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Abstract

We considerthe problemof unsupervisedclassification
of temporal sequencesof facial expressionsin video. This
problemarisesin the designof an adaptivevisual agent,
which mustbecapableof identifyingappropriateclassesof
visualeventswithoutsupervisionto effectivelycompleteits
tasks. We presenta multilevel dynamicBayesiannetwork
that learns the high-level dynamicsof facial expressions
simultaneouslywith modelsof the expressionsthemselves.
We showhow the parameters of the modelcan be learned
in a scalableandefficientway. We presentpreliminaryre-
sultsusingrealvideodataanda classof simulateddynamic
event models. The resultsshowthat our modelcorrectly
classifiesthe input data comparably to a standard event
classificationapproach, while also learning the high-level
modelparameters.

1. Introduction

The goalsof this paperare twofold. First, we wish to
show thatit is feasibleto simultaneouslylearnclassesof fa-
cial expressioneventsfrom video input andthe high-level
temporalstructureof theseeventsin an unsupervisedcon-
text. Second,we wish to show that learningthehigh-level
temporalstructureshelpsthe unsupervisedlearningof the
facialexpressionclasses.Considerastudentplayinganed-
ucationalcomputergamewhich is moderatedby a socially
intelligentagentwhich hasinputsfrom a cameraobserving
the student[6]. It is importantfor the agentto be able to
gaugetheemotionalandintellectualstateof thestudentin
orderto mosteffectively presentinformation,but it mustdo
so without supervisionin order to adaptto new students.
Althoughsuchanagentwill gatherinformationfrom many
sources,we consideronly the recognitionof facialexpres-
sionin this paper. We assumetheuser’s faceis trackedand
spatiallysegmented,andthatafeaturevectoris givenby the
affineparametersof opticalflow extractedfrom eachpairof
frames.Thegoalof our systemis to properlyclassifya set

of facial expressioneventsasrepresentedby thesefeature
vectorswithoutsupervision.Thispaperwill show thatif the
visualeventswhich arebeingclusteredarerelatedaccord-
ing to somehigher-level dynamicalstructure,thenlearning
this dynamicalstructurecanhelp in the disambiguationof
eventclassesat the lower level. Thesituationis analogous
to word-level speechrecognition,in which high-level (se-
mantic) structureis usedto guide low-level (syntactic,or
phoneme-level) structure[19]. Hierarchicalstructuressuch
as thesecan be extendedto include sentence-level struc-
tures. In a similar way, thedynamicsof eventsduringone
stageof aneducationalgamemightbedifferentthanduring
otherstages.Therefore,evenhigherlevel dynamicalstruc-
turesat thegamestagelevel canbelearned.

A model which encompassesboth high-level semantic
structureandlow-level syntacticstructuremusttaketempo-
ral scalesinto account.In thecaseof aneducationalgame,
the eventswhich make up a stageof the gameincludethe
variousfacialexpressionsof theuser, eachof which takesa
few input video framesto complete.In this case,the time
scalesrangefrom minutesat the stagelevel, throughsec-
ondsat the facialexpressionlevel, to tenthsof a secondat
theinput videolevel.

This paperwill presenta hierarchicaldynamicBayesian
network to modelthe visualeventsat eachof a numberof
temporallyabstractlevels. A level in the network consists
of amixtureof Markov chains(MMC). Themixturecoeffi-
cientsat eachlevel areusedasdistributionsover theparent
level’s states. The lowest level is a mixture of Gaussian
distributions,which quantizesthe affine flow featurevec-
tor, but doesno temporalabstraction.Temporalscalesare
modeledby the characteristiclengthscalesof eachMMC,
and can changedynamically. Information flow through
the model is both bottom-upor diagnosticand top-down
or predictive. The combinationof both can be usedto
learnthetheparametersof themodelusingtheexpectation-
maximizationalgorithm[7].

Thenext sectionwill review somepreviouswork on the
subjectof classifying humanaction. Section3 will de-
scribethe model in detail, including the parameterlearn-



ing. Section4 presentsa simplesetof experimentsusing
a databaseof real facial expressionsequences,anda sim-
ulatedmodelof the temporaldynamicsof user’s facial ex-
pressions.The resultsof the experimentsaredescribedin
Section5, and show that the parametersof the complete
modelcanbelearnedusingexpectation-maximization,and
help in theclassificationof visualeventsin caseswith sig-
nificanthigh-level dynamicalstructure.

