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Abstract

A key component of a mobile robot system is the ability to localize
itself accurately and, simultaneously, to build a map of the environ-
ment. Most of the existing algorithms are based on laser range find-
ers, sonar sensors or artificial landmarks. In this paper, we describe
a vision-based mobile robot localization and mapping algorithm,
which uses scale-invariant image features as natural landmarks in
unmodified environments. The invariance of these features to image
translation, scaling and rotation makes them suitable landmarks for
mobile robot localization and map building. With our Triclops stereo
vision system, these landmarks are localized and robot ego-motion is
estimated by least-squares minimization of the matched landmarks.
Feature viewpoint variation and occlusion are taken into account by
maintaining a view direction for each landmark. Experiments show
that these visual landmarks are robustly matched, robot pose is es-
timated and a consistent three-dimensional map is built. As image
features are not noise-free, we carry out error analysis for the land-
mark positions and the robot pose. We use Kalman filters to track
these landmarks in a dynamic environment, resulting in a database
map with landmark positional uncertainty.

KEY WORDS—localization, mapping, visual landmarks,
mobile robot

1. Introduction

Mobile robot localization and mapping, the process of simul-
taneously tracking the position of a mobile robot relative to its
environment and building a map of the environment, has been
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a central research topic in mobile robotics. Accurate localiza-
tion is a prerequisite for building a good map, and having
an accurate map is essential for good localization. Therefore,
simultaneous localization and map building (SLAM) is a crit-
ical underlying factor for successful mobile robot navigation
in a large environment, irrespective of what the high-level
goals or applications are.

To achieve SLAM, there are different types of sensor
modalities such as sonar, laser range finders and vision. Sonar
is fast and cheap but usually very crude, whereas a laser scan-
ning system is active, accurate but slow. Vision systems are
passive and of high resolution. Many early successful ap-
proaches (Borenstein et al. 1996) utilize artificial landmarks,
such as bar-code reflectors, ultrasonic beacons, visual pat-
terns, etc., and therefore do not function properly in beacon-
free environments. Therefore, vision-based approaches us-
ing stable natural landmarks in unmodified environments are
highly desirable for a wide range of applications. The map
built from these natural landmarks will serve as the basis for
performing high-level tasks such as mobile robot navigation.

1.1. Literature Review

Harris’s three-dimensional (3D) vision system DROID (Har-
ris 1992) uses the visual motion of image corner features for
3D reconstruction. Kalman filters are used for tracking fea-
tures, and from the locations of the tracked image features,
DROID determines both the camera motion and the 3D posi-
tions of the features. Ego-motion determination by match-
ing image features is generally very accurate in the short
to medium term. However, in a long image sequence, long-
term drifts can occur as no map is created. In the DROID
system where monocular image sequences are used without
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odometry, the ego-motion and the perceived 3D structure can
be self-consistently in error. It is an incremental algorithm and
runs at near real-time.

Thrun et al. (1998) proposed a probabilistic approach us-
ing the Expectation–Maximization (EM) algorithm. The E-
step estimates robot locations at various points based on the
currently best available map and the M-step estimates a max-
imum likelihood map based on the locations computed in the
E-step. The EM algorithm searches for the most likely map
by simultaneously considering the locations of all past sonar
scans. Being a batch algorithm, it is not incremental and can-
not be run in real-time.

Thrun et al. (2000) proposed a real-time algorithm com-
bining the strengths of EM algorithms and incremental algo-
rithms. Their approach computes the full posterior probability
over robot poses to determine the most likely pose, instead of
just using the most recent laser scan as in incremental map-
ping. The mapping is achieved in two dimensions using a
forward-looking laser, and an upward-pointed laser is used to
build a 3D map of the environment. However, it does not scale
to large environments as the calculation cost of the posterior
probability is too expensive.

The Monte Carlo localization method was proposed in Del-
laert et al. (1999) based on the CONDENSATION algorithm.
This vision-based Bayesian filtering method uses a sampling-
based density representation and can represent multi-modal
probability distributions. Given a visual map of the ceiling
obtained by mosaicing, it localizes the robot using a scalar
brightness measurement. Jensfelt et al. (2000) proposed some
modifications to this algorithm for better efficiency in large
symmetric environments. CONDENSATION is not suitable
for SLAM due to scaling problems and hence it is only used
for localization.

In SLAM, as the robot pose is being tracked continuously,
multi-modal representations are not needed. Grid-based rep-
resentation is problematic for SLAM because maintaining all
grid positions over an entire region is expensive and grids are
difficult to match.

Using global registration and correlation techniques, Gut-
mann and Konolige (1999) proposed a method to reconstruct
consistent global maps from laser range data reliably. Their
pose estimation is achieved by scan matching of dense two-
dimensional (2D) data and is not applicable to sparse 3D data
from vision.

Sim and Dudek (1999) proposed learning natural visual
features for pose estimation. Landmark matching is achieved
using principal components analysis. A tracked landmark is
a set of image thumbnails detected in the learning phase, for
each grid position in pose space. It does not build any map for
the environment.

In SLAM, a robot starts at an unknown location with no
knowledge of landmark positions. From landmark observa-
tions, it simultaneously estimates its location and landmark
locations. The robot then builds up a complete map of land-

marks which are used for robot localization. In stochastic
mapping (Smith et al. 1987), a single filter is used to main-
tain estimates of robot position, landmark positions and the
covariances between them.

Many existing systems (Leonard and Durrant-Whyte 1991;
Castellanos et al. 1999; Williams et al. 2000) are based on this
framework but the computational complexity of stochastic
mapping is O(n2) and hence increases greatly with the map
size.

Various approaches have been developed to reduce this
complexity problem. Sub-optimal methods can provide
speedier filtering by neglecting some of the coupling in the
landmarks (Castellanos et al. 2000). Decoupled stochastic
mapping reduces this computational burden by dividing the
environment into multiple overlapping submap regions, each
with its own stochastic map (Leonard and Feder 1999).

The postponement technique (Davison 1998; Knight et al.
2001) is an optimal method which updates a constant-sized
data set based on current measurements and carries out up-
dates on all unobserved parts of the map at a later stage. Es-
sentially, it gathers all the changes that would need to be made
at each step, and then carries out an expensive full map update
occasionally.

The compressed filter proposed by Guivant and Nebot
(2001) does not affect the optimality of the system while it sig-
nificantly reduces the computation requirements when work-
ing in local areas. It only maintains the information gained
in a local area which is transferred to the overall map in one
iteration at full SLAM computation cost.

Most of the existing mobile robot localization and map-
ping algorithms are based on laser or sonar sensors, as vi-
sion is more processor intensive and good visual features are
more difficult to extract and match. Existing vision-based ap-
proaches use low-level features such as vertical edges (Castel-
lanos et al. 1999) and have complex data association prob-
lems. Our approach uses high-level image features which
are scale invariant, thus greatly facilitating feature correspon-
dence. Moreover, these features are distinctive and therefore
their maps allow efficient algorithms to tackle the “kidnapped
robot” problem (Se et al. 2001a).

1.2. Paper Structure

In this paper, we propose a vision-based SLAM algorithm by
tracking the scale-invariant feature transform (SIFT) visual
landmarks in unmodified environments (Se et al 2001b). As
our robot is equipped with the Triclops1, a trinocular stereo
system, 3D positions of the landmarks can be obtained. Hence,
a 3D map can be built and the robot can be localized simul-
taneously in three dimensions. The 3D map, represented as a
SIFT feature database, is constantly updated over frames and
is adaptive to dynamic environments.

