
CNJ: A VISUAL PROGRAMMING ENVIRONMENT

FOR CONSTRAINT NETS

Fengguang Song and Alan K. Mackworth
{ fgsong, mack} @cs.ubc.ca

http://www.cs.ubc.ca/spider/{ fgsong, mack}

Lab for Computational Intelligence
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T 1Z4, Canada

ABSTRACT

The Constraint Nets (CN) model has proven to be useful
for a wide variety of purposes, ranging from intelligent
agent systems and real-time embedded systems, to inte-
grated hybrid systems with various time structures [3]. In
this paper, a new visual programming environment called
CNJ (Constraint Nets in Java) using component-based
technologies is described.

CNJ uses JavaBeans, Bean Introspection, drag-and-
drop and Java Swing MDI (Multiple Document Interface)
technologies, as well as XML as its standard interchange
format. The tool supports CN modeling, simulation, and
3D animation for hybrid systems. Furthermore, it provides
support for top-down design, middle-out design, and bot-
tom-up design where the module bean can be reused any-
where in any other CN model, saving designers time and
effort.

1. INTRODUCTION AND MOTIVATION

Constraint Nets (CN) was developed by Ying Zhang and
Mackworth for modeling hybrid, dynamic systems
[2][4][7]. CN is a generalization of dataflow with multiple
data and events, in which a control system can be de-
scribed as several block diagrams. A constraint net repre-
sents a set of equations, with locations as variables and
transductions as functions [3]. Since it has inherent
graphical tokens and hierarchies, constraint nets is an
ideal model for visual programming. The CNJ system was
motivated by the idea of realizing a visual environment to
support constraint nets modeling.

Java is an object-oriented language and its Java
Beans technology has the important characteristics of re-
usability, bean introspection and platform-independence.
The introspecting tool of CNJ has the ability to discover
what events a bean can fire and what properties a bean
owns, and the ability to display and edit them dynami-
cally. It uses Java’s event handling mechanism (registra-
tion of event listeners) to connect transductions and loca-
tions and make them communicate with each other. The
mechanism of the Java event successfully realizes support

for various time structures of CN: discrete, continuous, or
event-based. Java Swing’s capabilities give the CNJ tool a
useful GUI and the feature of MDI to support top-down
and bottom-up modeling. Because CNJ is implemented in
pure Java and component-based JavaBeans, it is not hard
to change to a web-based application using EJB or RMI.
We have also defined CNML (Constraint Nets Markup
Language) as an XML-based interchange format for Con-
straint Nets. CNML uses Scalable Vector Graphics (SVG)
1.0 [12] to store 2D graphics, and Mathematical Markup
Language (MathML) [13] to store a variety of functions of
CN transductions. This characteristic makes it inter-
changeable with other XML tools easily.

Previous work on hybrid system modeling and
simulation has focused on some specific time structures,
but not on various ones. Simulink [1], based on Matlab, is
a visual programming and simulation environment for
both continuous and discrete dynamic systems. However,
it doesn’t support event-based time structure, which is
very important for a hybrid dynamic system. Although it
supports bottom-up modeling well (by grouping), it does-
n’t support top-down modeling which is very helpful for
some users [1]. There has been some component-based
simulation work done. [10][11][5] use Sun’s BDK (Bean
Development Kit) environment to model and simulate
systems which actually imposes some limits on their de-
sign, for instance, the weak GUI which was implemented
by Java AWT, the limited number of visual components
(due to BDK’s internal support) to represent bean proper-
ties, and the invisible event wires between beans. Also
there are only Java-level events in them, with no concept
of continuous time structure, which is essential for com-
plex hybrid systems. Furthermore, to build a complex
model based on customized Java Beans is very challeng-
ing. All of these limits make them difficult to be used
practically. With CNJ, a specific environment for con-
straint nets, users are able to visually drag and drop CN
nodes and connect them to model a hybrid system as well
as to simulate it. In addition, with the XML-based CNML
interchange format, it becomes fairly convenient to export
to and import from other tools, and easy to read and un-
derstand, better than Java Bean’s serialization mechanism
[15].

