
Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

JASS: A JAVA AUDIO SYNTHESIS SYSTEM FOR PROGRAMMERS

Kees van den Doel and Dinesh K. Pai

Departmentof ComputerScience
Universityof British Columbia

Vancouver, Canada�
kvdoel, pai � @cs.ubc.ca

ABSTRACT

We describea unit generatorbasedaudiosynthesisprogram-
ming environmentwritten in pureJava. Theenvironmentis based
on a foundationstructureconsistingof a smallnumberof Java in-
terfacesandabstractclasses,anda potentiallyunlimited number
of unit generators,which are createdby extending the abstract
classesand implementinga singlemethod. Filter-graphs,some-
timescalled“patches”,arecreatedby linking togetherunit genera-
torsin arbitrarycomplex graphstructures.Patchescanberendered
in real-timewith specialunit generatorsthatcommunicatewith the
audiohardware,whichwehave implementedusingtheJavaSound
API.

1. INTRODUCTION

Several softwareapplicationsfor digital audiosynthesisarepre-
sentlyavailable. Theseapplicationshave varying degreesof user
extensibility andcustomizability. They alsodiffer in price from
free to very expensive, andmay requirespecializedhardwareor
a specificoperatingsystem. The target applicationof thesesys-
temsvariestoo,but all systemsthatwe areawareof areprimarily
focussedon thesynthesisof music.

In our currentresearch[1, 2, 3, 4, 5, 6, 7] we areinvestigating
modelsof audio-synthesissuitablefor sound-effects, sometimes
called“Foley sounds”,in interactive environmentswith real-time
user interactionssuchas computergames,simulations,and im-
mersive environments. All the featureswe wantedfor an audio
synthesisenvironmentfor theseapplicationscould not be found
in any singleexistingenvironment,andwethereforedevelopedan
environmentspecificallyfor thesekind of sounds,which we have
called“JASS” which standsfor “Java Audio SynthesisSystem”,
but hopefullynot for “JustAnotherSoftwareSynth”.

Thefeaturesof JASS,besidestheobviousoneof beingcapa-
bleof implementingarbitrarysynthesisalgorithmsare:

� Platformindependence;obtainedby usingpureJava.
� Easeof deploymentin webdocuments.
� Simplicity; obtainedby omitting supportfor musicallyori-

entedfeaturessuchasenvelopes,MIDI, etc.� Extensibility; obtainedthroughcarefulobjectorientedde-
sign.

� Run-timecontrolthroughasynchronousmethodcalls.
� Dynamiccreationof “patches”at run-time without audio

breakup.
� Efficiency; achievedbyvectorizingall processingelements.

� Real-timesynthesis.� Free;which we achieve by writing it ourselvesandgiving
it away.� Low latency; obtainedby usingsmallbuffers.

The JASS toolkit which is available for download from our
website[8] consistsof several softwarelayers,organizedin Java
packages:

The engine packageprovides Java interfacesand abstract
classeswhich can be extendedto createunit generators(UG’s).
Thereis no strict distinctionbetweena patchanda UG, andwe
shall just reserve thename“patch” for a UG which containsother
UG’s. Whenever the distinction is importantwe shall call UG’s
thatdo not containotherUG’s “atomic”. UG’s areconnectedinto
filter-graphs,or “patches”,which arealsousedin computermu-
sic [9]. Thesefilter graphsarealsoequivalentto the“timbre trees”
introducedby TakalaandHahn[10]. The fundamentalinterfaces
areSource andSink which encapsulatethenotionof intercon-
nectedfilter elements.This is a commondesign,alsousedfor ex-
amplein theJava Media Framework, which is intendedfor more
generalapplicationsdealingwith differentmediatypesandisquite
complex. The abstractclassesOut, In, andInOut implement
respectively Source, Sink, andboth.Theseabstractclassesim-
plementall theplumbingcodenecessaryfor UG’sto communicate
andbeinterconnectedinto graphstructuresandleave just a single
method,computeBuffer() unimplemented.This methodde-
finestheactualaudioprocessingto bedonein theUG. TheUG’s
provide only audio-buffers, and have no inherentrenderingca-
pability. The actualrenderingis donewith the classesfrom the
render package,but couldbe implementedindependentlyif so
desired.

