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Abstract

We describe a method for learning classes of facial motion
patterns from video of a human interacting with a comput-
erized embodied agent. The method also learns correlations
between the uncovered motion classes and the current in-
teraction context. Our work is motivated by two hypothe-
ses. First, a computer user’s facial displays will be con-
text dependent, especially in the presence of an embodied
agent. Second, each interactant will use their face in dif-
ferent ways, for different purposes. Our method describes
facial motion using optical flow over the entire face, pro-
jected to the complete orthogonal basis of Zernike polynomi-
als. A context-dependent mixture of hidden Markov models
(cmHMM) clusters the resulting temporal sequences of fea-
ture vectors into facial display classes. We apply the clus-
tering technique to sequences of continuous video, in which
a single face is tracked and spatially segmented. We discuss
the classes of patterns uncovered for a number of subjects.

1 Introduction

Recently, the notion that the primary function of facial dis-
plays is the expression of emotion has been challenged by
psychologists, who have proposed a model of human facial
displays as signals of social intent (the Behavioral Ecology
View) [7]. They take the position that humans use their face
as a way of communicating through the medium of a social
context. For example, the reasons facial displays are used
in normal conversations include both semantic and syntac-
tic support of what the speaker is saying, as well as reac-
tions in the listeners face to offer support of continuation
of the dialog [4]. Human computer interaction researchers
have also moved towards the ecological view, and have fo-
cused on interpreting the human face as a signaling mecha-
nism [3]. That the same conclusions apply to both groups of
researchers is not surprising given the media equation [13]:
the principles which apply to inter-human communication
should apply to human-computer communication.

Analyzing facial displays as communicative mechanisms
has important ramifications for the design of facial display
recognition systems. Facial displays are dependent on the
momentary context in which the display is shown [7]. Con-
text is defined as the circumstances relevant to the display,

and may include concurrent or proximate speech, gestures,
or environmental factors. For example, eyebrows are some-
times raised during conversation when the speaker is think-
ing or remembering. However, eyebrows are also raised in
backchannel displays of acknowledgment, or when an indi-
vidual is taking turn in a conversation [3]. In any case, the
observed facial display carries little meaning by itself, while
the combination of the current context and the observed fa-
cial display is meaningful.

The particular configurations and motions observed in fa-
cial displays are individual dependent [4]. This individuality
of displays is governed in part by cultural, educational, situa-
tional and physical factors [16]. Furthermore, although peo-
ple may use similar facial displays, they use them in dissimi-
lar situations. This implies that pre-defined, user and context
independent models of facial displays will not be sufficient.
A facial display recognition system must adapt to the ways
in which a particular human is using their face.

This paper presents a method for adaptive and context de-
pendent recognition of human facial displays. Our system
uses a color video camera to track the face of a human in-
teracting with an on-screen embodied agent. The inclusion
of an embodied face is important, in order to open a facial
display communication channel (to give the human a reason
to use their face). The motion in the human’s face is de-
scribed using optical flow over the entire face, projected to
the complete orthogonal basis of Zernike polynomials. The
trajectories of the resulting feature vector are modeled us-
ing a context dependent mixture of hidden Markov models
(cmHMM). The cmHMM is a mixture of hidden Markov
models [14] augmented with an (observed) context which
conditions the mixture model. The cmHMM is trained on
a set of unlabeled sequences, and extracts models of salient
display patterns and of correlations with the current actions
of the embodied agent (the context). This unsupervised clus-
tering method allows for user adaptation and for integration
of context. In this work, we examine what motion patterns
can be extracted without any prior information about facial
displays. However our Bayesian approach can be incorpo-
rated with prior knowledge of cross-individual statistics.

Most human-computer interaction systems react to a
small, pre-defined set of user hand gestures, head motions,
and facial displays [3]. Our work differs in that we make
no assumptions about the facial displays a particular human
will be using. While researchers have examined unsuper-



vised clustering of human gesture sequences [17, 15], to our
knowledge no work has focused on facial displays. Wren et.
al [17] investigate understanding purposeful human gestures
using a combination of a kinematic model of human motion,
a mixture of hidden Markov models and a high-level classi-
fier, similar to our approach.

