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Abstract. The multi-processor total tardiness problem (MPTTP) is an��-hard
scheduling problem, in which the goal is to minimise the tardiness of a set of
jobs that are processed on a number of processors. Exact algorithms like branch
and bound have proven to be impractical for the MPTTP, leaving stochastic local
search (SLS) algorithms as the main alternative to find high-quality schedules.
Among the available SLS techniques, iterated local search (ILS) has been shown
to be an effective algorithm for the single processor case. Here we extend this
technique to the multi-processor case, but our computational results indicate that
ILS performance is not fully satisfying. To enhance ILS performance, we con-
sider the use of population-based ILS extensions. Our final experimental results
show that the usage of a population of search trajectories yields a more robust
algorithm capable of finding best known solutions to difficult instances more re-
liably than a single ILS trajectory.

1 Introduction

Given a set of tasks to be processed on a set of machines, we find ourselves faced with a
scheduling problem. Scheduling problems arise in many situations ranging from fulfill-
ing orders in a factory or scheduling processes on a multitasking computer to automated
decision making in a robot. In this paper we consider the identical multi-processor
scheduling problem, where the objective function is to minimise the total tardiness.
This problem is referred to as the multi-processor total tardiness problem (MPTTP);
the single processor variant, where only a single processor is available for processing
the tasks, will be referred to as single-processor total tardiness problem (SPTTP).

The SPTTP was shown to be��-hard [1] and based on this result, the MPTTP
can be shown to be at least as hard via reduction [2]. This implies that it is unlikely
that polynomial time algorithms exist to solve these problems [3]. The MPTTP is also
very difficult to solve in practice, which is reflected by the fact that with growing in-
stance size, this problem rapidly becomes intractable for exact optimisation algorithms.
Consequently, approximation algorithms of various forms have been developed. Con-
struction heuristics and stochastic local search (SLS) algorithms form the bulk of this
work. We concentrate on a particular SLS algorithm, Iterated Local Search (ILS), which
� To whom correspondence should be addressed.



was shown to be the top performer on the SPTTP [4, 5]. However, on the MPTTP, our
experimental results indicate stagnation behaviour for the single search trajectory ILS.
To achieve improved performance, we apply population-based extensions of ILS, where
a population of ILS search trajectories is evolved using operators gleaned from evolu-
tionary computation, as well as a memetic algorithm [6].

The remainder of this paper is organised as follows. In Section 2 we introduce the
SPTTP and the MPTTP and briefly review algorithmic approaches for their solution.
Section 3 introduces ILS, the primary SLS technique considered in this paper, and Sec-
tion 4 gives details on the single-trajectory ILS algorithms as well as the population-
based extensions. Section 5 presents the computational results and we conclude in Sec-
tion 6.

2 The Multiprocessor Total Tardiness Problem

Problem Formulation. In the MPTTP we are given� jobs������ ����� � � � � ���������
that have to be processed on a set of� identical processors. Each��� � has associated
an integer processing time�� and an integer due date��. A schedule consists of a list of
jobs for each processor and a start time for each job such that (i) each job is assigned
to exactly one processor, (ii) jobs cannot be preempted, and (iii) jobs cannot overlap on
a single processor. Given a schedule, thetardiness of ��� � is 	� �� �
���� �� � ���,
where�� is the completion time of���� and the total tardiness is given by

�
	 ������

��� 	�. The objective in the MPTTP is to find a schedule with minimal total tardiness.
Note that the SPTTP is a special case of the MPTTP with� � �.

Total tardiness is a regular objective function, which means that it is monotonic with
respect to all��. In the MPTTP, we only need to consider schedules without idle time
on any single processor. Solving the MPTTP involves finding an assignment from jobs
to processors and for each single processor finding a permutation of all the jobs assigned
to it. One possible way to represent schedules is as an assignment of a permutation of
the jobs to each processor (permutation representation). The order of the jobs assigned
to a processor is determined by the order in which the jobs appear in the permutation.

An alternative to the permutation representation is to translate a schedule into a sin-
gle list of all jobs ordered by non-decreasing start times. From this list, a new schedule
at least as good as the initial schedule can be created by greedily assigning jobs from the
start of the list to processors. Together, the greedy algorithm and the list form a valid
representation which we will call thepriority-list representation. This representation
will be considered for both population and single trajectory algorithms.

