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Abstract. In this paper, we study the approach of dynamic local search
for the SAT problem. We focus on the recent and promising Exponenti-
ated Sub-Gradient (ESG) algorithm, and examine the factors determin-
ing the time complexity of its search steps. Based on the insights gained
from our analysis, we developed Scaling and Probabilistic Smoothing
(SAPS), an efficient SAT algorithm that is conceptually closely related
to ESG. We also introduce a reactive version of SAPS (RSAPS) that
adaptively tunes one of the algorithm’s important parameters. We show
that for a broad range of standard benchmark problems for SAT, SAPS
and RSAPS achieve significantly better performance than both ESG and
the state-of-the-art WalkSAT variant, Novelty+.

1 Introduction and Background

The Satisfiability problem (SAT) is an important subject of study in many areas
of computer science. Since SAT is NP-complete, there is little hope to develop a
complete algorithm that scales well on all types of problem instances; however,
fast algorithms are needed to solve big problems from various domains, includ-
ing prominent AI problems such as planning [7] and constraint satisfaction [2].
Throughout this paper, we focus on the model finding variant of SAT: Given a
propositional formula F , find a model of F , i.e., an assignment of truth values
to the propositional variables in F under which F becomes true. As with most
other work on SAT algorithms, we consider only propositional formulae in con-
junctive normal form (CNF), i.e., formulae of the form F =

∧

i
∨

j lij , where
each lij is a propositional variable or its negation. The lij are called literals,
while the disjunctions

∨

j lij are called clauses of F .
Some of the best known methods for solving SAT are Stochastic Local Search

(SLS) algorithms; these are typically incomplete, i.e., they cannot determine
with certainty that a given formula is unsatisfiable, but they often find models
of satisfiable formulae surprisingly effectively [5]. Although SLS algorithms for
SAT differ in their implementation details, the general search strategy is mostly
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the same [2]. Starting from an initial, complete assignment of truth values to
all variables in the given formula F , in each search step, the truth assignment
of one variable is changed from true to false or vice versa; this type of search
step is also called a variable flip. Since the models of F are characterised by the
fact that they leave none of F ’s clauses unsatisfied, variable flips are typically
performed with the purpose of minimising an objective function that maps any
variable assignment x to the number of clauses unsatisfied under x.

Since the introduction of GSAT [14], a simple best-improvement search al-
gorithm for SAT, much research has been conducted in this area. Major perfor-
mance improvements were achieved by the usage of noise strategies [12] and the
development of the WalkSAT architecture [13]. In each search step, WalkSAT
algorithms first choose a currently unsatisfied clause and then flip a variable
occurring in this clause. Extensive experiments resulted in the introduction of
sophisticated schemes for selecting the variable to be flipped, including the well-
known Novelty and R-Novelty algorithms [8]. Further insight into the nature and
theoretical properties of these algorithms motivated the more recent Novelty+

variant [3], which is amongst the state-of-the-art algorithms for SAT.

In parallel to the development of more refined versions of randomised iter-
ative improvement strategies like WalkSAT, another SLS method has become
increasingly popular in SAT solving. This method is based on the idea of mod-
ifying the evaluation function in order to prevent the search from getting stuck
in local minima or other attractive non-solution areas of the underlying search
space. We call this approach Dynamic Local Search (DLS). DLS strategies for
SAT typically associate weights with the clauses of the given formula, which
are modified during the search process. These algorithms then try to minimise
the total weight rather than the number of the unsatisfied clauses. GSAT with
clause weighting [12] was one of the first algorithms based on this idea, al-
though it changes weights only in connection with restarting the search process.
Many variants of this scheme have been proposed: Frank [1] uses a DLS weight-
ing scheme that is updated every time a variable is flipped. Morris’ Breakout
Method [9] simply adds one to the weight of every unsatisfied clause when-
ever a local minimum is encountered. The Discrete Lagrangian Method (DLM)
[15] is based on a tabu search procedure and uses a similar, but slightly more
complicated weight update scheme. Additionally, DLM periodically and deter-
ministically envokes a smoothing mechanism that decreases all clause weights
by a constant amount. The Smoothed Descent and Flood (SDF) approach [10]
introduced a more complex smoothing method, and the concept of multiplicative
weight updates. The most recent and best-performing DLS algorithm for SAT
is the Exponentiated Sub-Gradient (ESG) method [11]. ESG, described in more
detail in the next section, reaches or exceeds the performance of the best known
WalkSAT algorithms in many cases.

