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Abstract

In this paper we describe how to simulate geometrically com-
plex, interactive, physically-based, volumetric, dynamic de-
formation models with negligible main CPU costs. This is
achieved using a Dynamic Response Texture, or DyRT,
that can be mapped onto any conventional animation as
an optional rendering stage using commodity graphics hard-
ware. The DyRT simulation process employs precomputed
modal vibration models excited by rigid body motions. We
present several examples, with an emphasis on bone-based
character animation for interactive applications.

1 Introduction

In this paper we present an efficient rendering technique
for simulating real time dynamic deformations for appli-
cations such as character animation. This is achieved us-
ing a Dynamic Response Texture, or DyRT, that can be
mapped onto any conventional animation (motion capture
or keyframe or rigid body dynamics simulation) as an op-
tional rendering stage. This is because the complexity of
rendering deformations using DyRT is comparable to light-
ing the object. Therefore, every deformable object, large or
small, can be rendered with realistic dynamic deformation
responses, in real time, on commodity graphics hardware.

The physical realism of DyRT is due to the use of precom-
puted modal analyses [22] of dynamic elastic models com-
puted using, e.g., the Finite Element Method (FEM) [29].
These systems typically have a few clearly dominant dy-
namic deformation modes that enable us to produce con-
vincing realizations on commodity graphics cards. This is
achieved using vertex programs [14] that perform the per-
vertex linear superpositions necessary to compute displace-
ment and normal vectors.

A second key component of a DyRT is the use of rigid
motion transfer functions for rigid (bone) motion input de-
pendence, so that DyRTs respond physically and are not
just “canned vibrations.” This is in contrast to, e.g., several
nVidia vertex program demos [14], such as “warp,” which,
although extremely useful in context, have limited physical
foundations.

In the remainder of this paper we describe the foundations
for and the process of applying DyRT to objects, with a

particular emphasis on bone-based character animation.

1.1 Related Work

Significant work has been done on simulating dynamic de-
formable objects, in areas such as human body modeling and
interactive simulation. Despite the large amount of pioneer-
ing work on deformation [25, 28, 15, 1], there continue to
be exciting new applications [18, 17] and improvements in
simulation efficiency [2, 6].

Numerous examples of human body modeling exist in the
literature with particular areas of interest being deforma-
tions of skin and muscles [27, 9], faces [12], and layered
models [5]. Support exists in commercial animation pack-
ages, such as Maya, for simulating tissue dynamics. There
have also been significant recent developments for interactive
dynamic tissue simulation, especially for force feedback ap-
plications such as surgical simulation [6, 20]. Despite these
advances, the simulation of transient vibration responses for
secondary animation remains largely absent from the tra-
ditional character animation pipeline, and especially so in
video games.

Of particular interest for graphics hardware are data-
driven deformation models based on linear superposition
of precomputable global deformation bases [3], which in-
clude space warping methods such as FFD. While such mod-
els can provide fast simulation and constraint handling for
physically-based dynamic [19, 28] and also static [11, 10]
deformable models, we are primarily interested in their
amenability to graphics hardware simulation [14].

For simulating free vibrations of elastic models with
modest amplitudes, global deformation bases based on
Karhunen-Loeve expansions from modal analysis provide
the optimal description [22, 8]. First introduced to the
graphics community by the pioneering work of Pentland and
Williams [19, 8], more recently they have been used for in-
teractive applications involving precomputed or measured
modal data: stochastic simulation of tree-like structures [23],
force feedback [4], and contact sound simulation [26].

Our contribution: This is the first paper to show how
to simulate geometrically complex, interactive, physically-
based, volumetric, dynamic deformation models in real time
with negligible main CPU costs. We do so with precomputed
modal vibration models stored in graphics hardware mem-
ory and driven by a handful of inputs defined by rigid body
motion.

2 Background on Modal Vibration Models

We briefly summarize the necessary background on modal
vibration analysis here, and refer the reader to a suitable
text [22]. The linear elastodynamic equation for a finite
element model [29],

Mü + Cu̇ + Ku = F, (1)



describes the displacements u=u(t) of N nodes within a vol-
ume. The displacement field u is expanded in a modal dis-
placement basis

u(t) = Φ q(t) (2)

where Φ denotes the model’s modal matrix, a matrix whose
ith column Φ:i represents the ith mode shape, and q = q(t)
are the corresponding modal amplitudes, i.e., qi is the modal
amplitude of mode shape Φ:i. An important property is that
the modal matrix Φ is independent of time, and completely
characterized by values at mesh vertices.

