it is invariant to affine changes in intensity.

Assuming that the camera rotates about it’s optical cen-
tre, the group of transformations the images may undergo
is a special group of homographies. We parameterise each
camera by 3 rotation anglesθ =

[
θ1 θ2 θ3

]
and focal

lengthf . This gives pairwise homographiesũi = Hijũj

Hij = KiRiRT
j K−1

j

where

Ki =

fi 0 0
0 fi 0
0 0 1


and (using the exponential representation for rotations)

Ri = e[θi]× , [θi]× =

 0 −θi3 θi2

θi3 0 −θi1

−θi2 θi1 0


However, for small changes in image position

ui = ui0 +
∂ui

∂uj

∣∣∣∣
ui0

∆uj

or equivalentlỹui = Aijũj , where

Aij =

a11 a12 a13

a21 a22 a23

0 0 1


is an affine transformation obtained by linearising the ho-
mography aboutui0. This implies that each small image

patch undergoes an affine transformation, and justifies the
use of SIFT features which are partially invariant under
affine change.

Once features have been extracted from alln images (lin-
ear time), they must be matched. Since multiple images
may overlap a single ray, each feature is matched to it’s
k nearest neighbours (we usek = 4). This can be done
in O(n log n) time by using a k-d tree to find approximate
nearest neighbours[3].

3. Image Matching

At this stage the objective is to find all matching (i.e.
overlapping) images. Connected sets of image matches will
later become panoramas. Since each image could poten-
tially match every other one, this problem appears at first to
be quadratic in the number of images. However, it is only
necessary to match each image to a small number of neigh-
bouring images in order to get a good solution for the image
geometry.

From the feature matching step, we have identified im-
ages that have a large number of matches between them. We
consider a constant numberm images, that have the greatest
number of feature matches to the current image, as potential
image matches (we usem = 6). First, we use RANSAC to
select a set of inliers that are compatible with a homography
between the images. Next we apply a probabilistic model to
verify the match.

3.1. Probabilistic Model for Image Match Verifica-
tion

For each pair of potentially matching images we have
a set of feature matches that are geometrically consistent
(RANSAC inliers) and a set of features that are inside the
area of overlap but not consistent (RANSAC outliers). The
idea of our verification model is to compare the probabilities
that this set of inliers/outliers was generated by a correct
image match or by a false image match.

For a given image we denote the total number of features
in the area of overlapnf and the number of inliersni. The
event that this image matches correctly/incorrectly is rep-
resented by the binary variablem ε {0, 1}. The event that
the ith feature matchf (i) ε {0, 1} is an inlier/outlier is as-
sumed to be independent Bernoulli, so that the total number
of inliers is Binomial

p(f (1:nf )|m = 1) = B(ni;nf , p1)

p(f (1:nf )|m = 0) = B(ni;nf , p0)

wherep1 is the probability a feature is an inlier given a
correct image match, andp0 is the probability a feature



is an inlier given a false image match. The number of in-
liers ni =

∑nf

i=1 f (i). We choose valuesp1 = 0.7 and
p0 = 0.01. Now we can evaluate the posterior probability
that an image match is correct using Bayes’ Rule

p(m = 1|f (1:nf )) =
p(f (1:nf )|m = 1)p(m = 1)

p(f (1:nf ))

=
1

1 + p(f(1:nf )|m=0)p(m=0)

p(f(1:nf )|m=1)p(m=1)

We accept an image match ifp(m = 1|f (1:nf )) > pmin.
Assuming a uniform priorp(m = 1) = p(m = 0), this
reduces to a likelihood ratio test:

B(ni;nf , p1)
B(ni;nf , p0)

accept

≷
reject

1
1

pmin
− 1

Chosing a valuepmin = 0.97 gives the condition

ni > 5.9 + 0.22nf

for a correct image match.
Once pairwise matches have been established between

images, we can find panoramic sequences as connected sets
of matching images. This allows us to recognise multiple
panoramas in a set of images, and reject noise images which
match to no other images (see figure (2)).