In this paper we introduce “Scaling and Probabilistic Smoothing” (SAPS),
a new algorithm that is conceptually closely related to ESG, but differs in the
way it implements weight updates: SAPS performs computationally expensive
weight smoothing probabilistically and less frequently than ESG. This leads
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to a substantial reduction in the time complexity of the weight update proce-
dure without increasing the number of variable flips required for solving a given
SAT instance. Furthermore, different from ESG, SAPS can be implemented ef-
ficiently in a rather straight-forward way. We also introduce RSAPS, a partially
self-tuning variant of SAPS that robustly reaches and in some cases exceeds the
performance of SAPS with manually tuned parameters. As our empirical eval-
uation shows, SAPS and RSAPS outperform both ESG and Novelty+, two of
the best performing SLS algorithms for SAT, on a wide range of random and
structured SAT instances, which suggests that these new algorithms might be
the best SLS algorithms for SAT currently known.

The remainder of this paper is structured as follows. In Section 2 we review
the ESG algorithm and discuss some of its important characteristics. Based
on these insights, we present our new SAPS algorithm, a variant of the ESG
approach, in Section 3. A self-tuning variant of this algorithm, RSAPS, is intro-
duced in Section 4. In Section 5, we report results from our empirical study of
SAPS and RSAPS which illustrate the performance improvements these algo-
rithms achieve as compared to ESG and Novelty+. Finally, Section 6 contains
conclusions and points out directions for future work.

2 The ESG algorithm

The Exponentiated Subgradient (ESG) algorithm by Schuurmans, Southey, and
Holte [11] is motivated by established methods in the operations research litera-
ture. Subgradient optimisation is a method for minimising Lagrangian functions
that is often used for generating good lower bounds for branch and bound tech-
niques or as a heuristic in incomplete local search algorithms.

ESG for SAT works as follows: The search is initialised by randomly chosen
truth values for all propositional variables in the input formula, F , and by setting
the weight associated with each clause in F to one. Then, in each iteration, a
weighted search phase followed by a weight update is performed.

The weighted search phase consists of a series of greedy variable flips (“pri-
mal search steps”); in each of these, a variable is selected at random from the
set of all variables that appear in currently unsatisfied clauses and when flipped,
lead to a maximal reduction in the total weight of unsatisfied clauses. When
reaching a local minimum state, i.e., an assignment in which flipping any vari-
able that appears in an unsatisfied clause would not lead to a decrease in the
total weight of unsatisfied clauses, with probability η, the search is continued
by flipping a variable that is uniformly chosen at random from the set of all
variables appearing in unsatisfied clauses. Otherwise, the weighted search phase
is terminated.

After each weighted search phase, the clause weights are updated (“dual
search step”). This involves two stages: First, the weights of all clauses are mul-
tiplied by a factor depending on their satisfaction status; weights of satisfied
clauses are multiplied by αsat, weights of unsatisfied clauses by αunsat (scaling
stage). Then, all clause weights are pulled towards their mean value using the
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formula w ← w · ρ + (1 − ρ) · w̄ (smoothing stage), where w̄ is the average of
all clause weights after scaling, and the parameter ρ has a fixed value between
zero and one. The algorithm terminates when a satisfying assignment for F has
been found or when a maximal number of iterations has been performed. (For
details, see [11].)

In a straight-forward implementation of ESG, the weight update steps (“dual
search steps”) are computationally much more expensive than the weighted
search steps (“primal search steps”), whose cost is determined by the under-
lying basic local search procedure. Each weight update step requires accessing
all clause weights, while a weighted search step only needs to access the weights
of the critical clauses, i.e., clauses that can change their satisfaction status when
a variable appearing in a currently unsatisfied clause is flipped.1 Typically, for
the major part of the search only few clauses are unsatisfied; hence, only a small
subset of the clauses is critical, rendering the weighted search steps computa-
tionally cheaper than weight updates.