Substituting (2) into (1) and premultiplying by ΦT yields

Mqq̈ + Cqq̇ + Kqq = Q (3)

in which

Mq = ΦTMΦ = diag(mi) (4)

Kq = ΦTKΦ = diag(ki) (5)

Cq = ΦTCΦ (6)

Q = ΦTF (7)

where all of Mq and Kq are diagonal matrices, but for general
damping Cq is dense. If we make the common assumption
of proportional (Rayleigh) damping

C = αM + βK ⇒ Cq = diag(αmi + βki)

then the system of ODEs are completely decoupled by the
modal transformation. This allows the motions due to indi-
vidual modes to be computed independently and combined
by linear superposition.

The system of decoupled ordinary differential equations
may be written as

q̈i + 2ξiωiq̇i + ω2
i qi =

Qi

mi

, i = 1..n, (8)

where the undamped natural frequency of vibration is

ωi =

√

ki

mi

(in radians) (9)

and the dimensionless modal damping factor is

ξi =
ci

2miωi

=
1

2

(

α

ωi

+ βωi

)

. (10)

We are interested in underdamped systems for which visible
damped vibration occurs, and this corresponds to ξi ∈ (0, 1).
See Figure 1 for example mode shapes and frequencies.
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Figure 1: Dominant low frequency mode shapes of the belly
model represent bulk translation and rotation. RGB colors
correspond to XYZ displacement magnitudes.

Finally, for a system starting from rest at t=0 the solution
for the ith mode due to forcing Qi(t) is

qi(t) =

∫ t

0

e−ξiωi(t−τ) sinωdi(t− τ)
Qi(τ)

miωdi

dτ (11)

where the observed damped natural frequency is

ωdi = ωi

√

1 − ξ2i . (12)

3 Exciting Modes with Rigid Motions

Our goal is to produce realistic modal deformations auto-
matically from a conventional bone-based animation specifi-
cation, for instance using motion capture data or rigid body
dynamics simulation. Suppose the motion of a rigid body,
the “bone,” is specified as a homogenous transformation ma-

trix R(t) =

(

Θ p
0 1

)

, where Θ is a rotation matrix. We now

describe how to compute the correct modal forcing function
Qi(t) for a deformable object, the “flesh,” attached to a bone
such as depicted in Figure 2. We describe how to deal with
joints between bones in Sec. 4.2.

Figure 2: Modeling of a thigh finite element model using a
skeleton and CSG operations.

The velocity of rigid body is represented by its linear ve-
locity ν and angular velocity ω. We can therefore view veloc-

ity as a 6×1 twist or spatial velocity1 vector ψ =
(

ωT νT
)T
.

The velocity, ṙj , of a material point at rj is then given by

ṙj = [ω]rj + ν = (−[rj ] I )ψ, (13)

where [ω] is the standard skew-symmetric matrix of the cross
product ω×, and I is a 3-by-3 identity matrix. Using a
simple Euler discretization, with constant time step size h,
the acceleration of the material point at discrete time step
k is

r̈
(k)
j ≈

1

h
(ṙ

(k)
j − ṙ

(k−1)
j ) =

1

h
(−[rj ] I ) (ψ(k)

−ψ(k−1)). (14)

Higher order discretizations are similar. Defining

Γ =









−[r1] I
−[r2] I

...
−[rp] I









we have the acceleration of points on the body as

r̈
(k)

≈
1

h
Γ(ψ(k)

− ψ(k−1)). (15)

When viewed relative to a coordinate frame attached to the
bone, which is accelerating, the D’Alembert force is2

F
(k) = Mr̈

(k)
j =

1

h
MΓ(ψ(k)

− ψ(k−1)). (16)

This is the forcing function for the vibration in (1). The
primary modal forcing term Qi/mi in (11) is therefore

M
−1
q Q

(k) =
1

h
Φ−1Γ(ψ(k)

− ψ(k−1)), (17)

def
= H(ψ(k)

− ψ(k−1)). (18)

1Here we use the traditional kinematic terminology from screw
theory. We refer the reader to any standard mathematical treat-
ment on kinematics, such as [16], for more details

2Coriolis forces are negligible here and have been omitted.