2. Related Work

Theideaof combininglow-level syntacticalor statistical
modelsof raw inputdatawith high-levelsemanticmodelsof
conceptualstateshavebeenresearchedin generalterms[8],
andin thespeechrecognitionliterature[19]. However, typ-
ical speechrecognitionsystemsdo not learnhigh-level se-
mantics(at the word or sentencelevel), relying insteadon
prior knowledge. Herewe review recentwork in applying
the sameideasto vision problems. Wren et. al [23] in-
vestigateunderstandingpurposefulhumanmotion usinga
combinationof akinematicmodelof humanmotion,amix-
ture of hiddenMarkov modelsanda high-level classifier,
similar to the modelproposedhere. However, they do not
modeltemporaldynamicsat thehigh level, only classifying
thehiddenMarkov models,resultingin a high-level model
whichcloselyresemblesthemixtureof HMMs [21].

BobickandIvanov [3] modelprimitiveeventsusingaset
of hiddenMarkov models,andthenuseastochasticcontext-
freegrammar(SCFG)to provide high-level semantichelp.
A SCFGenablesthe modelingof morecomplex semantic
patternsof behavior than a hiddenMarkov model. Their
systemis trainedin a supervisedfashionandthehigh-level
model is hand-coded,not learned.A similar approach[9]
usesvariablelengthMarkov models(VLMMs) to capture
long-rangedependenciesin behaviors. Sequencesof human
aerobicsin video are capturedas contoursand quantized
into a discreteset of prototypical featurevectors. These
vectorsarethenmodeledwith variablelengthsof memory
in a hierarchicalfashion.VoglerandMetaxas[22] describe
a systemto recognizeAmericanSign Language(ASL) by
combining context-dependentHMMs (HMMs with finite
memory) with a three dimensionalmotion analysissys-
tem. The 3D motion analysistakes place in a separate,
rule-based,processingstream,which is usedto constrain
the recognitionprocessin the HMMs. Cohen,Garg and
Huang[5] have proposeda multilevel HMM to recognize
facialexpressions.Their contribution is a methodfor auto-
maticallysegmentinga videostreaminto facialexpression
events,assuminga neutralstatebetweeneachexpression.
However, theirmodelrequiresa supervisedlearningstage.

Eigen-analysisis themostwell usedapproachfor facial
expressionanalysis[15], but oneof themostdiscriminative
systemsis thatof Tian et al. [14], which usesfeaturepoint

trackinganda neuralnetwork. Opticalflow fieldsareused
in [2]. However, thesesystemsarecompletelysupervised,
anddo not dealwith any high level structure.Furthermore,
thesemethodsdeveloprepresentationsspecificto facialex-
pressions,andcouldnot beextendedto includeothertypes
of humanmotion,which maybeusefulfor theapplication
weareconsidering.

The structureof our proposedmodel is closely related
to that of the switching state-spacemodel [10], in which
theparametersof a lineardynamicsystem(LDS) arecondi-
tionedona(discrete)statevariablewhich livesin aMarkov
chain or in the output distributions of a hidden Markov
model.This typeof modelhasrecentlybeenappliedto vi-
sionproblems[17]. Thesemodelsaresimilar to a two-level
versionof themodelwe propose.Therearethreemaindif-
ferences.First, thesemodelsusea continuousstatespace
at the lower level, anddiscrete(switching) statesand the
higherlevel, whereasour modelhasdiscretestatesat both
levels. This is a modeling issuehowever, as continuous
anddiscretestatescanbe interchangedat the lowest level
in eithermodeldependenton the task. Second,the transi-
tionsoccurasynchronouslyat the two levels in our model.
This is a reasonableassumption(thehigherlevel statesac-
tually operateat slower time scales)which also improves
efficiency, but necessitatesadditionalconstraintsto spec-
ify the differencein time scales. Temporalsegmentation
implementstheseconstraintsin our model. Similar asyn-
chronousmodelsconstrainthetiming directly [11], or con-
strainthe emissionof observationsfrom states[1]. Third,
whereasthelow-level statesin themodelsof [10, 17], form
onelong continuousMarkov chain,thosein our modelare
broken into temporalsequences.The assumptionis vali-
datedif oneconsidersthat the observed sequencemay be
temporallysampled,andso the low-level Markov chainis,
indeed,brokenat temporalsegmentationpoints.