If weight updates would typically occur very infrequently as compared to
weighted search steps, the relatively high complexity of the weight update steps
might not have a significant effect on the performance of the algorithm. However,
experiments (not reported here) indicate that the fraction of weighting steps
performed by ESG is quite high; it ranges from around 7% (for SAT encodings
of large flat graph colouring problems) to more than 40% percent (for SAT-
encoded all-interval-series problems).

Efficient implementations of ESG therefore critically depend on additional
techniques in order to reach the competitive performance results reported in
[11]. The most recent publically available ESG-SAT software by Southey and
Schuurmans (Version 1.4), for instance, uses αsat = 1 (which avoids the effort
of scaling satisfied clauses), replaces w̄ by 1 in the smoothing step, and utilises
a lazy weight update technique which updates clause weights only when they
are needed. In Table 1, we compare this algorithm with the WalkSAT variant
Novelty+. Especially the step performance of ESG is quite impressive for a va-
riety of problem instances; while it never needs more variable flips, sometimes it
outperforms Novelty+ by more than an order of magnitude. In most cases, ESG’s
time performance is still somewhat better than that of Novelty+, but even with
the optimisations in Version 1.4, ESG-SAT does not always reach the perfor-
mance of Novelty+ in terms of CPU time. Hence, it seems that the complexity
of the weight update steps severely limits the performance of ESG in particular
and dynamic local search algorithms for SAT in general.

3 Scaling and Probabilistic Smoothing (SAPS)

Based on the observations from the previous section, the most obvious way to
improve the performance of ESG would be to reduce the complexity of the weight
update procedure while retaining the relatively low number of weighted search

1 The complexity of all other operations is dominated by these operations.
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Problem Novelty+ ESG
Instance noise steps time α ρ noise pr. steps d. steps time
bw large.a 0.40 7,007 0.014 3.0 0.995 0.0015 2,445 282 0.016
bw large.b 0.35 125,341 0.339 1.4 0.99 0.0005 26,978 4,612 0.280
bw large.c 0.20 3,997,095 16.0 1.4 0.99 0.0005 1,432,003 193,700 38.10
logistics.c 0.40 101,670 0.226 2.2 0.99 0.0025 9,714 4,664 0.229
flat100-med 0.55 7,632 0.008 1.1 0.99 0.0015 6,313 1,154 0.013
flat100-hard 0.60 84,019 0.089 1.1 0.99 0.0015 20,059 2,794 0.037
flat200-med 0.60 198,394 0.208 1.01 0.99 0.0025 96,585 7,587 0.237
flat200-hard 0.60 18147719 18.862 1.01 0.99 0.0025 2,511,228 213,995 5.887
uf100-hard 0.55 29,952 0.046 1.15 0.99 0.001 2,223 638 0.006
uf250-med 0.55 9,906 0.015 1.15 0.99 0.003 7,006 1,379 0.0195
uf250-hard 0.55 1,817,662 2.745 1.15 0.99 0.003 165,212 26,772 0.461
uf400-med 0.55 100,412 0.160 1.15 0.99 0.003 100,253 10,016 0.324
uf400-hard 0.55 14,419,948 22.3 1.15 0.99 0.003 3,015,013 282,760 9.763
ais10 0.40 1,332,225 4.22 1.9 0.999 0.0004 13,037 9,761 0.139

Table 1. Median number of steps and run-time on individual benchmark instances
for ESG (Version 1.4) and Novelty+; boldface indicates the CPU time of the faster
algorithm. For all runs of Novelty+, wp = 0.01, steps for ESG are split into primal
and dual steps. Estimates for all instances are based on 100 runs. For details on the
experimental methodology and the problem instances, see Section 5.

steps required to solve a given problem instance. As we will see in this section,
this can be achieved in a rather simple and straight-forward way, leading to our
new SAPS algorithm, a simple, yet efficient variant of ESG.