We call H=(1/h)Φ−1Γ the rigid motion transfer matrix. It
maps changes in spatial velocity to modal forces that lead
to modal vibrations. It can be precomputed in advance of a
simulation and stored. In practice, the forces may be filtered,
e.g., scaled and clamped, to avoid extremely large excitations
from abrupt motion changes or resonant forcing.

Finally, we need to perform the time-domain convolution
of (11). This can be performed efficiently in discrete time
using a small IIR digital filter [24, 26]:

q
(k)
i = 2εi cos θiq

(k−1)
i − ε2i q

(k−2)
i (19)

+
2[εi cos(θi + γi) − ε2i cos(2θi + γi)]

3ωiωdi

Q
(k−1)
i

mi

where εi =exp(−ξiωih), θi =ωdih and γi =arcsin ξi.

4 Special Considerations

4.1 Normal Calculation

Unlike the displaced vertex positions which can be computed
in parallel on a per-vertex basis, vertex normals are compli-
cated by the requirement of neighbouring vertex informa-
tion. Therefore DyRT objects include an approximate ver-
tex normal correction obtained by linearizing the ith vertex’s
deformed normal n′

i about the undeformed value n̂i,

n′

i = n̂i +
∑

m

Nimqm (20)

where Nim is the ith vertex’s normal correction for mode m.
Details are given in Appendix A.

While corrected normals can further increase visual real-
ism (see Figure 3), the added cost of per-vertex memory for
each mode’s normal correction should be weighed against
other vertex memory requirements. In practice, correcting
normals only for particular modes, such as the dominant
and/or torsional modes, is a fair trade-off.

Undeformed Deformed without Deformed with

Figure 3: Normal correction benefits are illustrated using the
lowest torsional deformation mode of the thigh model: (Left)
undeformed, (Middle) deformed without normal correction,
and (Right) with normal correction computed.

4.2 Matrix Palette Skinning with DyRT

DyRT provides minimal complications for traditional
hardware character animation. Using vertex program hard-
ware for indexed matrix palette skinning vertex programs,
as in [14] (see their “jester” example), static display lists
are used for each DyRT mapped object. In our examples,
per-vertex data exists not only for vertex position, normal,
color, texture coords, and 4 matrix index/weight pairs, but
also for DyRT values: one for each mode’s displacement and
any normal correction. Due to current vertex memory con-
straints, each vertex is vibrated by only one DyRT object

(with multiple modes, as described in §5.1), but multiple
layered (or blended) DyRTs could be used in the future, or
at the cost of fewer modes or normal corrections per DyRT.

In the vertex program, modal deformations are per-
formed before the vertex blending stage, and require at most
(2m + 2) extra instructions for m modes (using all normal
corrections); in our “DyRT Man” examplem=5 so that only
12 instructions are added and the vertex program remains
fast (see Appendix B).

5 Process Details

5.1 Precomputation

1. Acquire articulated character geometry.
2. For each deformable body part, e.g., thigh,

• Use surface model to define a closed volume to be
filled with elastic material.

• Generate a volumetric finite element mesh, e.g.,
using a tetrahedral mesh generation package such
as NETGEN [21].

• Fix the finite element model’s boundary vertices
where you do not desire deformation, e.g., along
bones and seams.

• Define material properties such as stiffness, com-
pressibility and density.

• Compute and save the dominant modes’ frequen-
cies and volumetric mode shapes Φ using a modal
analysis package, e.g., CalculiX [7] uses the excel-
lent ARPACK eigenvalue solver [13].

• Build an m-mode DyRT object consisting of

– m modal model natural frequencies ωi;
– m modal shape functions Φ:1..m interpolated

onto the original character geometry;
– m normal perturbation maps N:1..m com-

puted on the character geometry;
– m IIR digital convolution filters from (19);
– the m-by-6 transfer matrix H from (18).

5.2 Runtime Computations

For each animation time step, k, and each DyRT object:

1. Obtain the rigid bone transform and estimate the spa-
tial velocity twist, ψ(k−1).

2. For each mode i = 1..m:

• Compute the modal forcing term Q
(k−1)
i /mi using

the rigid motion transfer matrix from (18).
• Perform the time domain IIR filter convolution of

(19) to obtain q
(k)
i .