Smyth[21] andLi [13] bothproposemethodsfor cluster-
ing temporalsequencesusinghiddenMarkov models.They
do not attemptto find high-level dynamicalstructure,only
inferring a singlemixture of hiddenMarkov models(rep-
resentinga setof events). They do, however, examinethe
structurelearningproblemaswell, whichwedonotattempt
to do here,but which is plannedfor futurestagesof our re-
search.The methodof [21] is a specialcaseof the model
presentedabove (asis any hiddenMarkov model),andwe
compareourmethodto it in orderto analyzethebenefitsof
modelinghigh-level semanticstructure.

3. Method

We usethestandardnotation,in which variablesarede-
notedwith uppercaseletters(e.g.,

���������
), while particular

valuesof variablesarethesameletter, but in lowercase(e.g.� �
	���� ). Setsor sequencesof variablesarewritten in bold-
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Figure 1. Hierarchical dynamic Bayesian
netw ork for unsuper vised facial expression
recognition.

face( �� ��������� ���
), while the correspondingbold-face

lower-caseletter ( ��� � ������� � � ) denotesan assignmentof
valueto eachvariablein theset.

3.1. Model

Figure1 shows a time sliceof the proposedmodelasa
Bayesiannetwork. Variables

�
(internalnode)and

�
(in-

put node)are subscriptedby temporalindicesand super-
scriptedby level indices. Thus

���� indicatesa variableat
level � at time index � . As shown in the figure, the time
scaleat thelower level (  !� ) is not thesameasat thehigher
level (  !" ). Two levels, � and # , with timesscales !" and $� , respectively, will have  !"&%' !� if ��()# . Figure1
shows the mixture of Gaussians(MG) at the lowest level
explaining an input featurevector,

� � , from the sequence
of inputs *+� �,�������-�/.

, with a distribution over discrete
statesat the 0-level,

� �� . The result is a sequenceof dis-
cretestates,0� � �� ����� � �. . Thetime intervalsat thelowest
level,  !� , correspondto the periodat which video frames
arerecorded.Figure1 shows the fundamentallevel in the
hierarchicalmodel in which a classvariable

�213 describes
the discretesequence546� � �� ����� � �. . This basicstruc-
ture is a mixture of Markov chains(MMC), andwe refer
to the completemodel as a hierarchicalMMC (HMMC).
The ideais that thereis a sequenceof 7 eventsat the � �98
level, describedby thevariables5:;� ���� ����� ���. . Theen-
tire sequenceof eventsat this level is classifiedasoneof
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a numberof classes,
���=<?13 . Thesehigher-level classesare

theeventsat thenext higherlevel, occurringat (event)time" in the �A@CBED � level. Thehighest( F �98 ) level in Figure1
canbeconsidereda single-classmixtureof Markov chains
aswell, or simply a Markov chain. A MMC in the hierar-
chy is thuschargedwith explainingeventsat its level. The
modelmustthereforebecapableof temporallysegmenting
theinput. This will bediscussedin Section3.4.

3.2. Hierarchical Decomposition

Learningand inferencein the completeBayesiannet-
work wouldnot beeasilyparallelized,andwouldnotadmit
scalingto much more complex hierarchies. That is, net-
work propagationwould not be simplegiven the presence
of many loops in the undirectedgraph. A commontech-
niquefor dealingwith suchloopsis to clusterthenodesin
the graphto form compoundvariablesin sucha way that
the resultingnetwork of clustersis singly connected[18].
The generalmethodinvolvesforming a join tree over the
cliquesof thetriangulatedgraph. This representationdoes
not have a simpleinterpretation.However, sincethereare
efficient computationsfor MMCs, thenetwork canbeclus-
teredasshown by thedottedlinesin Figure1. Figure2(a)
showsoneof thenodesof theclusterednetwork, a mixture
of Markov chains. The MMC is completelydescribedby
two parameters.

1. Initialization G ���HJI;KMLON ���� � � �HQP ���=<>13 � � �=<?1I R
is the probability that

���� � � �H at time S of the " �98��@TB -level sequence,given that
���=<>13 � � ��<>1I . At

thelowestlevel, this becomesG � I�KULON � � P � �� � � � I R
which is parametrizedby aGaussiandistribution.