Two key observations provide the basis for the modified weight update scheme
underlying SAPS. In the following we let C denote the set of all clauses of a given
formula F and Uc the set of all clauses unsatisfied under the current variable
assignment. We first note that the scaling operation can be restricted to the un-
satisfied clause weights (αsat = 1) without affecting the variable selection in the
weighted search phase, since rescaling all clause weights by a constant factor does
not affect the variable selection mechanism. (As mentioned before, Southey’s and
Schuurmans’ ESG implementation also makes use of this fact.) Based on our pre-
vious argument, this reduces the complexity of the scaling stage from θ(|C|) to
θ(|Uc|). After a short initial search phase, |Uc| becomes rather small compared
to |C|; this effect seems to be more pronounced for larger SAT instances with
many clauses. The smoothing stage, however, has complexity θ(|C|), and now
dominates the complexity of the weight update.

Given this situation, the second key idea is to reduce the time complexity
of the weight update procedure by performing the expensive smoothing opera-
tion only occasionally. Our experimental results show that this does not have a
detrimental effect on the performance of the algorithm in terms of the number
of weighted search steps required for solving a given instance. Towards the end
of this section we will provide some intuition into this phenomenon.
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procedure UpdateWeights(F , x, W , α, ρ,Psmooth)
input:

propositional formula F , variable assignment x, clause weights W = (wi),
scaling factor α, smoothing factor ρ, smoothing probability Psmooth

output:
clause weights W

C = {clauses of F}
Uc = {c ∈ C | c is unsatisfied under x}
for each i s.t. ci ∈ Uc do

wi := wi × α
end
with probability Psmooth do

for each i s.t. ci ∈ C do
wi := wi × ρ + (1− ρ)× w̄

end
end
return (W)

end

Fig. 1. The SAPS weight update procedure; w̄ is the average over all clause weights.

Figure 1 shows our novel weight update procedure which is based on these
insights. Different from the standard ESG weight update, this procedure scales
the weights of unsatisfied clauses, but only smoothes all clause weights with a
certain probability Psmooth. Thus, we call the corresponding algorithm Scaling
and Probabilistic Smoothing (SAPS). Compared to ESG, in SAPS the complex-
ity of UpdateWeights is reduced from Θ(|C|+|Uc|) to Θ(Psmooth ·|C|+|Uc|). As a
result, the amortised cost of smoothing no longer dominates the algorithm’s run-
time. Obviously, there are other ways of achieving the same effect. For instance,
similar to the mechanism found in DLM, smoothing could be performed deter-
ministically after a fixed number of scaling stages. However, the probabilistic
smoothing mechanism has the theoretical advantage of preventing the algorithm
from getting trapped in cyclic behaviour (see also [3]). Furthermore, it is not
clear that the possibility of performing smoothing should be restricted to situa-
tions where a local minimum of the evaluation function has been encountered.
In fact, preliminary experimental results (not reported here) suggest that decou-
pling the smoothing operation from local minima results in an approximately
optimal setting of Psmooth that is more stable over different domains.

Figure 2 shows the main SAPS algorithm and its underlying weighted search
procedure; overall, this algorithm is conceptually very similar to ESG, except for
the weight update procedure which has substantially smaller time complexity
and provides the key for its excellent performance (see Section 5). The SAPS
algorithm as described here does not require additional implementation tricks
other than the standard mechanism for efficiently accessing critical clauses that
is used in all efficient implementations of SLS algorithms for SAT. In particular,
different from Southey’s and Schuurmans’ ESG implementation, SAPS does not
replace w̄ by one in the smoothing stage, or perform lazy weight updates.
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procedure SAPS(F , α, ρ, wp, Psmooth)
input:

propositional formula F , scaling factor α,
smoothing factor ρ, random walk probability wp,
smoothing probability Psmooth

output:
variable assignment x or ∅

x := Init(F )
W := InitWeights(F )
while not terminate(F , x) do

x′ := WeightedSearchStep(F , x, W )
if x′ = ∅ then

with probability wp do
x := RandomStep(F , x)

otherwise
W := UpdateWeights(F , x, W , α, ρ, Psmooth)

end
else

x := x′

end
end
if (F is not satisfied under x) then

x = ∅
end
return (x)

end

procedure WeightedSearchStep(F , x, W )
input:

propositional formula F , variable assignment x, clause weights W
output:

variable assignment x̂ or ∅
Uv = {variables of F that appear in clauses unsatisfied under x}
X ′ := {x̂ | x̂ is x with variable v ∈ Uv flipped}
best :=min{g(F, x̂, W ) | x̂ ∈ X ′}
X := {x̂ ∈ X ′ | g(F, x̂, W ) = best}
if best ≥ 0 then

