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Abstract—
We introduce precomputed multizone elastokine-

matic models for interactive simulation of multibody
kinematic systems which include elastostatic deforma-
tions. This enables an efficient form of domain decom-
position, suitable for interactive simulation of stiff flex-
ible structures for real time applications such as inter-
active assembly. One advantage of multizone models is
that each zone can have small strains, and hence be
modeled with linear elasticity, while the entire mul-
tizone/multibody system admits large nonlinear rela-
tive strains. This permits fast capacitance matrix algo-
rithms and precomputed Green’s functions to be used
for efficient real time simulation. Examples are given
for a human finger modeled as a kinematic chain with
a compliant elastic covering.

Keywords— Deformable objects, multibody simula-
tion, haptics, force feedback, Green’s functions, anima-
tion.

I. Introduction and Related Work

PHYSICAL models used for real time simulation in
robotics have been either rigid kinematic chains

(e.g., almost all models of robot manipulators), dy-
namic flexible link models [1], or for a single de-
formable object (e.g., a liver [2]) possibly with a small
inhomogeneous region of interest [3]. In this paper we
generalize multibody kinematic systems to include lin-
ear elastostatic effects. These are important in many
robotic applications involving nearly rigid elastic bod-
ies [4]. Our method is even more general, in that
it applies equally well to elastic objects that can be
partitioned into connected regions or zones; hence we
describe these as multizone elastokinematic models.
They can also be used for rapid approximation of the
global deformation due to contact between two or more
elastic bodies, chains, or mechanisms (see also [5],
which models the local compliance, but not global ef-
fects).

There has been significant work on interactive de-
formable objects recently [6], [7], [8], [9], [10], [2],
[11]. Our approach exploits recently developed capac-
itance matrix algorithms for interactive simulation of
linear elastostatic objects [7], [12], [11] (see also [8],
[13]). High speed is obtained by precomputing dis-
crete Green’s functions [14] of the model, which intu-

itively provide a basis for describing all possible defor-
mations of the object. Green’s functions are extremely
well suited for interaction with haptic interfaces [12]
and can be directly estimated using robotic measure-
ment [15]. This paper explores the fact that precom-
puted Green’s functions also enable a very fast method
for multizone condensation [16].

The rest of the paper is organized as follows. Sec-
tion II summarizes necessary background on linear
elastostatic Green’s function models (LEGFMs), and
section III motivates elastokinematic models. Sec-
tion IV provides notation for describing multizone
models, followed by a discussion of the simple case
of contact between two objects defined in a common
coordinate frame (in §V). The general case of a kine-
matic chain of bonded zones is discussed in §VI, with
solution approaches described in §VII. Finally some
results are provided in section VIII for a kinematic
chain with a compliant elastic covering.

II. Background: Linear Elastostatic Green’s
Function Models (LEGFMs)

A. Displacement and Traction Boundary Values

We will describe discrete 3D elastic objects, e.g.,
finite element models, by their boundary values at
“nodes.” For concreteness, we assume that the sur-
face displacement and traction fields are parametrized
by N -vectors of nodal variables,

u = [u1, . . . , uN ] T (1)

p = [p1, . . . , pN ] T, (2)

where each of the N values, uk and pk, belong to R
3.

For example, our boundary element implementation
uses vertex-based triangle mesh models in which nodes
correspond to mesh vertices, and uk and pk describe
the vertex displacement and traction, respectively, at
the kth vertex.

B. Reference Boundary Value Problem (RBVP)

A major benefit of using linear elastostatic models
for real time simulation is that it is possible to pre-
compute the Green’s functions to one particular class



of boundary value problem (BVP), a relevant refer-
ence BVP (RBVP), and be able to efficiently compute
components of those solutions rapidly at run time (see
Figure 1).

Without loss of generality, assume that either po-
sition or traction constraints are specified at each
boundary node. Let the mutually exclusive nodal
index sets Λ0

u and Λ0
p specify nodes with displace-

ment and traction constraints, respectively, so that
Λ0

u ∩ Λ0
p = ∅ and Λ0

u ∪ Λ0
p = {1, 2, ..., N}. Specify-

ing boundary values at each of the N nodes defines a
BVP to be solved for desired unknown variables, e.g.,
resulting contact forces, at each step of the simulation.
Denote the unspecified and complementary specified
nodal variables by

vj =

{

pj : j ∈ Λ0
u

uj : j ∈ Λ0
p

and v̄j =

{

ūj : j ∈ Λ0
u

p̄j : j ∈ Λ0
p

respectively.