Thegenerator packagecontainsinstantiableclasseswhich
extendtheabstractclassesin theengine package.Theseclasses
arethebasicUG’s. We have implementedbasicaudioprocessing
blocks suchaswave-tables,filters, audiofile readers,resonance
banks,pitch-shifters,andothersasneeded.They arevery easyto
author.

We provide a render packagewhich containsa Sound-
PlayerUG to renderapatchto theaudiohardwarethroughJava-
Sound,low level utility classesfor converting betweendifferent
audiodataformats,andanoff-line rendererwhich producesaudio
files. A Controller classis providedwhichallows thecreation
of simplegraphicaluserinterfaceswith slidersandbuttonsto ex-
perimentwith algorithmsin real-time.

To show how easyit is to extendtheabstractclasseson-the-fly,
hereis somecodeto generatea sawtoothsignalwith a frequency
of 415Hz (perhapsusefulasa virtual tuning fork) andsendit to
theaudiohardwarein real-time:

ICAD01-1



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

float srate = 44100;
float freq = 415;
int bufferSize = (int)(srate/freq);
new SourcePlayer(bufferSize,0,srate,

new Out(bufferSize) {
public void computeBuffer() {

for(int i=0;i<getBufferSize();i++)
buf[i] = i;

}
}

).start();

An unnamedSourcePlayer UG is created.Its last argument,
which defineswhichSource to play, is ananonymousextension
of anOut class,whichis anabstractclassfrom theengine pack-
age. The anonymousderived classimplementsthe compute-
Buffer() function which fills eachbuffer with a period of a
sawtooth. The start() call on the SourcePlayer startsa
threadwhich pulls audio-buffers out of the Out UG and sends
themto theaudiohardwareusingJavaSound.

Figure1: Exampleof a usageof JASS in a real-timesimulation
environment.ThesimulatormakeasynchronouscallsontheUG’s,
which arenot necessarilyatomic,while a JASS synthesisthread
rendersaudio.

In Fig. 1 we have indicatedhow an algorithm authoredin
JASScanbedeployed in a simulationenvironmentwith real-time
sound. We show a virtual pot which canbe touchedby a probe
under user control. The simulator keepstrack of position and
velocitiesandperformscollision detectionanddynamicssimula-
tion. It interactswith JASSby startingthesynthesisthreadon the
SourcePlayer, andthenmakesasynchronouscallsto theUG’s
thatimplementthespecificalgorithmsusedfor audiomodelingof
thepotandthecontact.Thesecallsoccuratsimulationtimesteps,
andaremadein aseparatethread.At thesametime,thesimulator
communicatesto thegraphicsdisplaywhich ensuresthesynchro-
nizationof audioandgraphics.

JASS hassimilarities to Perry Cook’s C++ SynthesisTool-
kit [11], the main differencesare that (1) JASS usesvectorized
UG’swhichmake it muchmoreefficient, (2) JASShasnosupport
for eventcontrollikeMIDI andSKINI, (3) JASSis written in pure
Java.

Another relatedsynthesispackageis Burk’s JSyn[12] envi-
ronment,which is a UG basedJava API usingnative methodsim-

plementedin C, which is availablefor MacintoshandWindows.
It is acommercialproduct,targetedprimarily towardsmusicalap-
plications. No sourcecodeis available for the native C imple-
mentations,and the systemis not userextendible. It includesa
sophisticatedeventschedulerandcanbedeployedon thewebvia
abrowserplug-in. BecauseJASSis written in pureJava,synthesis
algorithmsauthoredwith it canbe deployed in a web pagewith-
out any specialplug-in on JavaSoundenabledbrowserssuchas
Netscape6.

SynthBuilder[13] is aUG basedsynthesisenvironmentdevel-
opedat CCRMA andconsistsof a scriptinglanguagedescribing
patches,a real-timesynthesisengineanda sophisticatedgraphical
interfaceto designpatches.

JMax [14] is a UG basedsynthesisenvironmentdeveloped
at IRCAM andconsistsof a graphicalpatchdesignenvironment
which is easyto usefor non-programmers.Thesystemcanbeex-
tendedby writing customUG’sin C++. THesystemrunsonLinux
only.

CSound[15] providesa sophisticatedsynthesislanguagefor
musicalinstrumentsynthesisandhasa largecommunityof users.
It is however not easyto useprogrammatically.