x̂ := ∅
else

x̂ := draw(X)
end
return (x̂)

end

Fig. 2. The SAPS Algorithm. ‘Init’ randomly initialises x, ‘InitWeights’ initialises all
clause weights to 1. ‘RandomStep(F ,x)’ returns an assignment obtained from x by
flipping a variable that has been selected uniformly at random from the set of all
variables of F ; and g(F, x̂, W ) denotes the total weight of the clauses in F that are
unsatisfied under assignment x̂. The function ‘draw(X)’ returns an element that is
uniformly drawn at random from set X.
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Fig. 3. Flip performance (left) and time performance (right) for SAPS with different
values of Psmooth for problem instance ais10.

Figure 3 illustrates the effect of varying the smoothing probability, Psmooth,
on the performance of SAPS, while simultaneously decreasing ρ to compensate
for “missed” smoothing stages. Setting Psmooth to one results in an algorithm
that is very closely related (but still not identical) to ESG. When decreasing
Psmooth below one, we observe unchanged step performance while the time
performance is improving. For some SAT instances, especially from the logis-
tics and blocksworld planning domains, we achieve best time performance for
Psmooth = 0, i.e., when no smoothing is used at all; however, most instances
require at least some smoothing. For our computational experiments, unless
explicitly noted otherwise, we generally used Psmooth = 0.05, a setting which re-
sulted in reasonable performance over a broad range of SAT instances. However,
in many cases, Psmooth = 0.05 is clearly not the optimal setting; therefore, in the
next section we introduce a scheme for automatically adapting the smoothing
probability over the course of the search process.

To gain a deeper understanding of the performance of the ESG and SAPS
algorithms and specifically the role of the parameters α, ρ and Psmooth, it is
useful to study the evolution of clause weights over time. If two clauses were
unsatisfied at only one local minimum each, then the relative weights of these
clauses depend on the order in which they were unsatisfied. Since the weights
are scaled back towards the clause weight average at each smoothing stage, the
clause that has been unsatisfied more recently has a larger weight. So scaling
and smoothing can be seen as a mechanism for ranking the clause weights based
on search history. Clearly, the distribution of clause weights, which is controlled
by the settings of α, ρ, and Psmooth, has a major impact on the variable selection
underlying the primal search steps. Since uniform scaling of weights has no effect
on variable selection and hence on the performance of the algorithm, we consider
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Fig. 4. Clause weight distribution (CWDs) for SAPS after 400 local minima for various
values of ρ (top left), α (top right) and Psmooth (bottom left). Approximately identical
CWDs are obtained for two different (α, ρ, Psmooth) triplets for which SAPS shows
similar step performance (bottom right). All CWDs are measured for Uniform Random
3-SAT instance uf150-hard. Unless otherwise noted, α = 1.3, ρ = 0.99, Psmooth = 1,
and wp = 0. All runs were initialised with the same random seed.

distributions over clause weights that are normalised by multiplying all weights
by a constant factor such that clauses that have never been unsatisfied have an
adjusted weight of one.

Figure 4 shows typical clause weight distributions (CWDs) for a given SAT
instance, i.e. all clause weights sorted by weight, for different settings of α, ρ, and
Psmooth after 400 local minima have been encountered. In our experience, after
a certain number of local minima, the CWD converges to a specific distribution
that is determined by the problem instance and the settings of α, ρ, Psmooth.
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We hypothesise that the shape of the CWD for a given problem instance deter-
mines the performance of ESG and SAPS. In Figure 4, we can see directly the
effect of changing the parameters. The smoothing parameter has a significant
impact on the shape of the CWD. Intuitively, the basic weighted local search
will place greater emphasis on satisfying and keeping satisfied the clauses with
higher clause weights. For smaller values of ρ, i.e., more smoothing, fewer clauses
have high weights, leading to a greedier, more intensified search. Conversely, less
smoothing leads to CWDs characteristic for a more diversified search. Inter-
estingly, these effects of the CWDs on the underlying weighted search can be
interpreted as that of a soft tabu mechanism on clauses, where clauses with
higher weights are “more taboo”, i.e., likely to stay satisfied longer.