2. Transition GWVX HZY�I K LON ���� � � �H P ����\[ 1 �� �Y �
���=<>13 � � �=<>1I R describesthe probability that the
state

�;�� � � �H at time � of the " �98 sequencegiventhe
state

����\[ 1 � � �Y attheprevioustimestepandtheclass
variable

� �=<?13 � � �=<>1I atthenext highestlevel. At the
lowestlevel (MG), thisparameteris non-existentsince
all sequencesareof lengthone.

The parametersfor the � �98 level will be denoted G � �] G �X � G ���^ The completeset of parametersfor a given
model with F levels will be referred to as G �] G � � G 1E�_������� GW` ^ .

The MMC unit shown in Figure2(a) aspart of a com-
pletemodel,asin Figure1, mustcommunicatewith its par-
entsandchildren. This is accomplishedby messagepass-
ing in theclusterednetwork, which we now describe.The
inputs to the input (MG) level, as shown in Figure 2(b),
aresequencesof continuousfeaturevectors, a . The mix-
ture of Gaussians(MG) calculatesthe probability of each
input vector,

� � , given the Gaussiangeneratedby the dis-
cretestate,� � 3 . The resultingdistribution passedup to the
next ( S �98 ) level is simply b N � � 3 R � LON � � P � � 3 R . All other
levels are like the MMC level shown in Figure2(a). The� �98 level MMC receivesasequenceof b messagesfrom the�OcdB D � level below it. Themessagesareinputdistributions
over thestatesof

�;�
. TheMMC level will have a method

for decidingwhento segmenttheinputsequence,discussed
in Section3.4. After a decisionto segment,the � �98 level
computesanupwardmessage,b N � �=<?13 R � LON9e [ P � �=<?13 R , a
distribution over thestatesof

� �=<?1
at time " , where e [ is

the evidence(input data)beingexplainedby this temporal
sequence.Thisupwardsmessagecanbeexpandedby sum-
mingover thepossiblevaluesof  � asb N � �=<>13 R � LONfe [ P � �=<>13 R �)g h�i LON9e [ P � : R LON � : P � ��<>13 R �
the terms of which can be expandedas LONfe [ P �j: R �LON9e [ P � �� ����� � �. R � k � LON9e [� P � �� R � k � b N � �� R andLON �j: P � �=<?13 R � k � LON � �� P � ��\[ 1 � � ��<>13 R LON � �� P � �=<>13 R , giving
theupwardsmessagefrom thelevel shown in Figure2(a)asb N � �=<>13 R �Cg h iml � b N � �� R G �Xonqprsntpr9u�v n pqw vx G �� ntpysn pqw vx �

(1)

This upwardsgoingmessageis complementedby a down-
wardsgoingmessagefrom the �z@{B D � level,which is either
from a higherlevel, or from a prior distributionat thehigh-
estlevel. Thedownwardsmessageinitiatesthecomputation
of apredicteddistributionoverthestatesof thevariable

���
at the next time step, | N � �� R � LON �j: P e < R , wherethe evi-
dence, e < , in this termcomesfrom two places:e < } and e < ~ ,
which areall the input datasubsumedby the states� �3 for����" and ��(�" , respectively. Thereis a third compo-
nentof evidence, e < , which comesfrom the ancestorsof

the �O@�B D � level. Thus, the downwardsmessagecan be
factoredas| N � �3 R � LON � �3 P e < } e < ~ e < R� LONfe < ~ P � �3 e < } e < R LON � �3 P e < } e < R� LONfe < ~ P � �3 e < R LON � �3 P e < } e < R (2)

Equation(2) is a productof two terms.Thefirst is a back-
ward variable,whichgivestheprobabilityof all futuredata
giventhepresentstate,while thesecondis a forward vari-
able,giving theprobabilityof thepresentstategivenall past
data.Thesetermsareanalogousto thefamiliar forwardand
backwardtermsin theBaum-Welshtrainingprocedurefrom
the HMM literature[19]. Equation(2) posesa dilemma.
While the both termsin (2) can be efficiently computed,
only thesecondcanbedoneat time " . Thiswill causesome
difficultiesin theparameterlearningalgorithm,andwill be
discussedin Section3.3.