1. www.ptgrey.com



Se, Lowe, and Little / Mobile Robot Localization 737

In Section 2 we explain the SIFT features and the stereo
matching process. Ego-motion estimation by matching fea-
tures across frames is described in Section 3. SIFT database
landmark tracking is presented in Section 4 with experimental
results shown in Section 5, where our 10 × 10 m2 laboratory
environment is mapped with thousands of SIFT landmarks.
In Section 6 we describe some enhancements to the SIFT
database. Error analysis for both the robot position and the
landmark positions is carried out in Section 7, resulting in
a SIFT database map with landmark uncertainty. Finally, we
conclude and discuss some future work in Section 8.

2. SIFT Stereo

SIFT was developed by Lowe (1999) for image feature gen-
eration in object recognition applications. The features are
invariant to image translation, scaling, rotation, and partially
invariant to illumination changes and affine or 3D projection.
These characteristics make them suitable landmarks for ro-
bust SLAM because when mobile robots are moving around
in an environment, landmarks are observed over time, but from
different angles, distances or under different illumination.

Previous approaches to feature detection, such as the
widely used Harris corner detector (Harris and Stephens
1988), are sensitive to the scale of an image and therefore
are not suited to building a map that can be matched from a
range of robot positions.

At each frame, we extract SIFT features in each of the three
images and stereo match them among the images. Matched
SIFT features are stable and will serve better as landmarks
for the environment to be tracked over time. Moreover, stereo
matched features provide their 3D world positions.

2.1. Generating SIFT Features

The SIFT feature locations are determined by identifying re-
peatable points in a pyramid of scaled images. This is com-
puted by first smoothing the image with a Gaussian kernel
with a sigma of

√
2. The smoothed image is subtracted from

the original image to produce a difference-of-Gaussian image.
The smoothed image is then resampled with a pixel spacing
1.5 times larger to produce the next level of the image pyra-
mid. The operations are repeated at decreasing scales until
the image size is too small for feature detection. This is a par-
ticularly efficient scale-space structure, as the operations of
smoothing, subtraction, and subsampling can all be performed
with a few dozen operations per pixel.

Feature locations are identified by detecting maxima and
minima in the difference-of-Gaussian pyramid. This is effi-
ciently implemented by comparing each pixel to its surround-
ing pixels and those at adjacent scales. A change in scale of
the original image will produce a corresponding change in the
scale at which the critical point is detected.

The difference-of-Gaussian function is circularly symmet-
ric, so feature locations are invariant to changes in image ori-
entation. The SIFT features then assign a canonical orientation
at each location so that descriptions relative to this orientation
will remain constant following image rotation. The orienta-
tion is selected by determining the peak in a histogram of the
local image gradient orientations sampled over a Gaussian-
weighted circular region around the point.

Figure 1 shows the SIFT features that were found for the
top, left, and right images taken with our Triclops cameras.
A subpixel location, scale and orientation are associated with
each SIFT feature. The scale and orientation of each feature
is indicated by the size and orientation of the corresponding
square. The image resolution is 320 × 240 and eight levels of
scale were used. There were about 180 features found in each
image, which was sufficient for this task, but if desired, the
number could be increased by processing all scales and using
full image resolution.

2.2. Stereo Matching

In the Triclops system, the right camera serves as the reference
camera, as the left camera is 10 cm beside it and the top
camera is 10 cm directly above it. We will first match the
SIFT features in the right and left images and then refine the
resulting matches using the top image.

2.2.1. Stage I: Right to Left Match

For a SIFT feature in the right image and a SIFT feature in the
left image to match, the following criteria should be satisfied:

Epipolar constraint. The vertical image coordinates must
be within 1 pixel of each other, as the images have been
aligned and rectified.

Disparity constraint. The horizontal image coordinates of
the left image must be greater than those of the right
image and the difference must be within some prede-
fined disparity range (currently 20 pixels).

Orientation constraint. The difference of the two orienta-
tions must be within 20 degrees.

Scale constraint. One scale must be at most one level higher
or lower than the other. Adjacent scales differ by a factor
of 1.5 in our SIFT implementation.

Unique match constraint. If a feature has more than one
match satisfying the above criteria, the match is am-
biguous and discarded so that the resulting matches are
more consistent and reliable.

After matching the SIFT features, we retain a subset of the
right image SIFT features which match some SIFT features
in the left image. These matches allow us to compute the
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(a)

(b) (c)
Fig. 1. SIFT features found, with scale and orientation indicated by the size and orientation of the squares: (a) top image; (b)
left image; (c) right image.

subpixel horizontal disparity for each matched feature in this
subset.

2.2.2. Stage II: Right to Top Match

For the next stage, we use the top image to refine this interme-
diate subset. The criteria to be satisfied are similar to those in
stage I and we obtain a subset of this intermediate subset. The
resulting matches allow us to compute the subpixel vertical
disparity. An additional constraint is employed here to refine
this final set: the horizontal disparity and the vertical disparity
of each match must be within 1 pixel of one another.

The orientation and scale of each matched SIFT feature are
taken as the average of the orientation and scale among the
corresponding SIFT feature in the left, right and top images.
The disparity is taken as the average of the horizontal disparity
and the vertical disparity. Together with the positions of the
features and the camera intrinsic parameters, we can compute
the 3D world coordinates (X, Y, Z) relative to the robot for

each feature in this final set.2 They can subsequently serve as
landmarks for map building and tracking.

2.3. Results

For the three images shown in Figure 1, stereo matching is car-
ried out on the SIFT features. After stage I matching between
the right and left images, the number of resulting matches
is 106. After stage II matching with the top image, the final
number of matches is 59. The result is shown in Figure 2(a),
where each matched SIFT feature is marked. The length of
the horizontal line indicates the horizontal disparity and the
vertical line indicates the vertical disparity for each feature.
Figures 2(b), (c), (d) and (e) show more SIFT stereo results
for slightly different views when the robot makes some small
translation and rotation. There are around 60 final matches in
each view.

2. Alternatively, 3D positions can be obtained by minimizing the intersection
errors of the three rays for the right, left and top images.
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(a)

(b) (c)

(d) (e)
Fig. 2. Stereo matching results for different views from a moving robot. The horizontal line indicates the horizontal disparity
and the vertical line indicates the vertical disparity. Closer objects will have larger disparities. Tracking results are shown in
Figure 3.
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Slightly different values for the various constraints have
been tested and their effect on the stereo results is very small.
The matches are stable with respect to the constraint param-
eters. Relaxing some of the constraints above does not nec-
essarily increase the number of final matches because some
SIFT features will then have multiple potential matches and
therefore be discarded.

3. Ego-motion Estimation

After SIFT stereo matching, we obtain

[rm, cm, s, o, d,X, Y,Z]
for each matched SIFT feature, where (rm, cm) are the mea-
sured image coordinates in the reference camera, (s, o, d) are
the scale, orientation and disparity associated with each fea-
ture, and (X, Y, Z) are the 3D coordinates of the landmark
relative to the camera.