Exact Algorithms. Several branch and bound algorithms for the SPTTP and MPTTP
have been proposed and studied in the literature. Computational results show that even
fairly large instances of the SPTTP with up to 500 jobs can be solved in reasonable com-
putation time [7, 8]. This is possible by exploiting fundamental domination properties
of the SPTTP reported by Emmons [9] and Lawler [2]. However, the good performance
of exact algorithms for the SPTTP does not carry over to the MPTTP. The branch and
bound algorithm by Azizoglu and Kirca becomes impractical for instances with more



than 15 jobs on multiple processors [10]. This difference stems from the added dif-
ficulty of achieving an appropriate partitioning of jobs to processors. Because of the
poor performance of exact algorithms, local search based algorithms have to be used
for solving large MPTTP instances.

Note that the much worse performance of exact algorithms in the multi-processor
version compared to the single-processor case appears to be rather typical and was ob-
served also for exact algorithms attacking the related problem of minimising the number
of tardy jobs [11].

Stochastic Local Search. Various approximation algorithms such as construction, list
scheduling, and decomposition heuristics have been used to quickly find reasonable
solutions [2]. In this paper we concentrate on Stochastic Local Search (SLS) approaches
to this problem. SLS algorithms combine a local search algorithm with a probabilistic
component. Well known SLS algorithms include tabu search, variable neighbourhood
search, ant colony optimisation (ACO) and evolutionary algorithms. All of these have
been applied to MPTTP or to closely related problems [4, 5, 11–16].

Currently, the best performing SLS algorithms for the single processor total tardi-
ness and for the more difficult total weighted tardiness problem (SPTWTP), where each
job is given an additional weight indicating its importance, are iterated local search al-
gorithms [4, 5]. Therefore, we also considered this type of SLS algorithm first to attack
the MPTTP.

3 Iterated Local Search (ILS)

Iterated Local Search is a simple yet powerful SLS method, which is witnessed by ex-
cellent computational results for a variety of combinatorial optimisation problems like
the travelling salesman problem (TSP) and several scheduling problems (see [17] for an
overview). In a nutshell, ILS builds a biased random walk in the space of the local op-
tima (with respect to some local search algorithm). This is done by iteratively perturbing
a locally optimal solution, then applying a local search algorithm to obtain a new locally
optimal solution, and finally using an acceptance criterion for deciding from which of
these solutions to continue the search. To implement an ILS algorithm, the following
four procedures have to be defined:GenerateInitialSolution generates a starting point
for the search,LocalSearch implements a (possibly complex) improvement procedure,
Perturbation computes a perturbation of a given locally optimal solution, andAccep-
tanceCriterion chooses from which of two candidate solutions the search is continued.
A general algorithmic outline of ILS is given in Figure 1.

An efficient ILS algorithm for the SPTTP was described by den Besten [13]; an ex-
tension of this algorithm is currently a state-of-the-art algorithm to the harder SPTWTP
[4]. Excellent results for the SPTWTP were also reported for the iterated Dynasearch
algorithm of Congram, Potts and Van de Velde [5]. Den Besten’s ILS for the SPTTP
uses the interchange neighbourhood in the local search and in the perturbation. This
neighbourhood considers all moves which consist of selecting two jobs,��� � and���� ,
 �� �, and exchanging their positions. The local search is a best-improvement algo-
rithm which terminates at the first local optimum encountered. The perturbation is im-



procedure Iterated Local Search
�� � GenerateInitialSolution
�� � LocalSearch����
repeat

�� � Perturbation����
��� � LocalSearch����
�� � AcceptanceCriterion���� ����

until termination condition met
end

Fig. 1. Algorithm outline of Iterated Local Search (ILS).

plemented by applying a fixed number of random interchange moves to the candidate
solution. New solutions are accepted if they strictly improve over the original solu-
tion and the algorithm terminates when a certain solution quality is reached or some
maximum computation time expires. This algorithm performed well and found optimal
solutions reliably.

Typically, ILS is a single-trajectory method. However, ILS can easily be extended
into a population-based SLS method by independently applying a standard ILS algo-
rithm to a population, that is, a set of candidate solutions, and allowing some limited
interaction between the population elements. Such extensions have strong similarities
to well-known population-based search metaphors such as evolutionary algorithms [18,
19] and, in particular, memetic algorithms [6, 20].