Upwardsanddownwardsmessagescanbecombinedat
eachlevel to calculatebelief statesfor eachset of vari-
ables in the hierarchy. Thesebelief stateswill be used
for learning the parametervaluesfrom data. The belief
stateover a particularvariable,say � �3 , given all evidence
from below (the observations)and from above (prior in-
formation) is computedas �$�$� N � �3 R � LON � �3 P e <o� e [ R �� LONfe [ P � �3 � e < R LON � �3 P e < R where � is a constantof propor-
tionality. Usingthenotationof (2) again,this is�����=���� ��� ����� ��� � �_���������J���,� �=����������=���� ��� ����� ���������������=����� ����=����

(3)

The upwardsflow of informationclassifiesthe input at
eachlevel in thehierarchy. That is, a giveninput sequence
has somemaximum likelihood stateat each level. The
downwardsflow of informationgivesa probability distri-
bution (prediction)over thenext time stepsat eachlevel.

3.3. Learning the parameters

The last sectionshowed how information was propa-
gated through the HMMC presentedin Figure 1. This
sectionshows how this information can be usedto learn
the parametersof the modelgiven input data. We present
thelearningalgorithmasanapplicationof theexpectation-
maximization(EM) algorithm[7]. Weshow how theEM al-
gorithmnaturallyfactorsaccordingto our model. We then
discussanonlineversion,which doesnot passdownwards
informationfrom backwardpassesat all levels.

Givenasetof observationsequences,* , wewish to find
thevaluesof G which maximizeLON */¡?G R �£¢¥¤ LON *��¡?G R



wherethe integral is over all the hiddenvariablesin an F
level model, ¦� ] � � �_�������§� ` ^ . Any further evidence
from above the top level (e.g usercontrols)aredenoted¡ .
The optimizationcanbe performedusingthe expectation-
maximization(EM) algorithm[7].

Thefunction ¨ N G R � LON *�5¡?G R is lowerboundedwith
a function © N  R :
¨ N G R � ¢ ¤ LON */5¡?G R© N  R © N  R % l ¤«ª LON */5¡?G R© N  R ¬W�® ¤/¯ �

(4)
wheretheinequalityis givenby Jensen’s inequality. Taking
logarithmsof theright sidewe get° N G � © R � ¢ ¤±© N  R�²�³�´ LON *��¡?G R c5© N  R�²�³�´ © N  R � (5)

Then,at thecurrentguessfor G , GWµ , we choose© to max-
imize

°
, so that

°
touches̈ at GWµ . We usethe constraint

that ¶ ¤ © N  R �TB andget

© N  R � LON *��¡,G R¶ ¤ LON */5¡?G R � LON *��¡?G RLON */¡?G R � LON  P */¡?G R
Calculating LON  P */¡?G R is the “E” step of EM.

This quantity can be computed as LON  P */¡?G R �LON  4 P m·�*/¡?G R LON �· P �¸�*/¡?G R ����� LON A¹ P */¡?G R , and is
theproductof thebeliefstatesateachlevel,whichweknow
canbecomputedfrom upwardsanddownwardsmessages,
However, they neednot becomputedexplicitly, aswe will
show in thenext section.

After computing © N  R � LON  P *�¡,G R , we can update
thevaluesof theparametersby maximizing(5):

¢ ¤ LON  P */¡?G µ R�²�³�´ LON */5¡?G R � (6)

with respectto G . This is calledthe “M” stepof the EM
algorithm.

According to the independencerelationshipsshown in
theBayesiannetwork in Figure1, wecanfactor LON */5¡?G R
as LON *�54¥G � P  · G 1 R LON  · G 1 P  ¸ GWº R ����� LON  ¹ ¡?GW` R � so
that,writing the ²�³�´ productasasumof ²�³�´ s,(6) becomes:

¢�»½¼ ® ¤¿¾ À¥Á=Âj¯_Ã Ä
Å ¼ ® À¥¤/Æ�Â y ¾ ¤ÈÇ�Â v ¯< ¢�» ¼ ® ¤¿¾ À¥Á=Âj¯_Ã Ä
Å ¼ ® ¤ÈÇ�Â v ¾ ¤�É�ÂjÊ�¯< .
.
. (7)< ¢ » ¼ ® ¤¿¾ À¥Á=Âj¯_Ã Ä
Å ¼ ® ¤

i Â p ¾ ¤ i w Ç Â pqw v ¯
< .

.