To build a map, we need to know how the robot has moved
between frames in order to put the landmarks together coher-
ently. The robot odometry (Borenstein and Feng 1996) only
gives a rough estimate and it is prone to errors such as drifting,
slipping, etc.

We would therefore like to improve the odometry estimate
of the ego-motion by matching SIFT features between frames.
To find matches in the second view, the odometry information
allows us to predict the region to search for each match, and
hence more efficiently, as opposed to searching in a much
larger unconstrained region.

Once the SIFT features are matched, we can then use the
matches in a least-squares procedure to compute a more ac-
curate six degrees-of-freedom (DoF) camera ego-motion and
hence better localization. This will also help in adjusting the
3D coordinates of the SIFT landmarks for map building.

3.1. Predicting Feature Characteristics

As our robot is restricted to approximate 2D planar motion,
the odometry gives us the approximate movement (p, q) in
X and Z directions as well as the orientation rotation (δ).

Given (X, Y, Z), the 3D coordinates of a SIFT landmark
and the odometry, we can compute (X′, Y ′, Z′), the relative
3D position, in the new view:

 X′

Y ′

Z′


 =


 (X − p) cos δ − (Z − q) sin δ

Y

(X − p) sin δ + (Z − q) cos δ


 . (1)

Using the typical pinhole camera model, we project this
3D position to its expected image coordinates and compute
its expected disparity in the new view

 r ′

c′

d ′


 =


 v0 − f Y ′/Z′

u0 + f X′/Z′

f I/Z′


 (2)

where (u0, v0) are the image centre coordinates, I is the inte-
rocular distance and f is the focal length. The expected SIFT
orientation remains unchanged. As the scale is inversely re-
lated to the distance, the expected scale is given by

s ′ = s ∗ Z
Z′ .

We can search for the appropriate SIFT landmark match
based on the following criteria:

Position. The feature in the new view must be within a 10×10
pixel region of the expected feature position (r ′, c′).

Scale. The expected scale and the measured scale must be
within 20% of each other.

Orientation. The orientation difference must be within 20
degrees.

Disparity. The predicted disparity and the measured dispar-
ity in the second view must be within 20% of one
another.

3.2. Match Results

For the images shown in Figure 2, the rough robot movement
from odometry is tabulated in Table 1.

The consecutive frames are matched according to the cri-
teria described above. The matches are stable with respect to
the criteria parameters. The specificity of the SIFT features
allows the correct features to be matched even if the window
size is increased. Table 2 shows the number of matches across
frames and the percentage of matches for the different views.

Figure 3 shows the match results visually where the shift
in image coordinates of each feature is marked. The white dot
indicates the current position and the white cross indicates the
new position, with the line showing how each matched SIFT
feature moves from one frame to the next, analogous to sparse
optic flow. Figures 3(a) and (c) are for a forward motion of
10 cm and Figures 3(b) and (d) are for a clockwise rotation
of 5◦. It can be seen that all the matches found are correct and
consistent.

Table 1. Robot Movement According to Odometry for the
Various Views

Figure Movement

Figure 2(a) Initial position
Figure 2(b) Forward 10 cm
Figure 2(c) Rotate clockwise 5◦

Figure 2(d) Forward 10 cm
Figure 2(e) Rotate clockwise 5◦
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(a) (b)

(c) (d)
Fig. 3. The SIFT feature matches between consecutive frames: (a) between Figures 2(a) and (b) for a 10 cm forward
movement; (b) between Figures 2(b) and (c) for a 5◦ clockwise rotation; (c) between Figures 2(c) and (d) for a 10 cm forward
movement; (d) between Figures 2(d) and (e) for a 5◦ clockwise rotation.

Table 2. Number of Matches Across Frames and the
Percentage of Matches for the Different Views, Based
on the SIFT Features Found in Figure 2

Figures Number Percentage
to Match of Matches of Matches

Figures 2(a) and (b) 43 73%
Figures 2(b) and (c) 41 68%
Figures 2(c) and (d) 35 64%
Figures 2(d) and (e) 33 60%

3.3. Least-Squares Minimization

Once the matches are obtained, ego-motion is determined by
finding the camera movement that would bring each projected
SIFT landmark into the best alignment with its matching ob-
served feature. To minimize the errors between the projected
image coordinates and the observed image coordinates, we
employ a least-squares procedure (Lowe 1992) to compute

this six DoF camera ego-motion.
Rather than solving directly for the six DoF vector of cam-

era ego-motion, Newton’s method computes a vector of cor-
rections x to be subtracted from the current estimate, namely
the odometry estimate p:

p′ = p − x.

Given a vector of error measurements e between the expected
projection of the SIFT landmarks and the matched image po-
sition observed in the new view, we would like to solve for an
x that would eliminate this error. Therefore, we would like to
solve for x in

J x = e

where J is the Jacobian matrix Ji,j = ∂ei/∂xj . If there are
more measurements than parameters, a least-squares mini-
mization (Gelb 1984) is carried out and x is given by

J� J x = J� e. (3)
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3.4. Setting up the Equation

The ego-motion p in this case is the six-vector

[x y z θ α β]�

where [x y z]� are the translations in X, Y , Z directions, and
[θ α β]� are the yaw, pitch and roll, respectively. Although
the odometry only gives us three DoF, namely the translations
in X and Z directions and the orientation, we use a full six
DoF for the general motion to account for small non-planar
motions.

The error vector e is of size 2N where N is the number of
SIFT feature matches between views

[er1 ec1 er2 ec2 . . . erN ecN ]�

where (eri, eci) are the row and column errors for the ith match.
We can estimate the new 3D position (X′

i
, Y ′

i
, Z′

i
) from the

previous 3D position (Xi, Yi, Zi) using odometry according
to eq. (1). Afterwards, we can predict its projection (r ′

i
, c′

i
) in

the new view using eq. (2). Together with the measured image
position (rmi, cmi) for the matches, we can compute this error
vector e where

eri = r ′
i
− rmi

eci = c′
i
− cmi.

J is a 2N × 6 matrix whose (2i − 1)th row is

[∂ri
∂x

∂ri

∂y

∂ri

∂z

∂ri

∂θ

∂ri

∂α

∂ri

∂β
]

and whose 2ith row is

[∂ci
∂x

∂ci

∂y

∂ci

∂z

∂ci

∂θ

∂ci

∂α

∂ci

∂β
].

The computation of these partial derivatives is performed nu-
merically. For example, to compute ∂ci/∂x, we perturb x by
a small amount #x and compute how much ci changes, i.e.,

#ci = (u0 + f (X′
i
−#x)

Z′
i

)− (u0 + f X′
i

Z′
i

).

The rate of change #ci/#x of ci with respect to x approx-
imates ∂ci/∂x as #x tends to zero; similarly for the other
partial derivatives terms.

We use Gaussian elimination with pivoting to solve eq. (3)
which is a linear system of six equations. The least-squares
error ê can be computed using the correction terms x̂ found

ê = J x̂

and for each feature, the residual error Ei is given by

Ei =
√
ê2
ri + ê2

ci .

The good feature matching quality implies a very high per-
centage of inliers, therefore outliers are simply eliminated by
discarding features with significant residual errors Ei (cur-
rently two pixels). The minimization is repeated with the re-
mainder matches to obtain the new correction terms.