4. Bundle Adjustment

Given a set of geometrically consistent matches between
the images, we use bundle adjustment to solve for all of
the camera parameters jointly. This is an essential step as
concatenation of pairwise homographies would cause accu-
mulated errors and disregard multiple constraints between
images e.g. that the ends of a panorama should join up. Im-
ages are added to the bundle adjuster one by one, with the
best matching image (maximum number of matches) be-
ing added at each step. The new image is initialised with
the same rotation and focal length as the image to which
it best matches. Then the parameters are updated using
Levenberg-Marquardt.

The objective function we use is a robustified sum
squared projection error. That is, each feature is projected
into all the images in which it matches, and the sum of
squared image distances is minimised with respect to the
camera parameters.

Given a correspondenceuk
i ↔ ul

j (uk
i denotes the posi-

tion of thekth feature in imagei), the residual is

rk
ij = uk

i − pk
ij

wherepk
ij is the projection from imagej to imagei of the

point corresponding touk
i

p̃k
ij = KiRiRT

j K−1
j ũl

j

The error function is the sum over all images of the robusti-
fied residual errors

e =
n∑

i=1

∑
jεI(i)

∑
kεF(i,j)

f(rk
ij)

2

wheren is the number of images,I(i) is the set of images
matching to imagei, F(i, j) is the set of feature matches
between imagesi andj, andf(x) is a robust error function

f(x) =

{
|x|, if |x| < xmax

xmax, if |x| ≥ xmax

We usexmax = ∞ during initialisation andxmax = 1
pixel for the final solution. This is a non-linear least squares
problem which we solve using the Levenberg-Marquardt al-
gorithm. Each iteration step is of the form

Θ = (JT J + σ2C−1
p )−1JT r

whereΘ are all the parameters,r the residuals andJ =
∂r/∂Θ. We encode our prior belief about the parameter
changes in the covariance matrixCp. This is set such that
the standard deviation of angles isσθ = π/16 and focal
lengthsσf = f̄/10. This helps in choosing suitable step
sizes, and hence speeding up convergence. For example,
if a spherical covariance matrix were used, a change of 1
radian in rotation would be equally penalised as a change
of 1 pixel in focal length. Finally,σ represents the standard
deviation of projection errors and is varied via Levenberg-
Marquardt to ensure that the objective function does in fact
decrease at each iteration.

The derivatives are computed analytically via the chain
rule, for example

∂pk
ij

∂θi1

=
∂pk

ij

∂p̃k
ij

∂p̃k
ij

∂θi1

where

∂pk
ij

∂p̃k
ij

=
∂

[
x/z y/z

]
∂

[
x y z

] =
[
1/z 0 −x/z2

0 1/z −y/z2

]
and

∂p̃k
ij

∂θi1

= Ki
∂Ri

∂θi1

RjK−1
j ũl

j

∂Ri

∂θi1

=
∂

∂θi1

e[θi]× = e[θi]×

0 0 0
0 0 −1
0 1 0





(a) Image 1 (b) Image 2

(c) SIFT matches 1 (d) SIFT matches 2

(e) Images aligned according to a homography

Figure 1. SIFT features are extracted from all of the images. After matching all of the features using a k-d tree, them
images with the greatest number of feature matches to a given image are checked for an image match. First RANSAC
is performed to compute the homography, then a probabilistic model is invoked to verify the image match based on the
number of inliers. In this example the input images are 517× 374 pixels and there are 247 correct feature matches.



5. Multi-band Blending

Ideally each sample (pixel) along a ray would have the
same intensity in every image that it intersects, but in re-
ality this is not the case. There are a number of reasons
for this: change in aperture/exposure time, vignetting (in-
tensity decreases towards the edge of the image), parallax
effects due unwanted motion of the optical centre, and any
mis-registration errors due to mis-modelling of the camera,
radial distortion etc. Because of this a good blending strat-
egy is important.

In order to combine information from multiple images
we assign a weight function to each imagew(x, y) =
w(x)w(y) wherew(x) varies linearly from 1 at the cen-
tre of the image to 0 at the edge. A simple approach to
blending is to perform a weighted sum of the image inten-
sities along each ray using these weight functions. How-
ever, this can cause blurring of high frequency detail if there
are small registration errors. To prevent this we have ap-
plied the multi-band blending strategy developed by Burt
and Adelson [5]. The idea behind multi-band blending is to
blend low frequencies over a large spatial range, and high
frequencies over a short range. This can be performed over
multiple frequency bands using a Laplacian Pyramid.