Our notationfor Java interfaces,classesandinheritancerela-
tionsis illustratedin Fig. 2.

Figure2: Notationfor Java objects.In classinheritancerelations
theconventionis thattheobjecton theright extendstheobjecton
theleft.

2. FOUNDATION

Theengine packageencapsulatesthe notion of interconnected
unit generators.A UG in JASSis a processingelementwhich can
receive audioinputsandhasatmostoneaudiooutput.

Interfaces for Unit Generators
TheSource interface,depictedin Fig. 3, encapsulatesthenotion

Figure3: Sourceinterfacewith temporalstatewhichmaintainsan
audiobuffer. Methodsto setandget the time andbuffer arenot
indicatedhere.

of a processingelementwith a temporalstate,which maintainsan
audio-buffer, which we considerto be an arrayof float. It is
definedasfollows:

ICAD01-2



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

public interface Source {
float[] getBuffer(long t)

throws BufferNotAvailableException;
long getTime();
void setTime(long t);
int getBufferSize();
void setBufferSize(int bufferSize);
void clearBuffer();

}

ThemostimportantmethodisgetBuffer(long t) (indicated
by a circle),which requestsanaudio-buffer ata specifictime. De-
pendingon the implementationandthe relationof t to the time
statesucha requestmay or may not be granted. The exception
thrown whentherequestfails is specificfor theengine package.

ThegetBuffer() methodis intendedto be calledby ob-
jects implementingthe Sink interface,depictedin Fig. 4. The
methodsdefinedin the Sink interfaceencapsulatethe behavior
of an objectwhich is connectedto a numberof Sources. It is
definedasfollows:

public interface Sink {
Object addSource(Source s)

throws SinkIsFullException;
void removeSource(Source s);
Source [] getSources();

}

Figure4: Sink interfaceencapsulatingan objectwhich contains
sources,which areindicatedby incomingarrows.

The methodaddSource() connectsa Source to the Sink.
An Object is returnedwhich is intendedto beusedby thecaller
to interactwith the connection. For example,if the Source is
a contactforce on a threedimensionalsolid body, which is the
Sink, theObject returnedcouldcontainmethodsto setthespa-
tial locationof thecontact. If theSource cannot beadded,for
examplebecausetheimplementoronly supportsoneinputasis the
casefor a filter UG, anexceptionis thrown.

ThemethodgetSources() returnsan arrayof Sources.
Theintentionis thattheimplementingUG will call eachSource
in order and requestaudio buffers from it. The orderingof the
Sourcesis importantin general.A Source canbeconnectedto
anarbitrarynumberof Sinks.

Abstract Classes for Unit Generators
Threeabstractclassesare definedwhich implementsomeor all
of the interfacesdefinedabove. They provide templatesfor UG’s
which produceaudiobuffers,consumeit, or both.We madesome
specificimplementationchoices,and it is possibleto authordif-
ferentUG templateimplementations,andusethemwithin existing
applicationsaslong asthey implementtheSource and/orSink
interfaces.

TheseabstractUG’s are calledOut, In, andInOut. The
classhierarchyis depictedin Fig. 5.

Figure5: Classhierarchyof the enginepackage.Classesto the
right of theverticaldottedline representinstantiableclassesfrom
otherpackagesextendingtheabstractclasses.

TheOut class,which implementsSource, representsa UG
whichproducesaudiobuffers,suchasawav file, anoisegenerator,
or a sinewave generator, etc. It containsmembervariablesto set
thetime andcontainsanaudio-buffer of float, seeFig. 6. Time

Figure 6: AbstractclassOut, representingan object capableof
producingaudiobuffers. Theoutputin representedby thecircle.
It leavesasinglemethod,computeBuffer(), unimplemented.

is definedasanintegerwhichcountsthenumberof buffersof size
bufferSize thatareprocessed.At a samplingrateof ��� anda
buffersizeof � this correspondsto time slicesof size ���	� � . The
most importantSource memberfunction implementedby Out
is getBuffer, which is implementedasfollows:

public synchronized float[] getBuffer(long t)
throws BufferNotAvailableException {

if(t == getTime()+1) {
setTime(t);
computeBuffer();

} else if(t != getTime()) {
throw new BufferNotAvailableException();

}
return buf;

}

It makesuseof themembervariable

protected float[] buf;

which is theaudio-buffer at thecurrenttime. If thetimet equals
the currenttime, the presentlyheld audio-buffer is returned.Al-
ternatively, if the requestedbuffer lies one time-stepin the fu-
ture,theUG will incrementtime,computethenext buffer by call-
ing computeBuffer(), andreturnit. Themethodcompute-
Buffer() mustbe implementedby instantiableclassesextend-
ing Out.