3.5. Results

For each of the motion matches shown in Figure 3, we pass
all the SIFT matches to the least-squares procedure with the
odometry as the initial estimate of ego-motion. The results
obtained are shown in Table 3, where the least-squares esti-
mate [x, y, z, θ, α, β] corresponds to the translations inX, Y ,
Z directions, yaw, pitch and roll respectively.

A 3D geometric representation should retain valuable
structural information while discarding the large amount of
redundant pixel data in an image. This is crucial for real-time
computer vision and mobile robot systems because there are
too many pixels in a video-rate image sequence for process-
ing. Corner features were used in Harris (1992) for tracking,
whereas we have employed SIFT features for our system.
SIFT features are largely invariant to translations, scaling, ro-
tation, and illumination changes, and hence are more stable
than corners for tracking over time.

We observe the same scene from slightly different direc-
tions at various distances and we investigate the stability of
SIFT landmarks in the environment.

Figure 4 shows six views of the same scene: Figure 4(b) at
the original robot position; Figure 4(a) at the same distance
around 10◦ from the left; Figure 4(c) at the same distance
around 10◦ from the right; Figure 4(e) around 60 cm in front;
Figure 4(d) around 60 cm in front and 10◦ from the left; Fig-
ure 4(f) around 60 cm in front and 10◦ from the right.

We compare the SIFT scale and orientation of some land-
marks which appear in all six views, as marked in Figure 4(a).
Since the SIFT scale is inversely proportional to the distance,
we use a scale measure given by the product between the
SIFT scale and the landmark distance, which should remain
more or less unchanged when observed at different views. The
orientation is currently obtained at a discretized space.

The results in Table 4 show the scale measure and the ori-
entation of the corresponding landmarks from different views
in Figure 4(a)–(f).

We can see that, for each landmark, the scale measure and
orientation are very stable from different views. This will al-
low landmarks to be matched consistently across frames.

4. Landmark Tracking

After matching SIFT features between frames, we would like
to maintain a database map containing the SIFT features de-
tected and to use this database of landmarks to match features
found in subsequent views. The initial camera coordinates
frame is used as a reference and all landmarks are relative to
this frame.

For each SIFT feature that has been stereo matched and
localized in 3D coordinates, its entry in the database is

[X, Y,Z, s, o, l]
where (X, Y, Z) is the current 3D position of the SIFT
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Table 3. Least-squares Estimate of the Six DoF Robot Ego-motion Based on the SIFT Features Matches Across Frames
in Figure 3

Figure Odometry Mean Ei Least-Squares Estimate

3(a) q = 10 cm 1.125 [1.353 cm, −0.534 cm, 11.136 cm,
0.059◦, −0.055◦, −0.029◦]

3(b) δ = 5◦ 1.268 [0.711 cm, 0.008 cm, −0.989 cm,
4.706◦, 0.059◦, −0.132◦]

3(c) q = 10 cm 0.882 [−0.246 cm, −0.261 cm, 9.604 cm,
0.183◦, 0.089◦, −0.101◦]

3(d) δ = 5◦ 1.314 [1.562 cm, 0.287 cm, −0.562 cm,
4.596◦, 0.004◦, −0.073◦]

(a) (b) (c)

(d) (e) (f)
Fig. 4. A scene observed from different views. The four landmarks considered are numbered in (a).

Table 4. The Scale and Orientation for Some SIFT Landmarks from Different Views, Showing the Landmark Stability

(Scale,Orientation) Landmark 1 Landmark 2 Landmark 3 Landmark 4

View (a) (23.42,−1.31) (10.69,−1.66) (17.34, 1.48) (10.31,−1.48)
View (b) (23.28,−1.31) (10.60,−1.66) (17.37, 1.48) (10.44,−1.48)
View (c) (24.27,−1.31) (10.87,−1.66) (17.54, 1.48) (10.50,−1.48)
View (d) (22.91,−1.31) (11.91,−1.66) (15.68, 1.43) (9.22,−1.48)
View (e) (22.99,−1.31) (9.84,−1.66) (15.10, 1.48) (9.26,−1.48)
View (f) (22.95,−1.31) (9.82,−1.66) (16.34, 1.48) (9.48,−1.48)

The scale measure is given by the product between the SIFT scale and the landmark distance and
the orientation is obtained at a discretized space.
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landmark relative to the initial coordinates frame, (s, o) are
the scale and orientation of the landmark, and l is a count to
indicate over how many consecutive frames this landmark has
been missed.

Over subsequent frames, we would like to maintain this
database, add new entries to it, track features and prune entries
when appropriate, in order to cater for dynamic environments
and occlusions.

4.1. Track Maintenance

Between frames, we obtain a rough estimate of camera ego-
motion from robot odometry to predict the feature charac-
teristics for the landmarks in the next frame, as discussed in
Section 3.1. There are the following types of landmarks to
consider:

Type I. This landmark is not expected to be within view in
the next frame. Therefore, it is not being matched and
its miss count remains unchanged.

Type II. This landmark is expected to be within view, but no
matches can be found in the next frame. Its miss count
is incremented by 1.

Type III. This landmark is within view and a match is found
according to the position, scale, orientation and dispar-
ity criteria described before. Its miss count is reset to
zero.

Type IV. This is a new landmark corresponding to a SIFT
feature in the new view which does not match any ex-
isting landmarks in the database. A new track is initiated
with a miss count of 0.

All the Type III features matched are then used in the least-
squares minimization procedure to obtain a better estimate
for the camera ego-motion. The landmarks in the database
are updated by averaging for now. This update will be based
on Kalman filters (Bar-Shalom and Fortmann 1988) and the
least-squares ego-motion estimate will be processed further
in Section 7.

If there are insufficient Type III matches due to occlusion
for instance, the odometry will be used as the ego-motion for
the current frame.

4.2. Track Initiation

Initially the database is empty. When SIFT features from the
first frame arrive, we start a new track for each of the features
initializing their miss count l to 0. In subsequent frames, a
new track is initiated for each of the Type IV features.

We may change this policy to only initiate a track when a
particular feature appears consistently over a few frames.

4.3. Track Termination

If the miss count l of any landmark in the database reaches
a predefined limit N (20 was used in experiments), i.e., this
landmark has not been observed at the position it is supposed
to appear for N consecutive times, this landmark track is ter-
minated and pruned from the database. Instead of discarding
a missed track immediately, we can cater for temporary oc-
clusion by adjusting N . Moreover, this can deal with volatile
landmarks such as chairs. After a movable landmark has been
moved, its old entry will be discarded as it is no longer ob-
served at the expected position, and its new entry will be
added.

4.4. Field of View

To check whether or not a landmark in the database is ex-
pected to be within the field of view in the next frame, we
compute the expected 3D coordinates (X′, Y ′, Z′) from the
current coordinates and the odometry, according to eq. (1).

The landmark is expected to be within view if the following
three conditions are satisfied:

• Z′ > 0 for being in front of the camera;

• tan−1(|X′|/Z′) < V/2 for being within the horizontal
field of view;

• tan−1(|Y ′|/Z′) < V/2 for being within the vertical field
of view.

Here V is the camera field of view, currently 60◦ for the Tri-
clops camera.

5. Experimental Results

SIFT feature detection, stereo matching, ego-motion estima-
tion and tracking algorithms have been implemented in our
robot system, a Real World Interface (RWI) B-14 mobile robot
as shown in Figure 5. A SIFT database is kept to track the
landmarks over frames.