.< ¢ » ¼ ® ¤¿¾ À¥Á=Âj¯_Ã Ä
Å ¼ ® ¤ÈËjÁ�ÂQÌQ¯

Thesumsover 54 �����  ¹ cÎÍ canbeperformedin the last
term,leaving

¢ ¤ Ë LON  ¹ P */¡?G µ R�²�³�´ LON  ¹ *�¡?G ` R (8)

This term canbe maximizedin the F �98 level, andconsti-
tutesthe “M” stepfor that level by itself. The sumsover ¹ ����� A: < ¸ � A: [ · ����� 54 canbeperformedin the � �98 term
in (7), whichcanthenbewrittenas:

¢�¤ i ¤ i w ÇLON  :  : < · P */¡?G µ RÐÏfÑtÒ LON  : * P G �  : < · G �=<>1 R LON G � R �
(9)

Maximizing eachsuchterm in (7) is the “M” stepof the
EM algorithmfor eachlevelby itself. Thefollowingsection
describeshow to performthis maximizationin the caseof
multinomialdistributions.

Our goal now is to maximizeall equationslike (9) (of
which (8) canbeconsidereda specialcase)with respectto
theparametersG � ����� GW` Weassumethelikelihoodfunction
of thecompleteddatais givenby amultinomialdistribution:LON *� P G R � l � l HZY�I G ��Ó pÔ�Õ×ÖfØX HZY�I G � Ó py Õ�Ø��H�I �
wherethe Ù sarethesufficientstatisticsfor themultinomial
distributions,e.g. Ù �X HZY�I is the numberof times

���� �ÛÚ
when

�;��\[ 1 �£Ü and
���=<>1 �ÞÝ in thedata.Then,we can

setthe derivative of (9) with respectto a particular G �X H-Y�I
to S , subjectto theconstraintthat ß H G �X HZY�I �àB , andfind
that

G �X H-Y�I � � �X HZY�I @d� ¼ ® ¤
i ¤ i w Ç ¾ À�á Á=ÂQâ×¯ N Ù �X HZY�I Rß H � �X HZY�I @d� ¼ ® ¤
i ¤ i w Ç ¾ À�á Á=Â â ¯ N Ù �X HZY�I R (10)

where� �X is themultinomialconjugate(Dirichlet) prior for
theparameterG �X Theexpectationin (10) is� ¼ ® ¤

i ¤ i w Ç ¾ À¥Â â ¯ N Ù �X HZY�I R ��g3qã 1 LON � ��<>13 á I P *�¡,G µ R .g � ã 1 LON � �� á H �§� ��\[ 1 á Y P � �=<>13 á I *ÈG � R
Thesumsareover thetime indices, � and " , at the � �98 and�±@TB D � level, respectively. The expectationis thereforea
sumof all the probabilitiesof seeing

���� á H and
����\[ 1 á Y for

some � at level � , given that
���=<?13 �äÝ , weightedby the

probabilityof seeing
���=<?13 �ÞÝ . While thesumsover � at

the � �98 level canbe performedefficiently, given the value
of
� �=<?13 , by usinga forward-backwarddecomposition,the

weighting terms, LON � �=<>13 á I P */¡?GWµ R dependon datanot yet
seenat time " at the �5@£B D � level. Indeed,theseweighting
termsare no more than the belief stateswe have already
seenin (3). As previously noted,thebackwardspartof the



downwardsmessage(2) cannotbecalculatedexactlyattime" . Thus, the entire model could not be updateduntil all
datahadbeenseen,at which point the full EM algorithm
couldberun to completion.Clearlythis is infeasible,asthe
highestlevel timescalesmaybeextremelylong in general.

Thereareanumberof optionsfor dealingwith thisprob-
lem. First and simplest,we can just forget about it, and
useonly forward informationin the downwardsmessages.
Second,eachlevel cancomputedownwardsmessagesonly
after a completesequencehasbeenobserved(at the given
level) andthe backwardspasshasbeencomputed,but be-
fore theparentlevel haspasseddown informationfrom its
backwardspass(henceonly usingpredictionsfrom thepar-
entlevel’s forwardpass). Thisoptionis usedin ourcurrent
implementation.This ideacanbe extendedso that a level
will wait for a moreremoteancestorlevel to completeits
backwardspassbeforecomputingdownwardsmessages.In
fact, the ancestorlevel may not needto computea back-
wardspassover a completesequence,but only over some
relevantlyrecentportionof it, asindicatedbysomediscount
factor(onlineEM [4]). A furtherextensioncoulduseinfor-
mationfrom ancestorlevel backwardspassesfrom previous
EM iterations(generalizedEM [16]).