Population-based extensions of ILS were independently proposed in [21, 22] and
applied to the TSP and the QAP. In particular, St¨utzle reported results for different levels
of interaction among the individual ILS search threads: no-interaction, replace-worst
and population-ILS.No-interaction, as the name implies, is simply a population of ILS
trajectories run in isolation; at the end of these runs, the best solution is chosen.Replace-
worst is similar but during the evaluation sometimes replaces the worst current solution
by the best solution.Population-ILS generates a population of solutions and chooses,
based on a selection operator, one individual to pursue a number of ILS iterations. The
new solution is inserted into the population and the process is iterated. St¨utzle reported
varying degrees of success with this approach. The performance of all three variants was
found to be similar and appeared to depend strongly on the given problem instance.
Similarly, Hong, Kahng, and Moon [21] presented computational results that did not
indicate a significant improvement of the population-based ILS over a single-trajectory
ILS for the TSP.

4 Our ILS Algorithms for the MPTTP

The MPTTP problem intuitively involves two subproblems, the problem of partition-
ing the set of jobs, where each partition is assigned to one of the processors, and a
single processor total tardiness scheduling problem on each processor. Unfortunately,
these two subproblems cannot be solved independently of each other. Additionally, to



evaluate the quality of a given partition, one needs to solve the SPTTP on each sin-
gle processor. Preliminary results with an algorithm that did not explicitly search on
the partition subproblem resulted in poor performance and therefore, the algorithms
we present here apply local search to both subproblems. Here, we present two single
trajectory ILS algorithms that mainly differ in the perturbation step as well as several
population-based ILS algorithms and a memetic algorithm for the MPTTP.

4.1 Single trajectory ILS

Initialisation and Termination. In all the experiments reported here we considered
random starting solutions. To obtain these, first a list is generated containing the jobs
in random order. Then, the head of the list is recursively removed and assigned to the
processor with the smallest total processing time. This randomised initialisation scheme
is a reasonable choice for initialising a number of trajectories in a population based
extension if the initial solution population should be scattered across the search space.

Additionally, we considered ordering the list of jobs by non-increasing processing
time (GPT) and by non-decreasing due date (EDD) and then assigning the jobs in the
same way. Both GPT and EDD were used for testing pivoting rules in the local search
(see below). The EDD construction heuristic was also used as an initialisation procedure
in the protocol for finding optimal solutions.

The algorithm terminates when a designated tardiness value is achieved or some
maximum computation time limit is reached.

Local Search. The local search procedure is divided into two phases. The first phase
applies a local search to the jobs assigned to each processor independently of the
other processors and reorders the jobs to minimise the total tardiness on the individ-
ual processor (LocalSearchOnSingleProcessors). The second phase moves jobs be-
tween the different processors and, thus, modifies the assignment of jobs to processors
(LocalSearchBetweenProcessors).

Both phases are iterative improvement algorithms which repeatedly interchange
pairs of jobs. Both, best and first improvement pivoting rules as well as several other
variations were considered in some preliminary experiments. First improvement re-
turned slightly better solutions than best improvement, but it was significantly slower
than the best-improvement algorithm, once the local search had been optimised (see
Table 1 for sample results on single processor instances). Since in any ILS algorithm,
local search has to be applied very frequently, we decided to use the significantly faster
best-improvement local search. The “between processors” search similarly performs
interchange moves but considers only pairs of jobs which are on different processors.

Acceptance Criterion. In the single trajectory ILS algorithms, a new candidate solu-
tion is accepted only if it has a smaller total tardiness value than that of the best solution
seen so far. We call this acceptance criterionBetter and it is defined for minimisation



Algorithm Best Improvement First Improvement
init Avg. time (s)Avg. solnAvg. time (s)Avg. soln

EDD 1.47 140353 5.34 139793
GPT 1.86 140267 22.19 139807
Random 1.52 140493 10.01 139794

Table 1. Given are the average computation time and the average solution values when comparing
best vs. first improvement pivoting rules on all 200 job single processor benchmark problems
using three different initialisation schemes.

procedure ILS�
�� � GenerateInitialSolution
�� � LocalSearchOnSingleProcessors����
�� � LocalSearchBetweenProcessors����
repeat

�� � PerturbationBetweenProcessors����
��� � LocalSearchOnSingleProcessors�� ��
��� � LocalSearchBetweenProcessors�����
�� � Better���� ����

until termination condition met
end

Fig. 2. Algorithm outline of ILS� .

problems as:

Better���� ���� �

��
�
��� if ������ � �����

�� otherwise
(1)

where���� denotes the objective function value of a solution�. Note that this accep-
tance criterion implements an iterated descent in the search space of local optima.