As the robot camera height does not change much over flat
ground, we have reduced the estimation to five parameters,
forcing the height change parameter to zero. Depending on
the distribution of features in the scene, there can be some
ambiguity between a yaw rotation and a sideways movement,
which is a well-known problem. The odometry information
can be used to stabilize our least-squares minimization in these
ill-conditioned cases.

Moreover, we set a limit to the correction terms allowed
for the least-squares minimization. Because the odometry in-
formation for between frame movement should be quite good,
the correction terms required should be small. This will safe-
guard frames with erroneous matches that may lead to exces-
sive correction terms and affect the subsequent estimation.
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Fig. 5. Our RWI B-14 mobile robot equipped with the
Triclops.

The odometry information only gives the X,Z movement
and rotation of the robot, but our ego-motion estimation deter-
mines the movement of the camera. Since the Triclops system
is not placed in the centre of the robot, we need to adjust the
odometry information to give an initial approximation for the
camera motion. For example, a mere robot rotation does not
lead to changes in X and Z values of the odometry, but the
camera itself will have displaced in the X and Z directions.

The following experiment was carried out online, i.e., the
images are captured and processed, the database is kept and
updated on the fly while the robot is moving around. We man-
ually drive the robot to go around a chair in the laboratory for
one loop and to come back. At each frame, it keeps track of the
SIFT landmarks in the database, adds new ones and updates
existing ones if matched.

Figure 6 shows some frames of the 320 × 240 image se-
quence (249 frames in total) captured while the robot is mov-
ing around. The white markers indicate the SIFT features
found. At the end, a total of 3590 SIFT landmarks with 3D
positions are gathered in the SIFT database, which are relative
to the initial coordinates frame. The typical time required for
each iteration is around 0.4–0.5 s, in which the majority of
time is spent on the SIFT feature detection stage.

Figure 7 shows the bird’s-eye view of all these landmarks.
Consistent clusters are observed corresponding to objects
such as chairs, shelves, posters and computers in the scene.

In this experiment, the robot has traversed forward more
than 4 m and then has come back. The maximum robot trans-

lation and rotation speeds are set to around 40 cm/s and 10◦/s,
respectively, to make sure that there are sufficiently many
matches between consecutive frames.

The accuracy of the ego-motion estimation depends on
the SIFT features and their distribution and the number
of matches. In this experiment, there are sufficiently many
matches at each frame, ranging mostly between 40 and 60,
depending on the particular part of the laboratory and the
viewing direction.

At the end when the robot comes back to the original posi-
tion (0,0,0) judged visually: the SIFT estimate isX:−2.09 cm;
Y : 0 cm; Z: −3.91 cm; θ : 0.30◦; α: 2.10◦; β: −2.02◦.

6. SIFT Database

Our basic approach has been described above, but there are
various enhancements dealing with the SIFT database that can
help our tracking to be more robust and our map building to
be more stable.

6.1. Database Entry

In order to find how reliable a certain SIFT landmark is in
the database, we need some information regarding how many
times this landmark has been matched and how many times it
has not been matched so far, not just the number of times it has
not been matched consecutively. Therefore, the new database
entry is

[X, Y,Z, s, o,m, n, l]
where l is still the count for the number of times being missed
consecutively, which is used to decide whether or not the land-
mark should be pruned. m is a count for the number of times
it has been missed so far, i.e., an accumulative count for l. n
is a count for the number of times it has been seen so far.

With the new information, we can impose a restriction that,
for a feature to be considered as valid, its n count has to exceed
some threshold. Each feature has to appear at least three times
(n ≥ 3) in order to be considered as a valid feature; this is to
eliminate false alarms and noise, as it is highly unlikely that
some noise will cause a feature to match in the right, left and
top images for three times (a total of nine camera views).

In this experiment, we move the robot around the labora-
tory environment without the chair in the middle. In order to
demonstrate visually that the SIFT database map is 3D, we
use the visualization package Geomview.3 The user can inter-
actively view the 3D map from different elevation angles, pan
angles or distances. Figure 8 shows several views of the 3D
SIFT map from different angles. We can see that the centre re-
gion is clear, as false alarms and noise features are discarded.
The SIFT landmarks correspond well to actual objects in the
laboratory.

3. www.geomview.org
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 6. Frames of an image sequence with SIFT features marked: (a) 1st frame; (b) 30th frame; (c) 60th frame; (d) 90th frame;
(e) 120th frame; (f) 150th frame; (g) 180th frame; (h) 210th frame; (i) 240th frame.
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Fig. 7. Bird’s-eye view of the SIFT landmarks in the database. The cross at (0,0) indicates the initial robot position and the
dashed line indicates the robot path while obtaining the images shown in Figure 6.

6.2. Permanent Landmarks

In some scene where there could be many volatile landmarks,
e.g., when someone blocks the camera view for a while, be-
cause it has not been matched for a larger number of consec-
utive frames, the previously observed good landmarks will be
discarded.

Therefore, when the environment is clear, we can build a
database of SIFT landmarks beforehand and mark them as
permanent landmarks, if they are valid (having appeared in at
least three frames) and if the percentage of their occurrence
(given by n

n+m ) is above a certain threshold (currently 30%).
Afterwards, this set of reliable landmarks will not be wiped
out even if they are being missed for many consecutive frames.
They are important for subsequent localization after the view
is unblocked.

6.3. Viewpoint Variation

Although SIFT features are invariant in image orientation and
scale, they are image projections of 3D landmarks and hence
vary with large changes of viewpoints and are subject to land-
mark occlusion.

For example, when the front of an object is seen first, after
the robot moves around and views the object from the back,
the image feature, in general, is completely different. As the

original feature may not be observable from this viewpoint, or
is observable but appears different, its miss count will increase
gradually and it will be pruned even though it is still there.

Therefore, each SIFT characteristic (scale and orientation)
is associated with a view vector keeping track of the viewpoint
from which the landmark is observed. Subsequently, if the
new view direction differs from the original view direction
by more than a threshold (currently set to 20◦), its miss count
will not be incremented even if it does not match. Feature
matching is not considered at all when the new view direction
differs by more than 90◦. In this way, we can avoid corrupting
the feature information gathered earlier by the current partial
view of the world.

Moreover, we allow each SIFT landmark to have more than
one SIFT characteristic. If a feature matches from a direction
larger than 20◦, we add a new view vector with the new SIFT
characteristic to the existing landmark. Therefore, a database
landmark can have multiple SIFT characteristics (si, oi, vi )

where si and oi are the scale and orientation for the view
direction vi . Over time, if a landmark is observed from various
directions, much richer SIFT information is gathered. The
matching procedure is as follows:

• compute view vector v between the database landmark
and the current robot position;
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(a)

(b) (c)
Fig. 8. The 3D SIFT database map viewed from different angles in Geomview. Each feature has appeared consistently in at
least nine views: (a) from top; (b) from left; (c) from right.

• find the existing view direction vi associated with the
database landmark which is closest to v;

• view vectors are normalized and, therefore, angle φ

between v and vi can be computed as the arccosine of
the dot product between the two vectors

v · vi = |v||vi | cosφ ⇒ φ = cos−1(v · vi );

• omit the following step if φ is greater than 90 degrees;

• check if φ is less than 20 degrees

– if so, update the existing s and o if feature match-
ing succeeds, or increment miss count if feature
matching fails;

– else, add a new entry of SIFT characteristic
(s, o, v) to the existing landmark if feature match-
ing succeeds.