0
pΛ

0
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Fig. 1. Reference Boundary Value Problem (RBVP) Example:
The RBVP associated with a model attached to a rigid sup-
port is shown with boundary regions indicated for nodes with
displacement (“fixed,” Λ0

u) or traction (“free,” Λ0
p) constraints.

C. RBVP Solution using Green’s Functions

The general solution of the RBVP is conveniently
expressed in terms of the Green’s functions (GFs) of
the RBVP as

v = Ξv̄ =
∑

j∈Λ0
u

ξj ūj +
∑

j∈Λ0
p

ξj p̄j , (3)

where the GFs are the block columns of the dense ma-
trix

Ξ = [ξ1ξ2 · · · ξN ] ∈ R
3N×3N . (4)

For example, the jth GF, ξj describes the effect of the
jth node’s specified boundary value, v̄j , on the result-
ing solution. The benefit of the GF description is that
once the GFs are known, the RBVP solution is given
by a single matrix-vector multiplication. Precompu-
tation of GFs for a particular RBVP type is possible
since they only depend on the geometric and mate-
rial properties of the deformable object. In practice it
is only necessary to precompute GFs for nodes which
have nonzero boundary values during the simulation.

The GF-based linear system description is possible
for any discrete linear elastostatic model, regardless of
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Fig. 2. Two zone model with zones and interface node sets
indicated.

internal material properties or the discretization tech-
nique employed. A detailed description of GF models
and related capacitance matrix algorithms for simula-
tion are presented in [11].

III. Multizone Kinematic Green’s Function
Models

Multizone models refer to objects comprised or sev-
eral submodels, or “zones”, connected by some physi-
cal constraints, e.g., see Figure 2. This type of domain
decomposition is useful because (1) certain models are
easily described or constructed using separate compo-
nents, (2) it can reduce precomputation and storage
costs for boundary descriptions, (3) it permits simu-
lation of flexible kinematic structures, and (4) it ap-
proximates nonlinear strain in structures composed of
precomputed linear substructures.

Multizone substructuring methods are commonly
used in boundary element analysis, e.g., [16], to avoid
the construction of large dense boundary element ma-
trices for use with direct and iterative solvers. A com-
mon strategy is to use condensation on the system of
multizone equations to arrive at a reduced system of
equations relating only boundary values belonging to
interzonal interfaces. Once these smaller condensed
systems are solved, the interface values are then used
to construct the solution on each domain.

By precomputing GFs for each zonal LEGFM, the
condensed multizone matrix system can effectively be
obtained “for free” from the GF lookup tables. The
solution to the condensed interface equations is then
used to determine the deformation of each zonal model
using the capacitance matrix algorithm [12]. In this
way, it is possible to interactively simulate large cou-
pled systems.

IV. Multizone Model Notation

For the simple two zone model illustrated in Fig-
ure 2 consisting of zones 1 and 2, let the quantities
associated with each LEGFM zone be denoted by a
superscript 1 or 2. For example, the GFs of each zone
are Ξ1 and Ξ2, the traction fields are p1 and p2, and
displacements are u1 and u2, respectively. Initially,
all quantities will be defined in a common coordinate
system, but this will be generalized in §VI for more
general kinematic relationships.

Let the interface between the zones be defined by
two ordered lists of nodes: let S12 denote nodes in



zone 1 interfacing with zone 2, and similarly let S21

represent nodes in zone 2 contacting zone 1. Without
loss of generality, we shall assume that the interface
discretizations conform, so that the interface lists are
the same size (|S12| = |S21|), and that the jth node of
each list corresponds to the same interface vertex. The
interface displacements and tractions for zone 1 are
then the arrays u1

S12
and p1

S12
, while for zone 2 they are

u2
S21

and p2
S21

. For example, the subscript ()S implies
that only components indices in S are contained in the
subvector; this ordered list subscript notation is used
throughout to specify submatrices.