2. CONSTRAINT NETS

Intelligent systems embedded as controllers in real sys-
tems or virtual systems are designed in an online model
based on various time structures: continuous, discrete and
event-based. However, the Constraint Satisfaction Prob-
lem (CSP) paradigm and Constraint Programming (CP)
are inadequate for this kind of task, since they are primar-
ily offline. The CN model is realized as an online da-
taflow-like distributed programming language with a for-
mal algebraic denotational semantics, a specification lan-
guage, and a real-time temporal logic [9].

In CN, an intelligent agent system is modeled as a
symmetrically coupling of an agent with its environment
as shown in figure 1.

Both of the controller and the body consist of dis-
crete-time, continuous-time or event-driven components
operating over discrete or continuous domains. The con-
troller has perceptual subsystems that can (partially) ob-
serve the state of the body, and through it, the state of the
environment.

Intelligent systems are typically hybrid dynamic
systems. Constraint Nets is used as an abstraction and a
unitary framework to develop a hybrid dynamic system,
analyze its behavior and understand its underlying phys-
ics. Formally, a constraint net is a triple CN = <Lc, Td,
Cn>, where Lc is a finite set of locations, Td is a finite set
of transductions, each with an output port and a set of
input ports, Cn is a set of connections between locations
and ports. Connections are restricted by the following: (1)
there is at most one output port connected to each loca-
tion, (2) each port of a transduction connects to a unique
location and (3) no location is isolated.

A location can be regarded as a wire, a channel, a
variable trace, or a memory cell. A transduction is a
causal mapping from inputs to outputs over time, operat-
ing according to a certain reference time or activated by

external events. Each module is a constraint net with a set
of locations as its interface. A constraint net can be com-
posed hierarchically using modular and aggregation op-
erators on modules.

The semantics of the constraint net, with each loca-
tion denoting a trace, is the least solution of the set of state
evolution equations. A constraint net is depicted by a bi-
partite graph, where locations are depicted by circles,
transductions by boxes, modules by round boxes, and
connections by arcs.

3. OVERVIEW OF CNJ

Constraint Nets is a family of programming languages
with a standard graphical representation [9]. To design a
constraint net model, designers need to draw and define
transductions, locations, modules, and clocks (a kind of
transduction), and then wire them by connections.

CNJ is implemented in pure Java and can be run on
different platforms. It has two main windows: CNFr ame

and BeanPr oper t ySheet as shown in figure 2.

The CNFr ame window is the bigger one. It consists of
MenuBar , Tool Bar , Tool Pane, and Dr awPane. Dr awPane is
the area for drawing constraint nets and has MDI to de-
sign different hierarchical levels of modules. BeanPr op-

er t ySheet is the smaller one lying to the right close to
CNFr ame, which displays corresponding properties for a
focused CN node in the Dr awPane area. To design a con-
straint net model, you need to choose a graphical CN node
from the Tool Pane, then drag-and-drop it to the Dr awPane.
After that, you can customize the node’s properties in the
BeanPr oper t ySheet window. You can use a connection to
wire two CN nodes from the source’s output port to the
destination’s input port.

Finally, you may want to simulate the model after
compiling. The compiling step is able to discover some
errors in the design of the CN model, such as uninitialized
values, data type incompatibility, ill-defined transduc-
tions, and so forth. As for simulation, you can either
watch the result from the model’s output locations, or link
it to a 3D animation package to see the 3D effect. We

CONTROLLER

BODY

ENVIRONMENT

AGENT

Reports Constraints

ActionsReactions

Figure 1. The structure of a constraint-based agent system

Figure 2. The GUI of CNJ

implement the 3D animation package with the Java 3D
API.

The CNJ tool supports building CN models in a hier-
archical, modular and object-oriented manner. Users are
able to design a model from bottom to top by grouping
some components into a higher level module, or from top
to bottom by first creating a module, and then designing
the module in detail at a lower level. All the modules have
the characteristic of reusability and can be used elsewhere
by other CN models or modules. This component-based
modeling and simulation environment makes building a
CN model as simple as assembling and executing.