The 3D position of the landmark is updated if matched and
the counts are updated accordingly. The new database entry
becomes

[X, Y,Z,m, n, l, k, s1, o1, v1, s2, o2, v2, . . . , sk, ok, vk]
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where k is the number of SIFT characteristics associated with
this SIFT landmark.

7. Error Modeling

There are various errors such as noise and quantization asso-
ciated with the images and the features found. They introduce
inaccuracy in both the position of the landmarks as well as the
least-squares estimation of the robot position. We would like
to know how reliable the estimations are and therefore we in-
corporate a covariance matrix into each of the SIFT landmarks
in the database.

We employ a Kalman filter (Bar-Shalom and Fortmann
1988) for each database SIFT landmark with a 3 × 3 covari-
ance matrix for its position. The robot pose uncertainty is
also required because landmarks in the current frame are to
be transformed to the initial coordinates frame using the robot
pose estimate.

When a match is found in the current frame, the covari-
ance matrix for the landmark in the current frame will be
transformed using the robot pose covariance and then com-
bined with the covariance matrix in the database so far, and
its 3D position will be updated accordingly.

7.1. Robot Pose Covariance

We use the odometry as the initial approximation for the
robot pose least-squares minimization, and the resulting least-
squares estimate is regarded as the final estimate. There are
errors associated with both the odometry and the least-squares
localization. Therefore, we will employ a Kalman filter to fuse
these two sources of information using their covariances.

The state in our Kalman filter is the five DoF robot camera
pose (assuming fixed height). We have a prediction stage for
the state and the state covariance using the odometry infor-
mation. Then using the SIFT localization as the measurement
model, we can update the state and covariance accordingly to
obtain a better estimate.

7.1.1. Odometry Model

Odometry is widely used to provide easy accessible real-time
positioning information for mobile robot. However, it is based
on the assumption that wheel revolution can be translated into
linear displacement relative to the floor, so odometry is prone
to errors. There are two types of odometry errors: systematic
and non-systematic. Various methods of modeling and reduc-
ing these errors have been proposed (Everett 1995; Borenstein
et al. 1996).

Systematic errors (Borenstein and Feng 1996) include un-
equal wheel diameters, wheelbase uncertainty, wheel mis-
alignment, etc. They accumulate constantly and orientation
errors dominate because they can grow without bound into
translational position errors (Crowley 1989).

Non-systematic errors (Borenstein 1995) include travel-
ing over uneven floors, wheel slippage due to slippery floor,
skidding, etc. These are caused by the interaction of the robot
with unpredictable features of the environment and hence are
difficult to bound.

In the odometry modeling below, we look at the overall
odometry uncertainty for our prediction. For our robot, it can
only move forward (w) and rotate (δ) with odometry mea-
surements (p, q, δ). Referring to Figure 9, we have

p = w sin δ (4)

q = w cos δ (5)

w2 = p2 + q2. (6)

We can compute the variances of p and q in terms of the
variances of w and δ using first order error propagation for-
mulae (Bevington and Robinson 1992). From eq. (4), we have

σ 2
p

= σ 2
w

sin2
δ + σ 2

δ
w2 cos2 δ.

From eq. (5), we have

σ 2
q

= σ 2
w

cos2 δ + σ 2
δ
w2 sin2

δ.

We also need to compute the cross-correlation terms, since
(p, q, δ) are not independent of each other. For example, any
changes to δ will also affect p and q.

Computing the first-order error terms for eq. (6), we have

w2σ 2
w

= p2σ 2
p

+ q2σ 2
q

+ 2pqσ 2
pq

and hence

σ 2
pq

= w2σ 2
w

− p2σ 2
p

− q2σ 2
q

2pq
.

Rewriting eq. (4) as

w = p

sin δ

δ

p

q
w

Fig. 9. Relationship between robot motion and odometry mea-
surements.
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and computing the first-order error terms, we have

σ 2
w

w2
= σ 2

p

p2
+ σ 2

δ
cos2 δ

sin2
δ

− 2 cos δ σ 2
pδ

p sin δ

and hence

σ 2
pδ

= p sin δ

2 cos δ

(
σ 2
p

p2
− σ 2

w

w2
+ σ 2

δ
cos2 δ

sin2
δ

)
.

Similarly, we rewrite eq. (5) as

w = q

cos δ
.

Computing the first-order error terms, we have

σ 2
w

w2
= σ 2

q

q2
+ σ 2

δ
sin2

δ

cos2 δ
+ 2 sin δ σ 2

qδ

q cos δ

and hence

σ 2
qδ

= q cos δ

2 sin δ

(
σ 2
w

w2
− σ 2

q

q2
− σ 2

δ
sin2

δ

cos2 δ

)
.

From these results, we can compute the odometry covari-
ance matrix 

 σ 2
p

σ 2
pq

σ 2
pδ

σ 2
pq

σ 2
q

σ 2
qδ

σ 2
pδ

σ 2
qδ

σ 2
δ




assuming some σ 2
w

and σ 2
δ

values which can be acquired ex-
perimentally, for example, by checking the wheel slipping rate
of the robot odometry system.

7.1.2. Prediction

Following the standard Kalman filter notation, we let x(k|k)
be the state [x, z, θ, α, β] at time k given information up to
time k. Letting P(k|k) be the state covariance, u(k) be the
odometry information [p, q, δ, 0, 0] for how much the robot
has translated and rotated, and Q(k) be the covariance for
u(k), we have the state prediction

x(k + 1|k) = f(x(k|k),u(k))

where f is the state transition function, in this case, just simply
adding u to x. The state covariance prediction is

P(k + 1|k) = P(k|k)+ Q(k).

7.1.3. Measurement

The measurement prediction is

z(k + 1|k) = H(k + 1)x(k + 1|k)
where H is the identity matrix because both the state and
measurement are the robot pose.

Matching the current features to the SIFT database, we
use least-squares minimization (Section 3.3) to estimate the
robot position xLS , provided that there are sufficiently many
matches. Innovation is the difference between the predicted
measurement and the actual measurement, given by

v(k + 1) = z(k + 1)− z(k + 1|k) = xLS − x(k + 1|k).
The covariance PLS for the measurement can be obtained

by computing the inverse of J� J (Lowe 1992) in Section 3.3.
The innovation covariance is

S(k + 1) = H(k + 1)P(k + 1|k)H(k + 1)T + PLS

= P(k + 1|k)+ PLS.

7.1.4. Update

The filter gain is

W(k + 1) = P(k + 1|k)H(k + 1)TS−1(k + 1)

= P(k + 1|k)[P(k + 1|k)+ PLS]−1.

The state update is

x(k + 1|k + 1) = x(k + 1|k)+ W(k + 1)[xLS − x(k + 1|k)].
The covariance update is

P(k + 1|k + 1) = P(k + 1|k)
−W(k + 1)S(k + 1)WT(k + 1)

= P(k + 1|k)− P(k + 1|k)
[P(k + 1|k)+ PLS]−TP(k + 1|k)T.