V. Condensed Multizone Interface
Equations

As a motivating example, consider the two-zone
model shown in Figure 2 consisting of two models
joined along a seam comprised of nodes with displace-
ment boundary conditions in each model’s reference
BVP, i.e., seam nodes in Λ0

u for each system. Note
that it is equally easy to consider traction reference
BVP conditions [11].

From (3), the interface tractions and displacements
are related by

p1
S12

= p̂1
S12

+ Ξ1
S12S12

u1
S12

(5)

p2
S21

= p̂2
S21

+ Ξ2
S21S21

u2
S21

(6)

where the interfaces’ self-influence matrices are square
submatrices of Ξ, namely Ξ1

S12S12
and Ξ2

S21S21
, and p̂1

S12

and p̂2
S21

describe the seam’s traction contribution due
to constraints outside the seam, e.g., a zone 1 nonzero
traction constraint p1

j1
at node j1 ∈ Λ0

p (and therefore
j1 6∈ S12) would imply

p̂1
S12

=
(

ξ1
j1

p1
j1

)

S12

. (7)

The benefit of the multizone approach when com-
bined with LEGFMs is immediately apparent from
(5) and (6): condensed interface equations are avail-
able practically “for free” when given the precomputed
GFs. This is a major benefit for real time, e.g., force
feedback, applications since the global equilibrium can
be determined by (direct) solution of small matrix
problems involving only interface variables.

In order to physically bond the zonal LEGFMs at
the interface, one may use the interface boundary con-
ditions

u1
S12

= +u2
S21

(Continuity condition) (8)

p1
S12

= −p2
S21

(Newton’s 3rd law). (9)

Substituting these conditions into (5) and (6) and sim-
plifying yields the linear system describing the inter-
face constraints of the bonded material:

0 =
(

Ξ1
S12S12

+ Ξ2
S21S21

)

u2
S21

+ p̂1
S12

+ p̂2
S21

. (10)

Once the nonzero interface constraints are determined
from this condensed interface equation they are ap-
plied to the LEGFMs in the usual way (using (3)) to
compute the visual deformation.

VI. Elastokinematic Chains

In many ways, LEGFMs should be thought of as
nearly rigid objects with an inherent frame of refer-
ence. Attaching the elastostatic model to a kinematic
structure, such as a rigid frame or other support, is a
natural way to associate this relationship in a simu-
lation. By connecting together LEGFMs with multi-
ple frames of reference, much larger relative deforma-
tions can be achieved than would otherwise be possi-
ble with a single LEGFM attached to multiple moving
supports. While LEGFMs’ linear Cauchy strain ap-
proximation of Green strain is not invariant under ro-
tation, it is quite possible to rotate LEGFMs relative
to each other. As an example, later in §VIII we shall
consider animation of finger pad deformation during
interactive grasping and contact tasks with a simpli-
fied finger model.

In this section, we shall consider a multizone kine-
matic chain of coupled LEGFMs as schematically
shown in Figure 3. This multizone configuration
results in a block tridiagonal system of equations
comprising a nonlinear compliance equation relat-
ing the interface displacements (each defined in their
LEGFM’s frame of reference). These equations can
then be efficiently solved in time linear in the num-
ber of zones. This is reminiscent of algorithms for
linear time forward dynamics which have been shown
to be equivalent to solving a (different) block tridiago-
nal system [17]. The stiffness response is nonlinear in
the sense that it depends on the configuration of the
joints in the chain, but for any single configuration it
is linear.

We will describe kinematic chains only for nota-
tional simplicity, but the same arguments apply to
other multizone interface topologies and kinematic
structures. In practice the block sparse system of
elastokinematic seam equations may cease to be block
tridiagonal, but can still be efficiently solved [18], [16].
Issues related to kinematics, and means of handling
them, are similar to those in rigid multibody dynam-
ics [19], [20], [21], [22].

Similar boundary influence equations for coupling
elastic bodies in equilibrium arise when comput-
ing contact constraints between multiple elastic ob-
jects [23], [24]. Using the precomputed GF models, the
contact response could be efficiently computed and in-
tegrated at high rates to solve simplified contact prob-
lems interactively, e.g., with haptic force feedback.