Section 2 shows how we obtain feature vectors represen-
tative of motion in the face. Section 3 presents the mixture of
hidden Markov models as a clustering technique for tempo-
ral patterns of feature vectors, and shows how to incorporate
context. Section 4 presents results from a number of differ-
ent subjects engaged in a facial display imitation task.

2 Facial motion representation

Extracting a meaningful and simple feature vector repre-
senting the human face and the motion thereof can be ap-
proached in many ways. In this work, we focus only on the
motion of the face, and use a holistic representation over the
entire facial region. We estimate optical flow between suc-
cessive images, and project this flow field over a tracked fa-
cial region to the complete orthogonal basis of Zernike poly-
nomials, yielding a feature vector,
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is updated using both the recovered optical flow and an in-
dependent estimate of the face region using skin color seg-
mentation.

The Zernike representation differs from approaches such
as Eigen-analysis [11], or facial action unit recognition [10]
in that it makes no commitment to a particular type of mo-
tion [9]. This is useful for adaptive recognition, and leads
to a transportable classification system (e.g. usable for ges-
ture clustering). Although the the recognition of facial action
units [10] gives the ability to discriminate between very sub-
tle differences in facial motion, it requires extensive training
and domain specific knowledge. We prefer to use a represen-
tation which can be extended from simple to complex given
the task to be accomplished. For example, a system which
only needs to recognize nods of the head could use only the
first order ZPs. More complex recognition tasks need only
add as much representation as is necessary to distinguish the
important facial displays of a particular user.

We estimate optical flow between a successive pair of
frames in a video sequence using the robust gradient-based
regularization method of [1]. This method yields estimates
of flow which are smooth over patches in the human face,
preserving important discontinuities but removing high spa-
tial frequency noise arising from violations of the brightness
constancy assumption. After the flow is computed, the cen-
troid and scale of the area of interest are estimated (see be-
low) and a feature vector is obtained by projecting the flow
onto the basis of Zernike polynomials.

Zernike polynomials are an orthogonal set of complex
polynomials defined on the unit disk [12]. The lowest two
orders of Zernike polynomials correspond to the standard
affine basis. The next order polynomials correspond to ex-
tensions of the affine basis, roughly yaw, pitch and roll, as

explored in [2]. Higher orders represent motions with higher
spatial frequencies. The basis is orthogonal over the unit
disk, such that each order can be used as an independent
characterization of the flow, and each flow field has a unique
decomposition in the basis. Zernike polynomials are ex-
pressed in polar coordinates as a radial function, ���������� ,
modulated by a complex exponential in the angle, � :

� �� ����� � � � � �� ������� �
�"! (1)

The orthogonality of the basis allows the decomposition
of an arbitrary function on the unit disk, # ����� � � , in terms of
a unique combination of Zernike polynomials [12]:
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The coefficients,

. �� and 9 �� , of the decomposition of the
horizontal and vertical flow estimates, A ��BC��DE� and F ��BC��DE� ,
over the tracked facial region are thus obtained using:
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where � �TS4UWVYXWS4Z ��DQ[]\^B�[]� , � �`_ B [ a 7bD [ adc K , B$[ �
��B"e�B�fW�P\hg N , DQ[ � ��D&eiD5f��P\hg O , and j B�f<�PD�fYk and j g N ��g O k are
the centroid and scales of the region of interest. The flows
can be reconstructed from the coefficients using Equation 2.
Feature vectors are sets of the coefficients from Equation 3.
The choice of a particular set to represent the flow will de-
pend on the types of flows being modeled [9]. This choice
is currently made by the modeler, by removing the = �ml
component (translation) and then adding as many orders as
can be supported by the data in the modeling process.