When there are not enough matches (less than six), we do
not obtain least-squares measurement to update the predic-
tion. The state and the covariance prediction will be used as
the state and covariance for the next frame. The covariance
will shrink as soon as enough matches are found to provide a
least-squares update.

7.2. Landmark Position Covariance

Uncertainty of the image coordinates and disparity obtained
during the SIFT feature detection and matching will be prop-
agated to uncertainty in the landmark 3D positions.

Re-arranging eq. (2), we have

X = (c − u0)I

d

Y = I (v0 − r)

d

Z = f I

d
.
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For the first-order error propagation (Bevington and Robin-
son 1992), we have

σ 2
X

= I 2σ 2
c

d2
+ I 2(c − u0)

2σ 2
d

d4

σ 2
Y

= I 2σ 2
r

d2
+ I 2(v0 − r)2σ 2

d

d4

σ 2
Z

= f 2I 2σ 2
d

d4

where σ 2
X

, σ 2
Y
, σ 2

Z
, σ 2

c
, σ 2

r
and σ 2

d
are the variances of X, Y , Z,

c, r and d respectively.
Based on the results from Section 3.5 where the mean least-

squares image error is around one pixel, we assume σ 2
r

= 0.5,
σ 2
c

= 0.5 and σ 2
d

= 1. Knowing the intrinsic parameters of our
system, we can compute the variances for the landmark 3D
positions according to the error propagation formulae above.

We use the robot pose estimate to transform landmarks in
the current coordinates frame into the reference frame. From
the least-squares minimization procedure, we can obtain the
robot pose as well as its covariance, which needs to be prop-
agated to the landmark 3D position uncertainty.

To transform from current frame to the reference frame,
we have

rnew = (Pθ (Pα(Pβrobs)))+ V

where robs and rnew are the observed position in the current
frame and the transformed position in the reference frame,
respectively. V is the translational transformation while Pθ ,
Pα and Pβ are the rotational transformations required (for yaw
θ , pitch α and roll β) around each of the three axes:

Pθ =

 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ




Pα =

 1 0 0

0 cosα sin α
0 − sin α cosα




Pβ =

 cosβ sin β 0

− sin β cosβ 0
0 0 1


 .

We would like to obtain the covariance of rnew (0new) from
the covariance of the observed position0obs , given by a diago-
nal matrix consisting of σ 2

X
, σ 2

Y
and σ 2

Z
. The error propagation

details are in Appendix A.
Then, we combine the new covariance matrix0new with the

previous covariance matrix of the landmark in the database

0KF to obtain the new covariance matrix 0 ′
KF

. We combine
the new position of the landmark rnew with the database land-
mark position sKF using the covariances to obtain a better
estimate of its new position s′

KF
. We have

0 ′
KF

= (0−1
KF

+0−1
new
)−1

s′
KF

= 0 ′
KF
(0−1

KF
sKF +0−1

new
rnew).

On the other hand, the scale and orientation of the database
landmarks are updated by averaging over all the frames. The
database entry for each landmark is augmented with the 3×3
covariance matrix of its position.

7.3. Results

Incorporating the above uncertainty analysis, a Kalman filter
is initiated for each landmark and updated over frames. Fig-
ure 10 shows the bird’s-eye view of the SIFT database after 56
frames with 2116 landmarks in the database. This is after the
robot has spun around once. Figure 11 shows the bird’s-eye
view of the SIFT database as well as the robot trajectory after
148 frames with 4828 landmarks in the database. This is after
the robot has traversed around our laboratory. When a land-
mark is observed repeatedly, its uncertainty ellipse shrinks
while its positional uncertainty decreases.

The landmarks are 3D and their uncertainties are repre-
sented as ellipsoids, but ellipses are shown in the bird’s-eye
view. Error ellipses covering one standard deviation in either
sides of X and Z directions are shown.

It can be seen that the uncertainties for landmarks closer
to the robot tend to be lower, as expected for landmarks with
larger disparities. Visual judgement indicates that the SIFT
landmarks correspond well to actual objects in the laboratory.

As the disparity error transforms to a larger error in the
depth direction, we can see that, for most landmarks, the un-
certainty ellipses are elongated in the direction along which
they are observed. For example, the robot was facing right-
ward in theX direction, when the landmarks on the right-hand
side are observed, therefore the ellipses are elongated in the
X direction. On the other hand, the robot is facing forward in
the Z direction when the landmarks at the top of the map are
viewed, therefore the ellipses are elongated in theZ direction.

We also see some relatively large ellipses at the upper right
corner and these correspond to landmarks far away in the next
laboratory. Since the landmark position is computed from the
inverse of disparity, for landmarks of very small disparities,
any small image errors can lead to a very large positional
uncertainty.

Figure 12 shows the same database map, but with the land-
mark uncertainty shown in terms of intensity instead of the
ellipses. We can see that the more uncertain landmarks are
lighter than those with lower uncertainty. Without the ellipse
clutter in Figure 11, the more reliable landmarks are now more
visible.
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Fig. 10. Bird’s-eye view of the 3D SIFT database map, showing the uncertainty ellipses of the landmarks after spinning
around once.

The robot trajectory with uncertainty ellipses are shown in
Figure 13, where the ellipses cover two standard deviations
in either sides of X and Z directions. All the ellipses are rela-
tively small as SIFT landmarks are matched well at all frames.
It can be seen that the robot pose has a higher uncertainty in
the direction that it is facing, due to the higher uncertainty in
landmark depth.

In the following experiment, the robot is driven to ro-
tate repeatedly in the laboratory environment. Figure 14(a)
shows the robot orientation over frames with its correspond-
ing standard deviation shown in Figure 14(b). Figures 14(c)
and (d) show the robot pose uncertainty in the X and Z di-
rections, respectively. We can see that the uncertainty varies
slightly within each cycle, depending on the particular view
it observes. The overall robot pose uncertainty for each cycle
decreases over frames, showing that by observing the scene
repeatedly, the 3D SIFT landmark uncertainty reduces and
hence a better robot pose is obtained. The robot uncertainty
also decreases initially for this reason, when it has not started
rotating.

There are two components of uncertainty for both the robot
and the landmarks: one is relative to the initial robot pose in a
robot-based world and the other is the initial robot uncertainty
relative to the external global world. As a result, there are two

types of maps: relative maps and absolute maps. Relative maps
take into account the first uncertainty only whereas absolute
maps take both into account. To obtain absolute uncertainty
from relative uncertainty, additional uncertainty for the initial
robot pose needs to be added. Our SLAM builds a relative map
where the uncertainty is with respect to the robot world and
not the external one. Our experiments show that our estimated
map and robot pose converge monotonically, agreeing with
the analysis described in Dissanayake et al. (2001).

8. Conclusion

In this paper, we have proposed a vision-based mobile robot
localization and map building algorithm based on SIFT fea-
tures. Being scale and orientation invariant, SIFT features are
good natural visual landmarks for tracking over a long pe-
riod of time from different views. These tracked landmarks
are used for concurrent robot pose estimation and 3D map
building, with promising results shown. As there are errors
associated with image features, error analysis is important to
tell us how well the landmarks are localized.

We have shown that it is possible to build accurate maps ef-
ficiently without keeping the correlation between landmarks.
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Fig. 11. Bird’s-eye view of the 3D SIFT database map, showing the uncertainty ellipses of the landmarks, and the robot
trajectory after traversing around our laboratory. Note that the smallest ellipses represent the most reliable and useful
landmarks.