The LEGFM’s zonal frames of reference are related
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Fig. 3. Multizone elastokinematic chain model schematic with zones and interface node sets indicated. Here interface nodes have
displacement constraints in each zone’s RBVP, and external constraints are not shown.

by coordinate transformations: let the operator j
j+1F

map quantities from frame j + 1 to j, and j+1

j F from
j to j + 1. A left superscript will denote the frame of
reference of a quantity, e.g., jai represents a quantity
a of zone i in frame of zone j. Some illustrative co-
ordinate transformations of quantities in zone j from
frame j to j + 1 are

j+1u
j
S

= j+1

j F ju
j
S

(11)

j+1Ξj
SS

= j+1

j F jΞj
SS

. (12)

Taking the RBVP of each zone to have specified dis-
placement boundary conditions for seam constraints
(see Figure 3), the LEGFM equations describing the
traction response on both sides (j and j + 1) of seam
j = 0, 1, . . . , n − 1 are

jp
j
Sj,j+1

= j p̂
j
Sj,j+1

+ jΞj
Sj,j+1Sj,j+1

ju
j
Sj,j+1

+jΞj
Sj,j+1Sj,j−1

ju
j
Sj,j−1

j+1p
j+1

Sj+1,j
= j+1p̂

j+1

Sj+1,j
+ j+1Ξj+1

Sj+1,jSj+1,j

j+1u
j+1

Sj+1,j

+j+1Ξj+1

Sj+1,jSj+1,j+2

j+1u
j+1

Sj+1,j+2

where the node sets S0,−1 and Sn,n+1 may be taken as
the empty set to yield the end seam equations

0p0
S01

= 0p̂0
S01

+ 0Ξ0
S01S01

0u0
S01

npn
Sn,n−1

= np̂n
Sn,n−1

+ nΞn
Sn,n−1Sn,n−1

nun
Sn,n−1

.

The seam bonding conditions, respectively similar
to (8) and (9), but accounting for transformations be-
tween zone frames of reference, are

jx
j
Sj,j+1

+ ju
j
Sj,j+1

= j
j+1F

(

j+1x
j+1

Sj+1,j
+ j+1u

j+1

Sj+1,j

)

0 = jp
j
Sj,j+1

+ j
j+1F

j+1p
j+1

Sj+1,j

where jx
j
∗ represent undisplaced vertex positions.

These seam conditions may be rewritten for substi-
tution as

j+1u
j+1

Sj+1,j
= j+1

j F
(

jx
j
Sj,j+1

+ ju
j
Sj,j+1

)

− j+1x
j+1

Sj+1,j

j+1p
j+1

Sj+1,j
= −j+1

j F jp
j
Sj,j+1

.

Substituting the bonding conditions into the LEGFM
equations by eliminating variables with non-increasing
interface index pairs1 we obtain the nonsymmetric
block tridiagonal elastokinematic chain’s seam equa-
tions relating each set of seam displacements (each in
its natural frame of reference) to adjacent seams:

0 =
(

jΞj
Sj,j+1Sj,j−1

j
j−1F

)

j−1u
j−1

Sj−1,j

+
(

jΞj
Sj,j+1Sj,j+1

+ jΞj+1

Sj+1,jSj+1,j

j+1

j F
)

ju
j
Sj,j+1

+
(

jΞj+1

Sj+1,jSj+1,j+2

)

j+1u
j+1

Sj+1,j+2

+ j p̂
j
Sj,j+1

+ j p̂
j+1

Sj+1,j
(13)

+ jΞj
Sj,j+1Sj,j−1

(

jx
j−1

Sj−1,j
− jx

j
Sj,j−1

)

+ jΞj+1

Sj+1,jSj+1,j

(

j+1x
j
Sj,j+1

− j+1x
j+1

Sj+1,j

)

for j = 0, 1, . . . , n − 1 and S0,−1 = Sn,n+1 = ∅. Note
that this is the elastokinematic chain generalization of
(10) for the two zone model.