The tracking problem is to update the facial region as de-
scribed by centroid and scale parameters / � j B,fn�PD�fn��g N ��g O k
from one frame to the next. We assume that there is only one
head present in all frames. We get a first estimate from the
first and second order coefficients of the projected flow:

B [ f � B f 7 G . �� D [f � D f 7bo .
��

g [N � g N 7 G .0pp g [O � g O 7 o 9 pp
Updates using the only the flow are prone to significant drift
over any sequence longer than roughly 600 frames (20 sec-
onds). Furthermore, severe permanent tracker failure can be
caused by adaptors, such as scratching the face. Therefore,
we derive a correction term using skin color segmentation.
We transform the RGB color images to HSV space, and seg-
ment using simple thresholding in hue and saturation. Me-
dian filtering removes noisy estimates, and the resulting bi-
nary image is projected along horizontal and vertical direc-
tions. The region of interest is then estimated by examin-
ing where the projected distributions fall below a threshold.
The centroid and scale are then updated using a weighted
sum of the skin and flow estimates. The scale and centroid



for the initial frame of a sequence is given by the skin seg-
mentation procedure alone. The top row in Figure 1 shows
an example track using only updates based on optical flow.
The tracker performs well until errors are introduced by the
tracked individual’s hand, from which the tracker cannot re-
cover. Correction using the skin segmentation (shown in the
middle row in Figure 1) yields the track shown in the bottom
row in Figure 1.

T=1200 1304 1338 1757
Figure 1: Tracking using only flow (top row). Skin segmen-
tation (middle row) yield corrected track (bottom row).

3 Clustering motion patterns

Once we have recovered a sequence of feature vectors
� �� � �
�	��� �

we wish to find and classify the trajectories corre-
sponding to salient facial displays. Simultaneously, we want
to model the dependence on the current context. In this work,
we will examine facial displays only as reactions to context.
A person is seated in front of a screen, monitored by a cam-
era mounted atop the display. An on-screen event at time ��� ,�����

, is observed by the computer user, who has a reaction,	 ���
, expressed in the face. The measurement of this expres-

sion is given by some sub-sequence of
�

,
� �
� �
�	��� �
�
���
 p . In

a particular interaction, there will be a sequence of on-screen
events, � � � ���
�	� ���

, which cause a sequence of reactions� ��	 � �
�	� 	 �
. The time scales of these events are slower

than the time scale of the video frame events. The general
case will have further temporal dependencies between the
facial display and context events, and may be asynchronous
in general [8]. The model we describe implicitly assumes
that the context events define time intervals for the facial
displays. This assumption may work well in many cases
(as it does in Section 4), since facial displays are usually
timed with other non-facial events [3]. In general, however, a
method for temporally segmenting the input sequence is nec-
essary. Previous authors have approached this temporal seg-
mentation problem by exhaustive search for the most likely
time scale [17, 16], or by searching for discontinuities in the
temporal trajectories [15]. The complete Bayesian solution
involves maximizing over temporal segmentations [6].

Our task is now to cluster the sequences of feature vec-
tors,

� � � �
�	��� � �
�������
. We use a mixture of hidden Markov

models conditioned on the context variable
�

. The follow-
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Figure 2: Mixture of hidden Markov models as a dynamic
Bayesian network, including context variable,

�
.

ing describes this model, show how to learn the parameters
using the expectation-maximization (EM) algorithm, and de-
scribes the initialization procedure we have used. We assume
that the number of classes of facial displays is known.

3.1 Mixtures of HMMs

Figure 2 shows a time slice of the context dependent mix-
ture of hidden Markov models (cmHMM) as a dynamic
Bayesian network. The description of the entire video se-
quence (

�`� �� �
�
� ���
) would be a series of such mod-

els, each conditioned on an (observable) context variable� � � � �
�	� ���
. As a generative model of the computer user,

we can describe Figure 2 as follows. The context
�

prompts
the computer user to perform facial display

	
. The state

of
	

thus generated is a high level description of the facial
display to be performed (such as smile or raise eyebrows),
which itself generates a sequence of � � ����� p e ��� dis-
crete states � ��� � � �	�
� � � �
���  p . A state