3. Bind and enable appropriate DyRT vertex program and

set vertex program constants: modal coefficients, q
(k)
i ,

and current bone transforms (See Appendix B).
4. Call static display list for this body part.

6 Results

Our first example applies DyRT to a character animated us-
ing indexed matrix palette skinning vertex programs. The
humanoid mesh used was exported from Curious Labs Poser
and converted to 17,980 quadrilateral faces and 17,953 ver-
tices. Following the described process, we constructed 3
DyRT objects: matching thigh models based on a 10,000
10-node tetrahedral element finite element model, and an



abdominal model with 30,000 elements. Precomputation
times were only a couple of minutes for each DyRT, and
much larger models could be used. The final character was
animated with House of Moves motion capture.

In our second example, we apply DyRT to secondary tis-
sue in a laparoscopic surgical simulation. In this setting,
DyRT helps increase scene realism while allowing the main
CPU to focus on simulating more complex tissue models in-
volved in user contact interactions.

Dynamic deformations are inherently difficult to portray
in paper format, however examples in the accompanying
video (see Figure 4) illustrate the subtle yet significant im-
pact DyRT can have on scene realism. All examples run
in real time, at approximately 60 FPS, on a PC with a
GeForce3 graphics card; throughout the simulation the run-
time cost to the main CPU is negligible.

Figure 4: Examples from video: (Left) A jumping motion
that leads to significant thigh and belly vibrations; (Right)
DyRT applied to tissue in a surgical simulation.

7 Summary and Conclusion

We have illustrated the process by which DyRT can be used
to simulate geometrically complex, volumetric, physically-
based, dynamic deformation models with negligible main
CPU costs by exploiting commodity graphics hardware.
Given our results, we believe that DyRT-based secondary
animation is an efficient technique to increase the level of
realism in modern real time applications.
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A Computation of Normal Correction

We first show how to approximate the face normal for a deformed

triangle. Consider an undeformed triangle with vertices (p0, p1, p2),

a single mode m with amplitude q
m

and shape function vertex dis-

placements (u0, u1, u2), so that the deformed triangle has coordinates

(p0 + q
m

u0, p1 + q
m

u1, p2 + q
m

u2). Let U =(p1 − p0), V =(p2 − p0),

δU =(u1 − u0), δV =(u2 − u0), U ′ = U + δU and V ′ = V + δV . For

sufficiently small values of q
m

the face normal is

n
′

=
U ′ × V ′

‖U ′ × V ′‖
≈

U × V

‖U × V ‖
+ q

m

[

δU × V + U × δV

‖U × V ‖

]

(21)

where the quantity in square brackets is the flat-shaded normal cor-

rection. For smooth shading, normals can be averaged over vertex ad-

jacent faces to obtain the ith per-vertex normal correction Nim from

(20). Alternate approaches using finite differences are also possible.

B Vertex Program for DyRT

# Load vertex pi into R1 and add 5 modal corrections:

MOV R1, v[OPOS]; # R1 = pi

MAD R1, c[DyRT ].xxxw, v[5], R1; # R1 += q1Φi1

MAD R1, c[DyRT ].yyyw, v[6], R1; # R1 += q2Φi2

MAD R1, c[DyRT ].zzzw, v[7], R1; # R1 += q3Φi3

MAD R1, c[DyRT+1].xxxw, v[8], R1; # R1 += q4Φi4

MAD R1, c[DyRT+1].yyyw, v[9], R1; # R1 += q5Φi5

# Load normal ni into R2 and add 5 modal corrections:

MOV R2, v[NRML]; # R2 = ni

MAD R2, c[DyRT ].xxxw, v[10], R2; # R2 += q1Ni1

MAD R2, c[DyRT ].yyyw, v[11], R2; # R2 += q2Ni2

MAD R2, c[DyRT ].zzzw, v[12], R2; # R2 += q3Ni3

MAD R2, c[DyRT+1].xxxw, v[13], R2; # R2 += q4Ni4

MAD R2, c[DyRT+1].yyyw, v[14], R2; # R2 += q5Ni5

# Bone-weighted Vertex Blending: ....

# Transform and Lighting: ....
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