We also found that if two different (α, ρ, Psmooth) triplets result in nearly
identical CWDs, they will also yield nearly identical performance results. Two
such triplets that achieve similar step performance are (1.3, 0.99, 1.0) and (1.3,
0.80, 0.05); as can be seen in Figure 4 (bottom right), the respective CWDs are
very similar. In the context of our earlier soft tabu interpretation, this suggests
that a clause-based soft tabu algorithm imposing a SAPS- or ESG-like CWD
could match the step performance of SAPS and ESG.

4 Reactive SAPS (RSAPS)

As mentioned before, the performance of SAPS depends on the smoothing prob-
ability, Psmooth, in addition to the three other parameters common to ESG
and SAPS. Although we found that, as a rule of thumb, the settings α = 1.3,
ρ = 0.8, wp = 0.01, and Psmooth = 0.05 work reasonably robustly in many cases,
there are better parameter settings for almost all problem instances tested here.
Determining these settings manually can be difficult and time-consuming; there-
fore, it would be desirable to automatically find them during the search. In the
following, we use a scheme analogous to the one recently applied by Hoos to
automatically tuning the noise parameter of Novelty+ [4]. The basic idea is to
reactively use higher noise levels, leading to more search diversification, if and
only if there is evidence for search stagnation, e.g. as a result of getting trapped
in a local minimum region. Thus, if search stagnation is detected, more noise is
introduced; otherwise, the noise value is gradually decreased.

The SAPS algorithm escapes from local minima by scaling the weights of
unsatisfied clauses, whereas smoothing the weights back towards uniform values
acts as an intensification of the search; complete smoothing (ρ = 0) results in
basic GSAT behaviour without noise. This suggests that search intensification
can be controlled reactively by either adapting ρ or Psmooth. At this stage, we
neither considered adapting wp nor α, since using fixed values of 0.01 and 1.3,
respectively, resulted uniformly and robustly in maximal performance of SAPS
in most of our experiments.

Intuitively, it makes much sense to adapt the amount of smoothing since
this directly determines the actual extent of search intensification. In order to
let changes in ρ effectively control the search, the smoothing probability would
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have to be rather high. However, in the previous section, we have seen that in
order to achieve superior time performance, we need at least a bias towards low
smoothing probabilities. Therefore, we decided to use a fixed value of ρ and to
control the amount of smoothing by adapting Psmooth. By choosing a rather low
value for ρ, large amounts of smoothing and high levels of search intensification
can still be achieved, while keeping the average smoothing probability low.

It is important to realise the possible gain of adapting the smoothing proba-
bility during the search. Besides the obvious advantage of eliminating the need
to manually tune Psmooth, because of the interdependence of Psmooth and ρ,
an effective adaptive mechanism for the former parameter should be able to at
least partly compensate for suboptimal settings of the latter. Furthermore, when
smoothing is performed only in situations where it is actually required, in princi-
ple it is possible to obtain better performance than for optimal fixed settings of
Psmooth and ρ. This is due to the fact that optimal settings may differ troughout
the course of the search.

Our stagnation criterion is the same as used in Adaptive Novelty+ [4]: if the
search has not progressed in terms of a reduction in the number of unsatisfied
clauses over the last (number of clauses) · θ variable flips, the smoothing proba-
bility is reduced, θ = 1/6 seems to give uniformly good performance. Just like an
increase of the noise value in Adaptive Novelty+, this reduction of the smooth-
ing probability leads to a diversification of the search. As soon as the number of
unsatisfied clauses is reduced below its value at the last change of the smoothing
probability, Psmooth is increased in order to intensify exploration of the current
region of the search space. The exact mechanism for adapting Psmooth is shown
in Figure 5. A bias towards low smoothing probabilities is achieved by decreas-
ing Psmooth faster than increasing it. Moreover, after each smoothing operation,
Psmooth is set to zero (this happens in procedure UpdateWeights). Together,
these two mechanisms help to ensure low average values of Psmooth for problem
instances that do not benefit from smoothing.