���
generates a

specific optical flow description
� �

from a Gaussian distri-
bution over the space of such descriptions. The model is
described by four conditional probability distributions: ini-
tialization ( � � � �� 	 � ), transition ( � � �!�  ���  p 	 � fully con-
nected), observation ( � � � �  � � 	 � parametrized by full co-
variance Gaussian distributions) and context ( � � 	 �  � � � ).
If we remove the context,

�
, and the conditioning link,� � 	  � � , we recover a mixture of hidden Markov models

as described in [14]. The context variable,
�

, is an input to
the generative model, which will bias clustering of the input
sequences according to the context states,

�
. This distribu-

tion, � � 	  � � , will be learned simultaneously with the other
parameters in the model, and models the effects of the on-
screen events on the user.

Given a set of (temporally segmented) feature vectors,
�

,
and a set of context variables, � � � � �
�	� � �

, we wish to
learn the maximum likelihood parameters of the mHMM.
That is, we want to find the model parameters, " , which
maximize the probability

� � � �!" � �$#�%'& � � � � � �!" � �



We can use the expectation maximization algorithm [5],
which lower bounds this probability distribution with a func-
tion � � � � � , maximizes this bound at the current estimate of
the model parameters, " [ , (the ’E’ step) giving � � � � � �� � � �  � � � 1, and then maximizes the bound

# %'& � � � �  � � ������� � � � � � � � (4)

over the model parameters, " , (the ’M’ step). We factor� � � � � � � � � � � � �  � � � � � � and the integral in Equa-
tion 4 becomes:#
�	�


������� ������������
��������� � �"! #
�

����#� �����$������
���� �&%

(5)

The first term in Equation 5 is the term that is maximized
for a mixture of hidden Markov models, conditioned on the
(observed) variable

�
. Smyth [14] has pointed out that this

can be achieved by clustering the variables along each link
from

	
to
�

variables. The result is a simple hidden Markov
model, with hidden states given by the joint variable j � � 	 k .
The constraint that the variable

	
does not change over the

course of the sequence can be enforced by initializing the
the transition matrix for the mixture model,

.
, as a block

diagonal matrix where the blocks are the transition matrices,.
�
� � � � �  � �  p 	 � � , for each state, ; , of the cluster vari-

able,
	

. The initial state probabilities, � � � �  	 � are then
chosen to reflect the weights of the mixture components as
given by the conditional distribution � � 	  � � .

Maximizing the second term in Equation 5 updates the
parametrized probability distribution "(' �*) � � � 	 �
;  � �,+ � by counting the expected number of times the clus-
ter variable

	 � ; when the context variable
� �-+

, .�' ��) .
That is, " ' ��) � /�021 '�3 46587 . ' ��)9

� /�021 '�3 46587 .#' ��)
where /�0:1 '�3 ;=<	7 . ' ��)

� 9 � � � 	 � � ;  � � �?>Q� � � �,+ � .
3.2 Initialization

The EM algorithm performs hill climbing on the likelihood
surface, and therefore is dependent on the initial choice
of the parameters. We use the clustering in log-likelihood
space technique described in [14]. It involves fitting a sim-
ple HMM to each individual sequence, evaluating the log-
likelihood of each sequence given every simple HMM, and
then clustering the sequences into @ groups using the log-
likelihood distance matrix. We use agglomerative clustering
with complete linkage (furthest neighbors merging). Simple
HMMs are then fit to each of these @ clusters, and the results
are used to initialize the matrix for the cmHMM. The con-
ditional probabilities of cluster membership,

	
, given the

context variables,
�

, are initialized by counting the number
of observed states

�
in each cluster. Further details can be

found in [8].