3.4. Temporal Segmentation

The modelwe have describedrelieson a segmentation
at eachlevel in the hierarchy. The dynamictime-warping
capabilitiesof HMMs meansthat segmentationis not re-
strictedto aparticulartimeinterval ateachlevel,andcanbe
dynamicallyspecifiedasa sequenceis beinganalyzed.We
arecurrentlyusinga manualsegmentationinto sequences
which are representative of the user’s currentaffective or
emotionalstate. In practice,sucha segmentationcouldbe
performedautomaticallyusing,for example,themethodsof
Rui andAnandan[20]. The temporalsegmentationcould
alsobeincorporatedinto thelearningprocess,asin [9, 22].
Finally, the temporalsegmentationcould be achieved by
samplingthe input datastream.It is importantto notethat
althoughtemporalsegmentationcould be achieved auto-
maticallyat thelowestlevel, wheretheobservationvectors
have a precisemeaningin termsof theobservedsequence,
thesegmentationat higherlevelsis muchlesswell defined.

4. Experiments

This sectionwill describepreliminaryexperimentsde-
signedto testour hypothesesthat the hierarchicalmixture
of Markov chains(HMMC) learnsto recognizefacial ex-
pressioneventsand the high-level temporaldynamicsof
theseevents,andthattheadditionalinformationlearnedby
the high-level model increasesthe recognitionrates. We
useasimulatedmodelof thetemporalprogressionof facial

−x1 −x1 −x1 −x1
−x1

x x x xx
happydisgust fear surprisesad

Figure 4. Simulation model. States corre-
spond to facial expressions. Arrows denote
probabilistic transitions with probabilities � .

expressions,asshown in Figure4. The facial expressions
of the userfollow oneanotherin a predeterminedorder(a
left-right modelwith return),with transitionsbetweenstates
governedby a parameter�æåèç S � S �-éEê . The simulateddy-
namicsshown in Figure4 weredesignedsothattheparam-
eter � governshow muchstructurethereis at thehigh level.
Thus, � �TS is a very structuredmodel(transitionsarede-
terministic),while � ��S �-é is a modelwith lessstructure1.
A statein the modelgeneratesa video sequenceof a sub-
ject performingthe correspondingfacial expression. It is
importantto note that the model is not meantasa model
of humanemotionalprogression,but only as a simulator
in which a parameter( � ) governsthe predictabilityof the
sequenceof eventsin someway. The goal was to simu-
latea well structuredsequenceof fairly distinguishablefa-
cial expressionsequences,in order to assesswhat effects
thelearningof high level structurehason theunsupervised
recognitionproblem.

Thevideosequencesaretakenfrom adatabaseof 69 se-
quencesof a singlesubjectperformingthe 5 expressions.
They areprocessedby first extractingopticalflow andthen
projectingonto the affine basis. The projectionsarecom-
putedasasimpledotproductoverthefacearea,normalized
by area. The expressionswereperformedby a single,un-
trained,subjectwho wassimulatingthe5 emotionalstates.
Figure3 shows selectedframesfrom two sequences.It is
the samedatabaseas usedin a supervisedversionof the
facialexpressionrecognitionproblem[12].

We learntwo modelsfrom a given setof input data: a
two level versionof the HMMC model presentedin Sec-
tion 3, and a mixture of hidden Markov modelsas de-
scribedin [21]. Therearethreemain differencesbetween
the two models. The first is that the HMMC cantake ad-
vantageof any temporalstructureat the high level. The
secondis thatmixtureof HMMs hasaseparatesetof Gaus-
sianoutputdistributionsfor eachcombinationof high and
low level states,whereasthehigh-level statesin our model
shareGaussiandistributions(known asparametertying, re-

1Modelsin this classaremoredifficult to simulatefor
�ìë�í îtï ðtñ§òôó

, as
somestatesmaynever bereached,causinginitializationproblems.
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Figure 3. Selected frames from a happy(top) and a disgust(bottom) expression sequence

sulting in semi-continuousmodels).Thethird differenceis
thatthemixtureof HMMs is performingcompleteexpecta-
tion steps,whereasour modelonly doespartialexpectation
steps.While thefirst differenceis expectedto increasethe
effectivenessof our model,thesecondtwo areexpectedto
decreaseit. Wewill show thatthebenefitsoutweighthedis-
advantagesfor well structuredmodels( �Aú S in Figure4)