VII. Solution of Elastokinematic BVP

The elastokinematic equations exhibit nonlinear de-
pendence on chain orientation, but for any single ori-
entation they are linear; given {j+1

j F} the linear matrix
system may be efficiently solved in several ways.

A suitable direct approach is to use block tridiago-
nal LU factorization methods [18], which are effective
given the condensed interface equations and small sets
of interface variables. As mentioned earlier, the cost of
this approach is linear in the number of zones. The fac-
torization must be performed for each different chain
orientation, but suitable interpolation can be used.

Iterative solution methods are another well-
established tool for solving multizone equations and
especially their condensed variants (see [16]; note that
condensation costs are precomputed here). However,
their solution costs can be less predictable than di-
rect solvers. Nevertheless, good preconditioners can
be constructed by observing the matrix properties; the
block tridiagonal equations often have very dominant
diagonal blocks so that a good preconditioner can be

1For example, eliminate uSj+1,j
but keep uSj,j+1

.



constructed using their LU factorizations. For exam-
ple, the finger model presented in §VIII has diagonal
elements which are more than 100 times more signifi-
cant than the off diagonal elements, and therefore con-
vergence is rapid.

There are further means for accelerating this pro-
cess. Probably the most systematic and effective ap-
proach to reducing the number of seam variables is to
use multiresolution constraint descriptions [11]. For
models with weakly coupled seams, such as the finger
example, an approximation is to let the system ma-
trix be block diagonal; the diagonal blocks can even
be factorized for a small number of joint angles and
interpolated. Another approximation is to only con-
strain seam degrees of freedom near the surface.

Fig. 4. Finger model with three individual elastostatic finger
pads: The distal bone’s fingertip pad (1664 triangles and 834
vertices) is drawn inset for clarity. Green’s functions are pre-
computed for each finger pad, and the models are connected by
continuity constraints.

VIII. Example: Compliant Skin on a Rigid
Kinematic Chain

We have implemented a multizone model for real
time simulation of a finger (Figures 4–7). Such a model
could be used to simulate a robotic hand with a com-
pliant skin covering the finger and joints, or for interac-
tive computer animation of a human hand. Precom-
puted multiresolution LEGFMs [11] (computed with
boundary element analysis) are used for each finger
pad, with displacement constraints specified at “bone”
and seam vertices of each zone’s RBVP. The finger
pads are connected by continuity constraints at inter-
face seams located near kinematic joints. The resulting
nonlinear elastokinematic equations (13) approximate
the nonlinear strains associated with finger bending
motions.

Fig. 5. Interactive simulation of contact between the elastokine-
matic finger and a rigid manipulandum.

For real time animation applications with very low
computing budgets, such as video games, a precom-
puted block diagonal approximation of (13) could be
used. A more dramatic approximation, which decou-
ples zones and avoids the solution of the elastokine-
matic equation, is achieved by specifying interface po-
sition constraints kinematically using, e.g., Skeletal
Subspace Deformation [25]. As the kinematic joints
move, the displacement constraints applied in each
LEGFM’s frame of reference also change. In this man-
ner, incorporating LEGFMs into skeletal animations is
relatively straight-forward.

The elastokinematic finger model was simulated in
our Java-based ArtDefo simulator [7]. Simulation
screenshots are shown for unilateral contact simulation
running at video rates (Figure 5), force feedback ren-
dering of point-like contact at 1 kHz (Figure 6), and
skeleton-driven finger motions (Figure 7). We note
that several performance improvements are possible
using multiresolution enhancements detailed in [11].

Fig. 6. Force feedback rendering of point-like contact using a
PHANTOM Premium 1.0 device.

IX. Summary

We have introduced a multizone elastokinematic
model formulation based on the coupling of precom-
puted linear elastostatic Green’s function models. The
approach has proven suitable for real time interactive



Fig. 7. Simulation of finger with elastic finger pads: An illustrative skeleton-driven animation of a deformable finger modeled using
three individual linear elastostatic finger pads. Each finger pad is defined in a frame of reference rigidly attached to its corresponding
“bone,” thus allowing large relative strains to be simulated as the skeleton moves. Vertices not on finger pads are geometrically
deformed and so do not deform under contact.

applications, and has been demonstrated for the case
of a kinematic chain with a compliant covering.
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