Perturbation and Partitioning of Jobs. The two single trajectory ILS algorithms only
differ in the kind of perturbation they apply. In ILS� a number of insert moves is ap-
plied to the current candidate solution. This is done because good perturbations should
somehow be complementary to the type of moves applied in the local search [17]. In
particular, the perturbation allows to modify the number of jobs assigned to the proces-
sors, something which is not possible in the local search.

The perturbation proceeds as follows: First, a processor is randomly chosen, second,
a job���� is randomly selected from the jobs on this processor and removed; last,��� �
is then inserted on a randomly chosen processor in a random position. (All random
decisions are made according to a uniform distribution.) An outline of ILS� is shown in
Figure 2.

In the problem formulation, possible representations of schedules were discussed.
Up to this point, we have considered only the permutation representation that is used



procedure ILSRES
�� � GenerateInitialSolution
�� � LocalSearchOnSingleProcessors����
�� � LocalSearchBetweenProcessors����
repeat

��� � CreatePriorityList����
��� � PerturbPriorityList�����
�� � CreateSchedule�����
��� � LocalSearchOnSingleProcessors�� ��
��� � LocalSearchBetweenProcessors�����
�� � Better���� ����

until termination condition met
end

Fig. 3. Algorithm outline of ILSRES.

in ILS� . ILSRES tries to exploit the priority-list representation during the perturba-
tion phase of each iteration. The ILSRES algorithm transforms the current candidate
solution, which is in permutation representation, to the appropriate priority list before
each perturbation. During the perturbation, the priority list is modified by performing a
predefined number of interchange moves. Following the perturbation, a schedule is con-
structed by greedily assigning the jobs from the front of the list to the processor with
the least load as described before. At this point, the local search phase begins. Figure 3
gives the pseudo-code for this algorithm.

4.2 Population Based Algorithms for the MPTTP

Some preliminary results indicated that the single-trajectory ILS algorithm for the MPT-
TP shows stagnation behaviour, something that was not observed for the SPTTP. To
overcome this stagnation behaviour, we developed population-based extensions of the
ILS algorithms. We also considered the extension to memetic algorithms [6, 20] by
including a recombination operator that is applied with some probability to pairs of
solutions and returns a new solution that combines properties of both “parents”.

We developed four population-based ILS algorithms, ranging from theno-interaction
scheme mentioned in Section 3 to a memetic algorithm. All algorithms have the same
general skeleton and maintain a fixed size population of ILS trajectories. Each trajectory
is obtained by performing ILSRES with identical perturbation strength after initialising
with a randomly generated solution. In the main loop, solutions are selected to apply
one single iteration of the standard ILS algorithm. Finally, if appropriate, the algorithm
performs any necessary interaction between trajectories and repeats.

The first two approaches are adaptations of theno-nteraction (referred to as POPILS)
and thereplace-worst (referred to as POPREP) schemes [22] introduced in Section 3.
POPILS serves as a baseline for assessing whether the interaction among the ILS tra-
jectories improves performance. In POPREP, every� iterations the best schedule is
replaced by the worst schedule.



procedure Population based ILS algorithm
for each solution����

���� � GenerateRandomInitialSolution
repeat

if selection criteria reached
then SelectionAlgorithm�����

for each solution����
ILSRES Iteration������

until termination condition met
end

Fig. 4. Algorithm outline of population based algorithms.
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Fig. 5. Example of application of recombination operator to two schedules� and� resulting in a
new schedule�

The following two algorithms, POPSEL and POPSTG, use the framework described
in Figure 4 but employ a more advanced selection strategy which will be referred to
asgenetic selection. Genetic selection is implemented according to an elitist roulette
wheel strategy. In this scheme, the selection probability is proportional to the fitness of
a schedule; exceptions are that the best solution is always chosen and recombination
does not make sense if two solutions are the same. The fitness of a schedule is given
by fitness�schedule�� � �	worst � 	�� � Æ � �	worst � 	best�, 	� is the tardiness of
schedule, 	worst and	best are the best and the worst schedule in the population, and
Æ is a parameter.