Both time and memory efficiency are important and would be
seriously affected by attempting to keep the full correlation
matrix.

The algorithm currently runs at around 2 Hz for 320×240
images on our mobile robot with a Pentium III 700 MHz pro-
cessor. As the majority of the processing time is spent on SIFT
feature extraction, SIFT optimization is being investigated.

Further experiments in larger environments are planned to
evaluate the scalability of our approach. As we keep track
of the robot pose, features in the current frame will only
be matched to SIFT landmarks in a particular region of the
database, hence we do not expect feature matching to be an
issue. Moreover, the specificity of the SIFT features can be
increased if necessary to maintain their distinctiveness (Lowe
1999).

At present, the map is re-used only if the robot starts up
again at the last stop position or if the robot starts at the po-
sition of the initial reference frame. Preliminary work on the
“kidnapped robot” problem, i.e., global localization using the
SIFT database map, has been positive (Se et al. 2001a). This
will allow the robot to re-use the map at any arbitrary robot
position by matching the rich SIFT database.

We are currently looking into recognizing the return to a

previously mapped area after following a long path away from
the area, i.e., closing the loop and detecting the occurrences
of drift and correcting for it. Moreover, we intend to study
the feasibility of using the SIFT landmark-based uncertainty
map for path planning, obstacle avoidance and other high-
level tasks.

Appendix: Error Propagation

In general, given

X′ = P X

where P is a 3 × 3 matrix, X and X′ are the three-vectors
for the old and new positions, respectively. If there are errors
associated with both P and X: 3P (9 × 9 covariance for P)
and 3X (3 × 3 covariance for X) which is


 σ 2

X
σ 2
XY

σ 2
XZ

σ 2
XY

σ 2
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σ 2
YZ

σ 2
XZ

σ 2
YZ

σ 2
Z
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Fig. 12. Bird’s-eye view of the 3D SIFT database map, where the landmark intensity is proportional to the uncertainty. The
more uncertain a landmark is, it is shown in a lighter shade.

the 3 × 3 covariance for the resulting vector X′ is given by


 X� 0 0

0 X� 0 P
0 0 X�


 [

3P 0
0 3X

]



X 0 0
0 X 0
0 0 X

P�


 .

(7)

This covariance matrix is the product of three matrices: the
first matrix is a 3 × 12 matrix, the second matrix is a 12 × 12
matrix and the third matrix is the transpose of the first matrix
(hence a 12 × 3 matrix).

Assuming the roll, pitch and yaw components are inde-
pendent due to their small size, the transformation proceeds
in four stages: Pβ (roll), Pα (pitch), Pθ (yaw) and then V (trans-
lations). We have already obtained the variances (σ 2

β
, σ 2

α
and

σ 2
θ
) for these parameters from the robot position covariance.

We will look at the transformation required for each stage and
how the landmark position uncertainty propagates.

A.1. Roll Transformation

The 9 × 9 covariance matrix for the roll transformation is


σ 2
β

sin2
β −σ 2

β
sin β cosβ 0

−σ 2
β

sin β cosβ σ 2
β

cos2 β 0
0 0 0

σ 2
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sin β cosβ −σ 2
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cos2 β 0
σ 2
β
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β
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0 0 0
0 0 0
0 0 0
0 0 0

σ 2
β

sin β cosβ σ 2
β

sin2
β 0 0 0 0

−σ 2
β

cos2 β −σ 2
β

sin β cosβ 0 0 0 0
0 0 0 0 0 0

σ 2
β

cos2 β σ 2
β

sin β cosβ 0 0 0 0
σ 2
β

sin β cosβ σ 2
β

sin2
β 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




where σ 2
β

is the variance for β.
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Fig. 13. Robot trajectory with uncertainty ellipses.

Using eq. (7), the resulting landmark position covariance
3β is




X2σ2
β

sin2 β − 2XYσ2
β

sin β cosβ

+Y 2σ2
β

cos2 β + σ2
X

cos2 β

+2σ2
XY

sin β cosβ + σ2
Y

sin2 β

(X2 − Y 2)σ2
β

sin β cosβ −XYσ2
β

cos2 β

+XYσ2
β

sin2 β + (σ2
Y

− σ2
X
) sin β cosβ

−σ2
XY

sin2 β + σ2
XY

cos2 β

σ2
XZ

cosβ + σ2
YZ

sin β

(X2 − Y 2)σ2
β

sin β cosβ −XYσ2
β

cos2 β

+XYσ2
β

sin2 β + (σ2
Y

− σ2
X
) sin β cosβ σ2

XZ
cosβ + σ2

YZ
sin β

−σ2
XY

sin2 β + σ2
XY

cos2 β

X2σ2
β

cos2 β + 2XYσ2
β

sin β cosβ

+Y 2σ2
β

sin2 β + σ2
X

sin2 β −σ2
XZ

sin β + σ2
YZ

cosβ

−2σ2
XY

sin β cosβ + σ2
Y

cos2 β

−σ2
XZ

sin β + σ2
YZ

cosβ σ2
Z




where (X, Y, Z) is the 3D landmark position in the current
frame. Since this is the first transformation to be carried out,
σ 2
XY

= σ 2
XZ

= σ 2
YZ

= 0 as the initial covariance of the ob-
served position is a diagonal matrix.

Applying the roll transformation to the initial landmark
position gives the transformed position, which is then used in
the next stage together with this new landmark covariance.

A.2. Pitch Transformation

The 9 × 9 covariance matrix for the pitch transformation is


0 0 0 0 0 0
0 0 0 0 0 0
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0 0 0 0 0 0
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α
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where σ 2
α

is the variance for α.
Using eq. (7), the resulting landmark position covariance

3βα is
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Fig. 14. Robot pose uncertainty over frames while the robot rotates repeatedly: (a) robot orientation; (b) robot orientation
standard deviation; (c) robot pose uncertainty in the X direction; (d) robot pose uncertainty in the Z direction.
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where (X, Y, Z) is the transformed 3D landmark position
after the roll transformation and σ 2

X
, σ 2

Y
, σ 2

Z
, σ 2

XY
, σ 2

XZ
and

σ 2
YZ

are from the covariance matrix 3β above. Applying the
pitch transformation gives the transformed landmark position,
which is then used in the next stage together with this new
landmark covariance.

A.3. Yaw Transformation

The 9 × 9 covariance matrix for the yaw transformation is
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where σ 2
θ

is the variance for θ .
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Using eq. (7), the resulting landmark position covariance
3βαθ is
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where (X, Y, Z) is the transformed 3D landmark position
after the pitch transformation, and σ 2

X
, σ 2

Y
, σ 2

Z
, σ 2

XY
, σ 2

XZ
and

σ 2
YZ

are from the covariance matrix 3βα above. Applying the
yaw transformation gives the transformed landmark position,
which is then used in the next stage together with this new
landmark covariance.

A.4. Translational Transformation

Finally, we have the two translational components, x and z, as
the camera system is mounted on the robot at a fixed height.
The final covariance for each landmark point is therefore

0new = 3βαθ +

 σ 2

x
0 σ 2

xz

0 0 0
σ 2
xz

0 σ 2
z


 .
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