4. IMPLEMENTATION ISSUES

This section describes some actual implementation issues,
as well as some results.

4.1 Constraint Net Nodes

A constraint net is composed of transductions, locations,
connections, and modules. In CNJ, we call them constraint
net nodes. All the CN nodes are implemented with Java-
Bean classes which are stored in their own packages
(CNBeans/ Tr ansduct i on, CNBeans/ Locat i on,

CNBeans/ Cl ock, and CNBeans/ Modul e). Since the nodes
are sufficient for a constraint net, their corresponding bean
classes are also enough to build a CN model.

A module is displayed as a visual Java bean (round
rectangle) and has a popup child window to display its
internal contents. Among the nodes, transductions are the
most complicated. Transductions include primitive trans-
ductions (transliterations, delays) and complex transduc-
tions (event-driven transductions) [6][3]. To specify
transductions’ various functions, a class named CNFunc-

t i on was implemented. We have provided some basic
functions in CNJ, such as plus, minus, times, and, or,
polynomial function, piecewise, delay, .… Users can cre-
ate reusable complex modules based on the above basic
transductions and reuse them in any other CN model.

4.2 GUI

As shown in Figure 2, the two main windows are arranged
left and right. The left one is used to design and simulate
constraint nets models, and the right one is used to display
and edit the properties of the focused bean in the left win-
dow. Those GUI classes are stored in the GUI package,
including CNFr ame, Dr awPane, Tool Pane, Dr awFr ame,

BeanWr apper , Pr oper t ySheet , and Pr oper t ySheet -

Panel classes. CNJ uses Sun's JavaBeans Introspection to
discover a selected bean's properties and displays it dy-
namically in the Pr oper t ySheet . Using this method, we
don't need to customize each dialog for every bean kind,
instead, we only need to implement the Introspection
mechanism for all the beans. Since we implemented the
GUI in Java Swing, not in Java AWT, it is elaborate and
more platform-independent .

4.3 Constraint Nets Markup Language (CNML)

CNML is an XML-based interchange format defined for
Constraint Nets, which supports all kinds of constraint net
models. In CNML, the model and the CN nodes are repre-
sented by XML elements [8][14]. The tags of the XML
elements are named after constraint net concepts (e.g.
<Model >, <Modul e>, <Tr ansduct i on>, <Locat i on>,

and <Connect i on>). The following figures 3, 4 and 5 are
examples of transduction, location, and connection repre-
sented by CNML.

 <t r ansduct i on i d = " 0" >
<gr aphi cs>

<r ect x = " " y = " " wi dt h = " "
hei ght = " " f i l l = " col or " s t r oke =
" col or " / >

</ gr aphi cs>
<l abel col or = " bl ue" >

+
</ l abel >
<f unct i on>

<i nput number = " 2" / >
<mat h>

<appl y>
<pl us / >
<ci t ype = " i nt eger " > i nput </ c i >
<ci t ype = " i nt eger " > i nput </ c i >

</ appl y>
</ mat h>

</ f unct i on>
</ t r ansduct i on>

<l ocat i on i d = " 1" >
<gr aphi cs>

<el l i pse cx = " " cy = " " r x = " " r y =
" " f i l l = " col or " s t r oke = " col or " / >

</ gr aphi cs>
<l abel col or = " bl ue" >

i nput __x
</ l abel >
<ci t ype = " i nt eger " / >

</ l ocat i on>

<connect i on i d = " 2" >
<pol y l i ne poi nt s = " x1, y1 x2, y2 x3, y3 …" / >
<sour ce> i d </ sour ce>
<t ar get > i d </ t ar get >

</ connect i on>

We use the SVG1.0 [12] specification to represent
constraint nets’ graphical information, and MathML2.0
[13] to represent transductions’ functions. This makes
CNML compatible with W3C’s standard. We use JDOM
beta 7 [16] to handle the CNML files, to load or save, and
to export to or import from other file format, i.e., HTML,
XHTML and Simulink’s MDL. The CNMLIO class is
implemented to support handling CNML files.