In addition, POPSEL and POPSTG employ a recombination operator. The number
of trajectories seeded by the recombination operator is determined by a parameter� �
���; this parameter gives the ratio of trajectories derived by recombination to the total
number of trajectories�; � is an integer between 0 and���. One trajectory is reserved
for the current best solution and the remaining trajectories are selected from all current
solutions with probabilities determined by their relative fitness. POPSEL and POPSTG
obey the population based ILS skeleton indicated in Figure 4. POPSEL and POPSTG
use the genetic selection algorithm but differ in when selection is applied. POPSEL
applies selection after a constant number of ILS iterations defined by a parameter�.
POPSTG applies selection only if there has been no improvement to the best trajectory
for � ILS iterations, where� is a parameter.



The recombination operator is applied to two parent schedules,� and�, represented
by priority lists of jobs, and works as follows (see also Figure 5 for an illustration): A
random set of jobs in� are determined to be static and the nonstatic jobs in� are
replaced by blanks resulting in� � (indicated by� in Figure 5). Next, the static jobs are
removed from�, resulting in� �. The offspring� is build by first copying the static
jobs of� into their positions and then filling the empty position with the jobs of� �

maintaining their order in� �. The recombination operator has the properties that (i)
all the jobs originating from� and� maintain their relative orderings and (ii) the jobs
originating from� also maintain their positions in the priority list. Hence, we would
expect that the start time of jobs in� that were copied from� remain approximately
similar to the ones they had in�. This operator is based upon the strategy of Franc¸a [16].
The two approaches differ mainly in that Franc¸a chooses an interval in� which remains
static, while we choose the jobs randomly, and Franc¸a’s implementation is for a single
processor scheduling problem, while ours is for the MPTTP.

5 Empirical Analysis

This sections describes the benchmark instances we used in our analysis, the experi-
mental design and our computational results.

5.1 Benchmark instances

We generated a set of forty 100 and 200 job instances. 20 of these instances were
taken from a problem library maintained by Bahar Kara [23] with a single instance
per range of due date (RDD) and tardiness factor (TD) for each value pair for RDD
in ����� ���� ��	� ��
� ���� and TF in����� ���� ��	� ��
�. (RDD and TF are parameters
that are used in a widely applied algorithm for generating instances of single proces-
sor tardiness problems [2, 23].) In addition, we generated 20 instances using the same
parameter value pairs. The so derived SPTTP instances were adapted to the multi pro-
cessor case by dividing their due dates by the number of processors and rounding to the
nearest integer.

To evaluate the performance of our algorithms, we first tried to find very high quality
solutions using the following protocol. A single trajectory ILS algorithms with pertur-
bation set at 10% of the number of jobs was run ten times on each instance, five times
with the earliest due date initialisation routine and five times with random initialisation.
The termination condition requires that at least 1000 iterations have been completed. If
this criteria has been satisfied, the termination condition will stop the ILS if it did not
find a better solution for��� iterations. The best solution found was deemed to be the
best-known solution and used as a goal for subsequent experiments.

This protocal reliably returned the known optimal solutions for the 100 and 200
job SPTTP instances of Bahar Kara; generally 90 to 100% of the runs returned the
same potentially optimal solution quality. This is a strong indication that the solutions
found for the additional SPTTP instances using this protocol are likely to be optimal.
However, this did not generally translate to the multi-processor case where for the most
difficult problems the runs resulted in different solutions; here we use the best solution
returned by the 10 runs to evaluate the other algorithms.



5.2 Experimental Design

Most of the results reported in this paper are from runs on only a few instances, which
were among the hardest ones. The instances were selected from the pool based on how
quickly and easily known optimal solutions were found using the procedure described
in the previous section. If the problem was solved in the first iteration, it was deemed
trivial and not further studied. If the best solution was found in 80% or more of the
runs, the problem was classified as easy. If on the other hand the best solution was
found less than 20% of the trials, the problem was classified as difficult. The forty 200
job, 2 processor instances divided into 57.5% difficult and 40% easy instances with the
remaining two instances being between these two extremes. We found that instances
with RDD of 0.2 and 0.4 are rather easy and found consistent solutions 100% of the
time in all but one case. On the instances with other RDD values, in almost all cases
the best solution was only obtained in one trial, suggesting that there still is some gap
to the true optimum.

Four instances were selected from these sets;bk131 is an easy instance and both
bk151 andbk181 are difficult.mp101 was selected because its RDD parameter of
0.6 has been shown to be particularly difficult for the SPTTP [13].

All experiments were performed on the BETA laboratory compute cluster at UBC.
At the time of this work, the cluster consisted of 12 PCs running Redhat Linux version
7.1 with 733MHz and 1GHz Pentium III processors with 256KB CPU cache and 1–4GB
RAM.