1We omit explicit representation of A , for notational ease

4 Results

To evaluate the model presented in the last section, we asked
volunteers to perform a simple facial expression imitation
task. They were seated in front of a computer terminal on
which an animated cartoon shows facial displays. While
many face generation systems use complex 3D graphics, this
face is a simple cartoon. This allows for fast rendering, and
does not detract from interaction quality, since humans will
interact with even the simplest of generated faces as a real
human face [13]. Cartoon displays start from a neutral face,
as shown in Figure 3(a), then warp to one of the 4 poses
shown in Figures 3 for values of

� � K �
�	� B . These car-
toon displays will be referred to as

� p �
�	� ��C in the follow-
ing. The pose is held for roughly a second, and the face then
warps back to the neutral pose where it remains for an addi-
tional second. Although these displays may be reminiscent
of so-called prototypical facial expressions, the displays they
elicited were clearly not expressions of emotion, but only re-
actions

	
to contexts

�
. The subjects were told that their

(a)
� p � a ��D ��C

Figure 3: (a) neutral face (C=1...4) Faces which subjects
were told to imitate

task is to imitate these displays, and were shown each of dis-
plays initially and told to practice imitating them. Once they
were satisfied with their imitations, they pressed a key, and
the system began recording a video sequence through a Sony
EVI-D30 color camera mounted above the computer screen.
While the subjects were being recorded, the cartoon face per-
formed a series of 40 randomly selected facial displays over
a period of 2 minutes.

Zernike feature vectors were recovered for the recorded
videos (3600 frames), using a selected basis (specifically ZP
coefficients

G . pp � o 9 pp � G . aa � o 9 aa ). The videos were tempo-
rally segmented using the onset times of the cartoon displays
and the resulting sequences were input to the HMM cluster-
ing and training algorithm described in Section 3, using 3�

states (facial displays are tri-phasic) and 4 clusters (the
number of displays the subjects were trying to imitate). The
Viterbi algorithm was used to assign cluster membership,

	
,

to each sequence, which were then compared to the known
classes of displays the subjects were trying to imitate.

In a cross-validation study, we found that the modeling
of the context information did not significantly decrease the
likelihoods of test data. The sequences were randomly split
into 35 training and 5 test sequences 20 times, and cmHMMs
and mHMMs were trained on the training data. The likeli-
hoods of the test data were then evaluated. The results, aver-
aged over the 20 trials and over the 4 subjects were E K � FHG E � l
and E�E � K G E � l for the cmHMM and the mHMM, respec-



cluster cluster	 p 	 a 	 D 	 C 	 p 	 a 	 D 	 C� p 2 6 0 0
� p 4 1 1 0� a 0 4 0 2
� a 5 2 9 0��D

0 0 0 12
��D

0 8 0 0��C
7 0 7 0

��C
0 0 0 10

� �

Table 1: Confusion matrices: subjects
�

and
�

tively. However, qualitative analysis of the clustering over
the full data set for each individual showed the addition of
context did improve the results.

Only one subject performed significantly different dis-
plays in response to

� p and
� a . After the experiment, most

subjects reported either that they did not notice a significant
difference between these two cartoon displays, or that they
could not find a way to imitate the second one,

� a , due to the
extremely down-turned mouth. The one subject who accu-
rately imitated

� a took more time to practice before starting
the experiment. The clustering results for this individual cor-
responded exactly with the sets of displayed cartoon faces.
We will not discuss this one subject further, and show repre-
sentative results from two of the other four. Complete results
can be found in [8]. Table 1 shows the confusion matrix for
two subjects, in which each row is one

�
state (facial dis-

play on screen) and each column is one recovered cluster,	 p �
�
� 	 C .
Consider subject

�
. The cmHMM clustered most imita-

tions of
� p and

� a together in cluster
	 a . Key frames from

two sequences in this cluster are shown in Figure 4. Scaled
flow fields reconstructed from the feature vectors are shown
superimposed. The top sequence was in response to a