ICAD01-3



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

TheInOut classrepresentsthe mostgeneralUG which has
audioinputsanda singleoutput.It implementsbothinterfacesby
extendingOut andproviding an implementationof the methods
in the Sink interface. (BecauseJava doesnot supportmultiple
inheritance,InOut cannot derive from bothIn andOut.) The
methodsaddSource() andremoveSource() are synchro-
nized. It maintainsa list of input Sources, which have an as-
sociatedaudio-buffer cacheas indicatedin Fig. 7. The method
getBuffer() inherited from Out is overriddenby inserting
a call to callSources() betweensetTime andcompute-
Buffer:

...
setTime(t);
callSources();
computeBuffer();
..

This methodcalls getBuffer(currentTime) on every at-
tachedSource in order, and cachesthe results in the associ-
atedbuffers as indicatedin Fig. 7. If the filter-graphcontainsa

Figure7: AbstractclassInOut, representingan objectcapableof
gettingandproducingaudiobuffers. Theunimplementedmethod
computeBuffer() usesthe cachedinput buffers to compute
theoutputbuffer.

closedloop it is possiblethatthiseventuallyresultsin another(re-
cursive) call to getBuffer() on thesameInOut object. Be-
causetimehasbeenincrementedbeforebuffersarerequestedfrom
the externalSources, sucha call will comewith a time argu-
mentequalto the currenttime andwill thereforejust return the
cachedbuffer, which is now actually “stale”, therebypreventing
any further recursion. This meansthat a closedloop in a patch
actsasa delay line, with the delayequalto the buffer-size. Be-
causea connectedgraphcan never have UG’s out of synchby
more than a single time-step(at least in this implementationof
theSource andSink interfaces),the throwing of theexception
BufferNotAvailableException indicatesa programming
error.

WhenimplementingcomputeBuffer(), it is importantto
realizethatgetBuffer() returnsareferenceto theaudio-buffer
for efficiency, anddoesnotcopy it. If closedloopsoccuroneof the
cachedSource buffersmayin factbethesamebuffer astheone
that is beingcomputed,which may causeunexpectedbugswhen
this is not realized.

TheIn class,depictedin Fig. 8, providesan implementation
of theSink interfaceandis derivedfrom theJavaclassThread.
It is marked abstractso it cannot be instantiated,thoughit does
not in factcontainany unimplementedmethods.Thisclasswill be

Figure8: AbstractclassIn, representinganobjectcapableof get-
ting audio buffers. It extendsthe Java classThread to enable
thecreationof synthesisthreadswhich “pull” audio-buffersoutof
Sources.

subclassedby UG’s for renderingaudioproducedby Sources
for example.

JASS patchesareusuallydeployed in a multi-threadedenvi-
ronment. For example,in the applicationdepictedin Fig. 1, the
simulatorthreadwill make callsto theUG’s,while theaudioren-
derthreadrunssimultaneously. For this reasongetBuffer() is
implementedasasynchronizedmethod.In orderto avoid race
conditionsany UG methodsthatchangethestateof theUG(for ex-
ample,afilter UG mayhavethefilter coefficientschanged)should
be declaredsynchronized. This ensuresthat the stateof the
UG doesnotchangewhile theUG is processinga call from get-
Buffer(), which would result in unpredictablebehavior. Sim-
ilarly, themethodsaddSource() andremoveSource() are
alsodeclaredsynchronized, to allow a patchto be “rewired”
from a differentthread,without disturbingaudioprocessingdone
asa resultof getBuffer().

3. CONCLUSIONS

Thecurrentdistribution of theJASSsystemcontainsa setof unit
generatorsfor readingandplaying audiofiles, at varying speeds
andvolumes,mixers,variousfilters, andUG’s for renderingand
capturingaudio. On theJASSwebsite[8] the full documentation
of all implementedJASSUG’s canbefoundandreadonline. The
setis not intendedto becomprehensive andusersof thesystemare
expectedto write theirown UG’s.