In our implementation we have used a simple 2 band
scheme. A low pass image is formed with spatial frequen-
cies of wavelength greater than 2 pixels relative to the ren-
dered image, and a high pass image with spatial frequencies
less than 2 pixels. We then blend the low frequency in-
formation using a linear weighted sum, and select the high
frequency information from the image with the maximum
weight.

Whilst it would be desirable to use more frequency bands
in the blending scheme, an open problem is to design suit-
able spline functions for arbitrarily overlapping images.

6. Results

Figure (2) shows typical operation of the panoramic
recognition algorithm. A set of images containing 2 panora-
mas and 5 noise images was input. The algorithm detected 2
connected components of image matches and 5 unmatched
images, and output the 2 blended panoramas. The complete
algorithm ran in 83 seconds on a 2GHz PC, with input im-
ages525 × 375 pixels (7′′ × 5′′ prints scanned at 75 dpi),
and rendering the larger output panorama as a300 × 3000
pixel image. The majority of computation time is spent in
extracting the SIFT features from the images.

Figure (3) shows a larger example where 80 images were
used to create a 360°× 90° panorama. No user input is
required: the object recognition system decides which im-
ages match, and the bundle adjustment algorithm optimises

Algorithm: Panoramic Recognition

Input: n unordered images

I. Extract SIFT features from alln images

II. Find k nearest-neighbours for each feature using a k-d
tree

III. For each image:
(i) Selectm candidate matching images (with the

maximum number of feature matches to this im-
age)

(ii) Find geometrically conisistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(iii) Verify image matches using probabilistic model

IV. Find connected components of image matches

V. For each connected component:
(i) Perform bundle adjustment to solve for the rota-

tion θ1, θ2, θ3 and focal lengthf of all cameras

(ii) Render panorama using multi-band blending

Output: Panoramic image(s)

jointly for the 4 × 80 = 320 parameters of all the cam-
eras. Finally, the multi-band blending scheme effectively
hides the seams despite the illumination changes (camera
flash and change in aperture/exposure).

We have tested the system on many other image
sets, for example full 360°× 180° panoramas, and se-
quences where different cameras are used in the same
panorama. Further examples can be found online at
http://www.cs.ubc.ca/∼mbrown/panorama/panorama.html.

7. Conclusions

This paper has presented a novel system for fully auto-
matic panorama stitching. Our use of invariant local fea-
tures and a probabilistic model to verify image matches al-
lows us recognise multiple panoramas in unordered image
sets, and stitch them fully automatically without user input.
The system is robust to camera zoom, orientation of the in-
put images, and changes in illumination due to flash and
exposure/aperture settings. A multi-band blending scheme
ensures smooth transitions between images despite illumi-
nation differences, whilst preserving high frequency details.

Possible future directions would be to attempt to distin-



(a) Input images

(b) Output panorama 1

(c) Output panorama 2

Figure 2. Typical operation of the panoramic recognition algorithm: an image set containing multiple panoramas and
noise images is input, and panoramic sequences are recognised and rendered as output. The algorithm is insensitive to
the ordering, scale and orientation of the images. It is also insensitive to noise images which are not part of a panorama.
Note that the second output panorama is actually 360°, but has been split here for display purposes.



(a) 40 of 80 images registered

(b) All 80 images registered

(c) Rendered with multi-band blending

Figure 3. Green College. This sequence was shot using the camera’s automatic mode, which allowed the aperture
and exposure time to vary, and the flash to fire on some images. Despite these changes in illumination, the SIFT
features match robustly and the multi-band blending strategy yields a seamless panorama. These 360°× 90° images
have been rendered in spherical coordinates (θ, φ). The sequence consisted of 80 images all of which were matched
fully automatically with no user input, and a4 × 80 = 320 parameter optimisation problem was solved for the final
registration. With400× 300 pixel input images and a500× 2000 pixel output panorama, the whole process ran in 197
seconds on a 2GHz PC.



guish between 3D imagery (camera translation) and panora-
mas (camera fixed), and to use more frequency bands in the
blending scheme.
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