Figure 3. A CNML example for the "plus" transduction

Figure 4. A CNML example for a location

Figure 5. A CNML example for a connection

4.4 Simulation

CNJ simulation is based on the Java Event mechanism.
Event is a core feature of Java, which allows some com-
ponents to act as event sources for event notifications that
can be caught and processed by some other listeners. In
CNJ, when users draw a connection from one output port
of a node to another input port of another node, the former
node works as an event source and the latter works as an
event listener. Every transduction has a unique clock
transduction input. Clocks fire clock tick events to their
connected transductions. Whenever a transduction re-
ceives a clock tick event, it computes the result from its
input traces right away, then outputs a trace to its con-
nected location. A constraint net model may have several
clocks with different frequencies (Hz). It might have one
global clock and several local clocks distributed in differ-
ent areas or modules. By connecting to a clock with an
infinitely high frequency, continuous time structure can
be realized virtually.

5. A CAR MODEL IN CONSTRAINT NETS

In our Laboratory for Computational Intelligence, a test-
bed has been installed for radio-controlled cars playing
soccer [4]. Each "soccer player" has a car-like mobile
base. It can move forward and backward with a throttle
setting, and can make turns by steering its two front
wheels.

Figure 6 illustrates the configuration of a car. Let ν

be the velocity of the car and α be the current steering
angle of the front wheels. ν and α, for now, can be con-
sidered as control inputs to the car. The dynamics of the
car can be simply modeled by the following differential
equation:

x = ν cos(θ), y = v sin(θ), θ = ν / R (1)

where (x, y) is the position of the tail of the car, θ is the
heading direction and R = L / tan(α) is the turning radius
given the length of the car L. The controller of such a car
is equipped with both digital and analog devices.

The dynamics of the car is modeled as a constraint
net with CNJ, as shown in Figure 7, in which cosine, sine,
tan, +, *, and / are transliterations, v and alpha are input
locations, x, y, and theta are output locations.

y

Figure 6. The configuration of a car

(x,y)

L α

αR

θ
x

Figure 7. The constraint net of equation (1)

The clock-shaped rectangle is a global clock trans-
duction. It fires a clock event to every connected trans-
duction after a period of time equal to its cycle time. The
location named "clock cycle" has the same value as the
clock’s cycle time period. Essentially it is a discrete/event-
based model, but if we set the clock’s frequency to twice
the user’s required frequency, we can consider it continu-
ous.

6. RESULTS

To understand CNJ’s real-time response, we ran CNJ to
simulate some CN models under the environment of Li-
nux Redhat7.1 with PIII 1G Hz, 256M SDRAM,
J2SDK1.4. Although CNJ clocks are not perfectly accu-
rate, we find them quite good. For CNJ clocks running at
up to 100Hz, the model can run at close to real-time.
Moreover, from the user’s point of view, the response lag
time is acceptably low, even when implemented in pure
Java (Swing).

Our work proves that JavaBeans and Java Event
mechanisms are efficient for real-time simulation and
realization of reusability. The visual programming envi-
ronment is helpful for users.

7. CONCLUSION

This paper presents our work in modeling and simulating
real-time hybrid dynamic system with constraint nets. It
uses the technologies of component-based software and
Java Beans to successfully implement a practical visual
real-time visual environment: Constraint Nets in Java
(CNJ). The reusability of beans makes building constraint
net models easier, and allows users to reduce time and
effort in building similar models. In addition, the XML-
based interchange format CNML makes translation to and
from other tools feasible and convenient. Constraint Nets
also includes a specification language (two versions:
Timed Linear Temporal Logic and Timed ∀-automata),
that allows the designer to specify and verify control sys-
tems. Our development plans, therefore, include an exten-
sion to support graphical specification and verification
tools.

ACKNOWLEDGEMENTS

We thank Yu Zhang, Ying Zhang, Valerie McRae, and
Lan Lin for valuable help. This research was supported by
the Natural Sciences and Engineering Research Council
and the Institute for Robotics and Intelligent Systems.