The websitealsocontainsan extensive setof demossuchas
a Karplus-Strongplucked string algorithm,a reverberationalgo-
rithm, a granularsynthesispatch,and many others. Thesede-
moscanbeheardonlinein a Java 2 enabledbrowser(for example
Netscape6).

The algorithmsauthoredwith JASS have an inherentlatency
determinedby thebuffer-sizeusedby thefilter-graphs,which can
beaslow asonesamplein principle.Smallerbuffersrequiremore
processingoverhead,though.For our applicationswe have found
that using a buffer-size of 1 sampleresultsin a slowdown by a
factor4, comparedto usinga buffer-sizeof 100. At a sampling
rate of 44100Hz,a buffer-size of 100 translatesin a latency of
about2 ms,which is excellentfor mostpurposes.

UnfortunatelycurrentJavaSoundimplementationsrequirelar-
ge buffers for real-timesynthesison all platformswe areaware
of. On Windows 98 andLinux we found that the lowest latency
we couldachieve without breakupof soundwas140ms,which is

ICAD01-4



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

threetimeshigherthanthe streaminglatency of the DirectSound
API. We anticipatethis situationwill improve when JavaSound
matures.

The JASS systemhasbeenusedprimarily for our research
in contactsoundgeneration,but we hopethat it will find more
widespreadusage.

4. REFERENCES

[1] K. vandenDoel andD. K. Pai, “Synthesisof ShapeDepen-
dentSoundswith PhysicalModeling,” in Proceedings of the
International Conference on Auditory Displays 1996, Palo
Alto, 1996.

[2] K. van den Doel and D. K. Pai, “The soundsof physical
shapes,” Presence, vol. 7, no.4, pp.382–395,1998.

[3] K. van den Doel, Sound Synthesis for Virtual Reality
and Computer Games, Ph.D. thesis,University of British
Columbia,1998.

[4] RobertaL. Klatzky, DineshK. Pai,andEricP. Krotkov, “Per-
ceptionof materialfrom contactsounds,” Presence, vol. 9,
no.4, pp.399–410,2000.

[5] D. K. Pai andJ. L. Richmond, “Robotic measurementand
modelingof contactsounds,” in Proceedings of the Interna-
tional Conference on Auditory Display 2000, Atlanta, 2000.

[6] D. K. Pai,K. vandenDoel,D. L. James,J.Lang,J.E. Lloyd,
J.L. Richmond,andS. H. Yau, “Scanningphysicalinterac-
tion behavior of 3D objects,” in Computer Graphics (ACM
SIGGRAPH 01 Conference Proceedings), 2001.

[7] Keesvan denDoel, Paul G. Kry, andDineshK. Pai, “Fo-
leyAutomatic: Physically-basedSoundEffects for Interac-
tive Simulation and Animation,” in Computer Graphics
(ACM SIGGRAPH 01 Conference Proceedings), 2001.

[8] “http://www.cs.ubc.ca/˜kvdoel/jass,” 2001.

[9] M. V. Mathews, The Technology of Computer Music, MIT
Press,Cambridge,1969.

[10] T. TakalaandJ.Hahn,“Soundrendering,” Proc. SIGGRAPH
92, ACM Computer Graphics, vol. 26, no. 2, pp. 211–220,
1992.

[11] PerryR. Cook, “SynthesisToolkit in C++,” in SIGGRAPH,
1996.

[12] P. Burk, “JSyn: Real-timeSynthesisAPI for Java,” in Pro-
ceedings of the International Computer Music Conference,
SanFrancisco,1998.

[13] N. Porcaro,P. Scandalis,J.O. Smith,D. A. Jaffe, andT. Stil-
son,“SynthBuilder–agraphicalreal-timesynthesis,process-
ing andperformancesystem,” in Proceedings of the Interna-
tional Computer Music Conference, Banff, 1995,pp.61–62.

[14] François Déchelle,NorbertSchnell,andRiccardoBorghesi,
“The JMax Environment: An Overview of New Features,”
in Proceedings of the International Computer Music Confer-
ence, Berlin, 2001.

[15] B. L. Vercoe,“ExtendedCsound,” in Proceedings of the In-
ternational Computer Music Conference, HongKong,1996.

ICAD01-5