5 Experiments and Results

In order to evaluate the performance of SAPS and RSAPS against ESG as
well as Novelty+, we conducted extensive computational experiments on widely
used benchmark instances for SAT obtained from SATLIB [6].2 The benchmark
set used for our evaluation comprises SAT-encoded blocksworld and logistics
planning instances, SAT-encoded flat graph colouring problems, critically con-
strained Uniform Random-3-SAT instances, and SAT-encoded all-interval-series
problems. To better assess scaling behaviour, we also used a recently gener-
ated test-set of 100 critically constrained, satisfiable Uniform Random-3-SAT
instances with 400 variables and 1700 clauses each; this is the same set used in
[4]. The instances labelled ∗-hard and ∗-med are those instances from the re-
spective test-sets with maximal and median local search cost (lsc) for WalkSAT

2 These instances can be found at http://www.satlib.org.
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procedure AdaptSmoothingProbability(F , H, Psmooth)
input:

propositional formula F , partial search history H,
smoothing probability Psmooth

output:
smoothing probability Psmooth

C = {clauses of F}
θ := 1/6; δ := 0.1
if (no improvement has been made for |C| · θ steps) then

Psmooth := δ × Psmooth

mark the current step as the last improvement
else if (an improvement has been made in this step) then

Psmooth := Psmooth + 2δ(1− Psmooth)
mark the current step as the last improvement

end
return (Psmooth)

end

Fig. 5. Procedure for automatically adapting the smoothing probability Psmooth;
RSAPS calls this procedure after every search step.

using manually tuned static noise and median lsc, respectively (again, these are
the same instances as used in [4]).

All computational experiments reported here were executed on a dual 1GHz
Pentium III PC with 256KB cache and 1GB RAM, running Red Hat Linux
(Version 2.4.9-6smp). Computing times were measured and are reported in CPU
seconds. For each problem instance and algorithm, we obtain empirical run-
length and run-time distributions (RLDs and RTDs) [5] by solving the problem
instance at least 100 times; the cutoff parameter was set to ∞.

In Table 2, for single problem instances from different domains, we present
the medians of the RTDs obtained by SAPS and RSAPS. Generally, SAPS and
RSAPS achieve superior performance over ESG and Novelty+. In terms of num-
ber of search steps, SAPS is performing similar to ESG, with a slight advantage
on larger problem instances. Due to the reduced complexity of smoothing, SAPS
is outperforming ESG to a factor of up to six (logistics.c) in terms of CPU
time. For smaller instances, such as uf100-hard, the time complexity is roughly
the same; SAPS is never slower than ESG. Furthermore, for all problem instances
cited in [11] where DLM outperformed ESG, SAPS and RSAPS outperform ESG
by a greater margin.

When comparing SAPS to Novelty+, the performance differences are more
apparent and the time performance of SAPS is often more than an order of mag-
nitude superior. The big blocksworld planning instance bw large.c is the only
case where Novelty+ performs better than SAPS; RSAPS, however, achieves
significantly better performance than Novelty+ for this instance. We have evi-
dence, however, that for the DIMACS graph colouring instances g125.17 and
g125.18, Novelty+ performs substantially better than any of the dynamic local
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Problem SAPS, Psmooth = 0.05 RSAPS
Instance α ρ pr. steps d. steps time sf ρ pr. steps d. steps time
bw large.a 1.3 0.8 2,233 331 0.009 1.56 0.8 2,413 306 0.008
bw large.b 1.3 0.8 29,452 3,205 0.179 1.56 0.8 25,392 2,404 0.140
bw large.c 1.1 0.6 1,866,748 264,211 37.88 0.42 0.9 1,472,480 138,235 12.66
logistics.c 1.3 0.9 6,493 2,223 0.037 6.10 0.9 6,409 1,077 0.030
flat100-med 1.3 0.4 5,437 1,118 0.008 1.00 0.4 6,367 1,292 0.010
flat100-hard 1.3 0.8 22,147 3,501 0.032 1.16 0.8 19,627 2,837 0.029
flat200-med 1.3 0.4 55,238 4,693 0.087 2.39 0.4 71,967 6,183 0.122
flat200-hard 1.3 0.4 1,954,164 215,716 3.052 1.93 0.4 3,129,337 308,756 5.162
uf100-hard 1.3 0.8 2,967 811 0.006 1.00 0.8 2,788 865 0.006
uf250-med 1.3 0.4 5,445 1,159 0.011 1.36 0.4 5,302 1,253 0.012
uf250-hard 1.3 0.7 144,021 26,348 0.291 1.58 0.7 118,960 21,346 0.249
uf400-med 1.3 0.7 47,475 5,502 0.103 1.55 0.7 46,762 5,579 0.106
uf400-hard 1.3 0.2 900,501 133,267 1.973 4.95 0.2 986,621 126,301 2.216
ais10 1.3 0.9 13,482 6,449 0.051 2.73 0.9 12,491 6,916 0.044