REFERENCES

1. B. Shahian, M. Hassul: 1993, "Control System De-
sign Using Matlab", Prentice-Hall. Inc..

2. Zhang, Y. and A. K. Mackworth: 1994, "Specifica-
tion and Verification of Constraint-Based Dynamic
Systems". In: A. Borning (ed.): Principles and Prac-
tice of Constraint Programming, No. 874 in Lecture

Notes in Computer Science. Springer-Verlag, pp. 229
- 242.

3. Zhang, Y.: 1994, "A Foundation for the Design and
Analysis of Robotic Systems and Behaviors". Ph.D.
thesis, University of British Columbia, Vancouver,
British Columbia.

4. Zhang, Y. and A. K. Mackworth: 1995, "Synthesis of
Hybrid Constraint-Based Controllers". In: P. Antak-
lis, W. Kohn, A.Nerode, and S.Sastry (eds.): Hybrid
Systems II, Lecture Notes in Computer Science 999.
Springer Verlag, pp. 552 - 567.

5. John A. Miller, Y. Ge, J. Tao: 1998, "Component-
Based Simulation Environments: JSIM As a Case
Study Using Java Beans". In: Proc. 1998 Winter
Simulation Conference pp, 373 - 381.

6. Zhang, Y. and A. K. Mackworth: 1999, "Modeling
and Analysis of Hybrid Systems: An Elevator Study".
In: H. Levesque and F. Pirri (eds.): Logical Founda-
tions for Cognitive Agents. Berlin: Springer, pp. 370
- 396.

7. A. K. Mackworth: 2000, "Constraint-Based Agents:
The ABC’s of CBA’s". In: Proc. 6th Int. Conf. On
Principles and Practice of Constraint Programming -
CP2000. Springer LNCS 1894, Singapore, pp. 1 - 10.

8. M. Jungel, E. Kindler, M. Weber: 2000, "The Petri
Net Markup Language". In: S. Philippi(Ed.): 7. Work-
shop Algorithm for Petri Net.

9. A. K. Mackworth and Zhang, Y.: 2001, "Constraint-
Based Agents: A Formal Model for Agent Design".
In: UBC Computer Science Technical Report TR-
2001-09.

10. Y. Wang and S. Ho: 2001, "Implementation of a
DEVS-JavaBean Simulation Environment". In: 2001
Advanced Simulation Technologies Conference.

11. K. Verschaeve, B. Wydaeghe, F. Westerhuis: 2001,
"Visual Composition with SDL Beans". In: Proceed-
ings of ECBS 2001, Washington, USA.

12. W3C: September 2001, "Scalable Vector Graphics
(SVG) 1.0 Specification".

13. W3C: 2001, "Mathematical Markup Language
(MathML) Version 2.0".

14. E. R. Harold: 2001, "XML Bible 2nd edition", IDB
Books.

15. Andy Quinn: 2001, "Trail: JavaBeans(TM)",
http://java.sun.com/docs/books/tutorial/javabeans/ind
ex.html

16. JDOM Beta 7: 2001, http://www.jdom.org/

AUTHOR BIOGRAPHIES

Fengguang Song is currently a graduate student in De-
partment of Computer Science at the University of British
Columbia. He received the M.Sc. in Computer Science
from Nanjing University of Aeronautics and Astronautics,
P.R. China in 1999. His research interest includes con-
straint-based real-time systems, software engineering, and
image-based modeling and rendering. His e-mail address
is <fgsong@cs.ubc.ca> and URL is
<http://www.cs.ubc.ca/~fgsong>.

Alan K. Mackworth is a Professor of Computer Science
at the University of British Columbia and holds a Canada
Research Chair in Artificial Intelligence. His research
focuses on the theory and applications of constraint-based
dynamic systems, computational vision and robotics, and
hybrid systems. His e-mail address is <mack@cs.ubc.ca>
and URL is <http://www.cs.ubc.ca/~mack>.