The cost model used throughout the experiments is based on the number of local
search moves completed. The average CPU time per search step is dependent on the
specific instance. However, on a given instance the CPU time per search step is not
dependent on the particular ILS algorithm variant considered here. For instancebk151,
on a 1GHz processor with 1GB RAM running a Linux executable written in C++ and
compiled with g++, ILS performs 839 search steps per second. This has been tested
with both ILS� and ILSRES and several predecessors. Forbk131 the results are less
consistent but indicate approximately 700 search steps per second.

5.3 Computational Experiments

Evaluation of ILS� and ILSRES. An evaluation of perturbation parameters for MPTTP
was performed with the ILS� and ILSRES algorithms. The experiments were performed
by running the ILS algorithms 25 times for each algorithm / instance / perturbation level
combination. The instancesbk131 andbk151, adjusted to two processors, were con-
sidered. Perturbation levels of 2,4,6,8,10 were tested. This was repeated for ILSRES on
instancebk151 adjusted for 3 and 4 processors. All runs were limited to a maximum
CPU time of 500 seconds. Analysis was performed by acquiring summary statistics
for computational requirements and solution qualities as well as by analysing run-time
distributions (RTDs).

The easy problem was solved to the best-known solution (which we conjecture to be
optimal) within the given time frame. This is not true for the difficult instance and here
we can only consider results for solution qualities inferior to the best-known. Notably,
in both instances and for both algorithms, the optimal perturbation appears at the low
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end of the spectrum, at level 2 in ILSRES and ILS� (see Figure 6 for instancebk151
on two processors). As demonstrated in Figure 6, these two algorithms perform almost
identically on both of these instances. Figure 7 shows that for instances with three or
four processors, the perturbation strength should also be rather small.

Evaluation of Population Based Algorithms. All algorithms were evaluated with
multiple parameter settings across 25 trials on instancesbk131 andbk151 on 2 pro-
cessors using a maximum processing time of 500 seconds. In addition, ILSRES and
POPILS with parameters optimized based on thebk151 experiments were run on
bk181 andmp101.

Throughout these experiments all population based algorithms’ internal ILSRES
trajectories used a perturbation strength of size 2 and the population size was set to 20.
POPREP was evaluated with� equal to 1, 10 and 100. POPSEL was evaluated with
� equal to 5, 10 and 100 and a constant recombination ratio of� � ���. Similarly,
POPSTG was considered with� at 10, 100 and 500 with� � ���, and� � �� with �
at 0.2 and 0.4. The results of the application of these algorithms tobk151 are shown
in Table 2 and Figure 9. Table 3 shows results for the other three instances. Most sig-
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nificantly, on the difficultbk151 instance, the population based algorithms find the
best-known solution more often than single trajectory ILS algorithms. Given the steep
slope of the RTD in Figure 9 for POPSEL, there is a strong indication that a small
increase in alotted time will be sufficient to find this solution quality in all trials. In
contrast, the slope of the single trajectory algorithms is less steep and we can expect
little benefit from increasing the allotted time. The stagnation of the single trajectory
algorithms is supported by the fact that with a perturbation strength of 2, the single
trajectory ILS algorithms usually perform most of their improvements before 250 sec-
onds have elapsed. This is supported by the low average time to best in Tables 2 and 3
indicating stagnation on the difficult instances. Given these results, it appears that the
population based strategy is more promising than concentrating the search effort on a
single trajectory.

On the easierbk131 instance, most runs achieved the best known solution quality.
Generally, less than 5 iterations were required and there was no evidence of stagnation
for the single trajectory algorithms. On this instance, very little difference could be ob-
served between the techniques. As shown in Table 2, runs on instancebk151 rarely
complete in the 500 allotted seconds. In this time period, a population based algorithm
performs up to 1000 iterations and characteristics of the algorithms become apparent.
Both the run-time distributions in Figure 9 and Table 2 indicate the benefits of a genetic
selection mechanism. The mean solution of POPILS is more than a standard devia-
tion from the best POPSEL and POPSTG settings. In addition, the number of optimal
solutions found by strategies employing genetic selection is consistently greater than
zero, the number found by POPILS. The run-time distributions in Figure 7 also show
that strategies based on genetic selection achieve the suboptimal solution quality 43350
faster and more reliably.