Table 2. Median run-time and number of steps on individual benchmark instances
for our Dynamic Local Search approaches. For all runs, wp = 0.01. Estimates are
based on 100 runs. Search steps are divided into primal search steps and dual search
steps. For SAPS, bold face indicates superior time performance over both ESG and
Novelty+, for RSAPS, bold face indicates superior time performance over all the other
algorithms. “sf” (speedup factor) denotes the time taken by the faster algorithm of
ESG and Novelty+ for the respective instance divided by the time taken by SAPS.

search algorithms. SAPS reduces the performance difference but seems unable
to outperform Novelty+.

The fact that in many cases, SAPS shows an improvement in step perfor-
mance over ESG should be emphasised. We attribute this to problems arising
from approximations used in efficient implementations of ESG. However, another
possible explanation could lie in the additional randomness of SAPS. Since the
clause weights in ESG are real numbers, this algorithm becomes almost deter-
ministic after an initial search phase and can be trapped in a cycle, from which it
can only escape by means of a random walk step performed in a local minimum.

In Section 3, we showed how the time complexity of smoothing increases
linearly with problem size. This suggests that performance differences between
ESG and SAPS should also increase with problem size. To avoid complications
arising from different implementations, we use a variant of SAPS with Psmooth =
1 to illustrate these differences in scaling behaviour.3 We refer to this variant as
SAPS[1] and to regular SAPS as SAPS[0.05]. We demonstrate different scaling
properties in time complexity w.r.t. problem size for the test sets uf100 and
uf400, both of which contain 100 Uniform Random 3-SAT formulae with 100
and 400 variables, respectively. In Figure 6 (top), we compare SAPS[1] with
Novelty+. We see impressive results for SAPS[1] on test-set uf100, whereas its
3 The performance of this variant is very similar to ESG for small instances and seems

marginally better for larger instances.
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Fig. 6. Correlation between time performance of SAPS and Novelty+ on Uniform Ran-
dom 3-SAT test-sets uf100 (left), and uf400 (right); top: Novelty+ vs. SAPS[1], bottom:
Novelty+ vs. SAPS[0.05].

performance degrades for the instances in test-set uf400. Next, we performed
the same comparison for SAPS[0.05] and Novelty+. As can be seen in Figure 6
(bottom), the difference to Novelty+ for test-set uf100 is about the same as for
SAPS[1] and Novelty+. However, for the larger instances in uf400 it becomes
obvious that the scaling behaviour of SAPS[0.05] is far superior to SAPS[1].

6 Conclusions & Future Work

As we have shown in this work, new insights into the factors underlying the run-
time behaviour of the recent and promising Exponentiated Sub-Gradient (ESG)
algorithm can lead to variants of this algorithm that show significantly improved
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performance over both ESG as well as the best known WalkSAT algorithms and
hence can be counted amongst the best performing SAT algorithms known to
date. Furthermore, reactive search techniques can be used to reduce the need for
manual parameter tuning of the resulting algorithms.

In future work, we plan to further investigate the role of the scaling and
smoothing stages for ESG and SAPS. By studying clause weight distributions
we hope to be able to better understand how these mechanisms interact with
the basic weighted search algorithm underlying both algorithms. Ultimately, we
are confident that this should lead to further performance improvements. It
might even be possible to obtain such improvements with algorithms that are
conceptually simpler than ESG or SAPS. Furthermore, it would be interesting
to develop completely self-tuning variants of SAPS, which reactively adapt α
and ρ as well as the smoothing probability Psmooth.
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5. H.H. Hoos and T. Stützle. Local Search Algorithms for SAT: An Empirical Eval-
uation. In J. of Automated Reasoning, Vol. 24, No. 4, pp. 421–481, 2000.
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