� p
cartoon display, while the bottom one was in response to a� a cartoon display. Figure 5 shows the feature vector tra-

frame= 2807 2819 2862

frame= 2993 3006 3041
Figure 4: Example sequences for subject

�
. Sequences were

of frames 2790-2880 (top row) and 2970-3060 (bottom row)

jectories in two of the feature vector dimensions (
G . pp ando 9 pp ) for these two sequences. For each value of D=2,3,4, the

three Gaussian output distributions (for X=0,1,2) are shown
as level curves of the covariance matrix, and are labeled with
the D values. The

	 � K model (not shown) has a large
Gaussian which encompasses most of the others, and seems

to be modeling all the sequences which do not fit well into
any of the other three models. The remaining three models
clearly partition the space evenly, describing vertical expan-
sion and contraction (D=4), horizontal expansion and con-
traction (D=3), and a combination of both (D=2).
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(a) (b)
Figure 5: ZP=1 feature vectors (a), (b) correspond to top and
bottom rows in Figure 4

Imitations of
� D

were clustered together, with two imita-
tions of

� a in the same group These
� a imitation sequences

did not start in a neutral expression (the subject was still re-
acting to a previous cartoon display). The

��C
imitations were

split into two distinct groups (clusters
	 p and

	 D
), which

differed in the amount of eyebrow motion present. Figure 6
shows two sequences which were responses to

� C
, but which

were clustered into separate groups. The top row sequence
contains a significant eyebrow raise (at frame 108), while the
bottom one does not. Figure 7 shows the feature vector tra-

frame= 108 114 162

frame= 2341 2359 2416
Figure 6: Example sequences for subject

�
. Sequences were

of frames 90-180 (top row) and 2340-2430 (bottom row).

jectories (again
G . pp and o 9 pp ) for these two sequences. The

difference is the additional trajectory in Figure 7(a) which
extends into the positive A and F quadrant, and corresponds
to the eyebrow raising. The model has uncovered that this is
a more important difference in terms of flow fields than any
differences between imitations of

� p and
� a .

Consider now subject
�

, whose confusion matrix is
shown in Table 1. This subject attempted to differentiate
between

� p and
� a , while consistently performing displays� D

and
� C

. The
� a imitations were split into two clusters:

those that were similar to the
� p imitations, and those that

were not. The
� a imitations grouped together in cluster

	 D
contain almost no motion at all. Figure 8 shows key frames



−0.2 −0.1 0 0.1 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

A

B

2341 2359

2416
4 

4 

3

3

2

2

v 

1 

1 
1 

u

1 

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

108

114

162

4 

4 

3

3

2

2

1 
B

1 

v 

Au 1 
1 

(a) (b)
Figure 7: ZP=1 feature vectors (a), (b) correspond to top and
bottom rows in Figure 6

from three example sequences. The top row is a
� p imi-

tation in cluster
	 p , in which the face contracts and then

expands. The second row is a
� D

imitation in cluster
	 a .

The bottom row shows what was supposed to be a
� a imi-

tation which clustered with the
� D

imitations in cluster
	 a .

The reason for the apparent mis-classification was a natural
adaptor which occurred (the subject bit her lip). The subject
also closed her eyes (see frame 3405), and seems to have
missed the

� a cartoon display.

frame= 1 13 79

frame= 542 556 611

frame= 3405 3415 3419
Figure 8: Example sequences for subject

�
. Sequences are

frames 0-90 (top row), 540-630 (middle row), and 3330-
3420 (bottom row).

5 Conclusions

We have motivated and presented an approach to adaptive
context dependent facial display recognition. We use a holis-
tic optical flow representation projected to a complete or-
thogonal basis of Zernike polynomials, which is an effective
and a priori representation of facial motion. The cluster-
ing method uses a mixture of hidden Markov models condi-
tioned on a context variable. We have discussed the appli-
cation of this method to a simple imitation experiment, and
have shown how it can uncover classes of facial displays. It
is worth noting that the emphasis on context also implies that

the recognition of facial expression during speech can not be
attempted without an integrated approach [3, 4]. The proba-
bilistic formulation of the models we propose allow them to
be integrated with speech recognition, and thus our methods
are scalable in this important direction.
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