Establishing the possible benefits of recombination is more difficult. We observe
that in the run time distribution in Figure 8, for reaching a suboptimal solution qual-
ity, the algorithm with no recombination appears to fare best. This is supported by the
mean solution quality found which is smallest for� � �. An important measure con-
tradicting this point is the number of optimal solutions found, which is greatest when
recombination is at its peak.



Time to find best Solution Quality
Algorithm mean SD mean SD opt found(of 25)

ILS� p=10 269.93 119.8743368.525.15 0
p=6 274.94 143.4943358.314.61 0
p=2 243.49 130.5443347.683.06 2
ILSRES p=10 266.56 143.8843371.565.96 0
p=6 288.66 113.3643359.264.77 0
p=2 224.71 146.3443347.282.03 1
POPILS s=20 368.81 74.4743348.882.02 0
POPREP	 � � 376.04 113.3143348.92 1.7 0
POPSEL	=10
=0 336.29 90.6743345.761.33 3
	=10
=0.2 371.69 97.8843346.521.82 4
	=10
=0.4 342.63 116.4743346.161.86 7
	=5
=0.2 331.51 108.643346.362.03 4
	=100
=0.2 351.62 118.6443347.281.33 0
POPSTG�=10
=0.2 391.62 62.8243346.291.38 2 of 20
�=10
=0.4 341.11 102.26 43345.81.22 4
�=100
=0.2 345.59 96.2543347.641.43 0
�=500
=0.2 358.77 102.7943348.161.74 1

Table 2. Computational results measured across 25 trials of each SLS algorithm on instance
bk151 (best-known solution 43344).

6 Conclusions And Future Work

In this paper we have considered the application of single trajectory ILS, population-
based ILS algorithms, and memetic algorithms to the MPTTP, a very difficult schedul-
ing problem arising in multi-processor environments. We have evaluated the algorithms
on a large set of MPTTP benchmark instances, and focused our presentation of the
results on some of the hardest instances we have encountered in our experiments. The
main conclusion is that on these hardest instances, population-based ILS algorithms can
offer advantages over single trajectory ILS methods. Regarding the addition of recom-
bination, we observed for single instances that the frequency of finding the best-known
solutions for our instances increased slightly. However, only a minor effect on the aver-
age solution quality was observed.

The population based framework is generally applicable to all scheduling problems
with regular objectives. In order to take advantage of the recombination operator in-
troduced in this work, additional conditions need to be satisfied. It must be possible to
translate candidate solutions to and from a priority list such that their objective function
values are non-increasing. This implies conditions not only on the objective function,
but also on the processor and job constraints. Furthermore, the machines must be iden-
tical and the processing time of a job must generally be independent of the schedule.

There are several ways for extending this research. One possibility is the use of lo-
cal search algorithms based on variable neighbourhood descent (VND). For example,
a VND local search was essential for the excellent performance of an ILS algorithm
for the SPTWTP, the weighted version of the SPTTP [4]. However, it should be noted



Time Solution
Instance Algorithm mean best median worst successes (%)

bk101 ILSRES 263.7 2812728139.128195 10
TF=0.6,RDD=0.6POPILS	 � � 430.9 2812728128.528134 30
best=28127 POPILS	 � ��� 405.2 2812728129.128135 30
bk131 ILSRES 0.8784 284 284 284 100
TF=0.8,RDD=0.4POPILS	 � � 1.0348 284 284 284 100
best=284 POPILS	 � ��� 1.01 284 284 284 100
bk181 ILSRES 334.6 1415914164.314177 0
TF=1.0,RDD=0.6POPILS	 � � 452.8 1416814176.414182 0
best=14160 POPILS	 � ��� 413.8 1416314171.814180 0

Table 3. Results for application of various ILS algorithms to other problem instances.
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Fig. 9. RTDs of population based and single trajectory ILS algorithms on instancebk151.

that we are already using local search in two different neighbourhoods; however, we
could imagine other ways of combining the neighbourhood searches. Another possi-
bility is the usage of different acceptance criteria in the single trajectory ILS, which
was shown to be essential for the performance of ILS algorithms for the TSP [24];
however, for the SPTWTP and the SPTTP, theBetter acceptance criterion gave overall
best performance [4]. A further possible extension is to consider priority levels of the
jobs by assigning them different weights. In the single processor case, this is known
to strongly increase the difficulty of the tardiness problem and the same is to be ex-
pected for the multi-processor case. Our algorithms can be extended to this generalised
tardiness problem in a straightforward way.
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