Themodeldescribedin Section3 hasbeenimplemented
in Java. An abstractLevel classis at the top of the class
hierarchy, andis sub-classedby MG andMMC classes.Each
level runsits in its own threadof execution,makingtheap-
plication distributableandscalable. The MG level in the
HMMC was initialized by performingvectorquantization
on the input data space. The lowest MMC level in the
HMMC was initialized using a heuristictechniquewhich
makes histogramsof the valuesof

�
and runs û -means

on the resultingvectors. The top level MMC was ran-
domly initialized. Themixture of HMMs modelwasini-
tializedwith thesameGaussiandistributionsasin theMG
level (replicated)andwith thesameinitialization andtran-
sition parametersin the lowestMMC level. The initializa-
tion methodof [21], which involvesclusteringthe datain
log likelihood spacefirst, may give betterresults,but we
assumeit will benefitbothmodelsequally.

We performed200 trials with different initial random
seedsfor the initialization procedure. Each trial usesa
leave-one-outprocedure.The training dataconsistsof all
sequencesbut one (chosenat random)from eachmotion
class. The model in Figure 4 is simulatedfor about250
stepsduring which video sequencesare chosensequen-
tially (with return) from the training set. Expectation-
maximizationis performedusingthe samedatauntil con-
vergenceis reached. The trainedmodelsare then tested
by againsimulatingfor about250 steps. This time, how-
ever, the outputsare chosenfrom the 4 sequenceswhich
wereleft out of thetrainingdata.Thus,thesamesequence
is presentedto thesystemwhenthesimulatoris in eachof
thestatesin Figure4. Themostlikely statesequenceover
thetop level is determinedusingtheViterbi algorithm,and
comparedwith the (known) sequenceof statesin the sim-
ulatedmodel. Classificationaccuracy in an unsupervised

context is not simpleto define.However, thetrainedmodel
only needsa one-to-onecorrespondencebetweenits classi-
fied statesandthe actualenvironmentalstates,but the or-
der of the correspondencedoesnot matter. We determine
theorderingwhich givesthebestrecognitionrateafter the
trainingphase,andusethis orderingto measureclassifica-
tion accuracy of trainingandof testphases.

5. Results

Figure 5 shows typical log-likelihoods as a function
of EM iteration during learningof the mixture of hidden
Markov modelsandfor theHMMC. Themixtureof HMMs
outperformstheHMMC in modelingthetrainingdatafaith-
fully. This is primarily dueto thesub-optimalityof theex-
pectationstepasdescribedabove. 2

Table1 shows classificationaccuraciesfor training and
testsequencesusingbothmodelsunderconsideration.All
percentagesareaveragesover the200trials, eachof which
hasrandomizedinitialization parametersanda randomset
of left out sequences.High valuesof the transitionparam-
eter, � , aremodelswith morestructure,which theHMMC
can take advantageof, but the mixture of hiddenMarkov
modelscannot. We seethat, asexpected,our hierarchi-
cal model outperformsthe mixture of HMMs model for
low valuesof � �üS � SmcæS � ý . Thus, the high-level se-
mantic model, when properly learned,disambiguatesthe
facial expressioninput sequences.The HMMC performs
morepoorly for intermediatevaluesof � ��S � öþc{S � é . The
simulatedmodel in thesecaseshaslessstructure,andour
learningprocedureis at a disadvantagebecauseit is only
performingan approximateexpectationstep. We expect
thatthefull EM procedurewouldgivebetterresultsfor any
valueof � , but would requireadditionalresourcesandpose
timeconstraintswhicharenotdesirablefor ourapplication.

To evaluatehow well theunsupervisedlearningwasper-
forming, we performeda supervisedexperiment. The ex-

2The differencesin log likelihood in the trained model seemlarge
(
ò§î�ÿ

), but the sequencesbeing modeledconsistof about250 facial ex-
pressionsequences,eachabout20-30framesin length.Therefore,thelog
likelihooddifferencepersequenceis on theorderof

ò§î�î
.
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Figure 5. Typical log likelihood evolution
cur ves for learning the model in Figure 4
( � �£S ) using mixture of HMMS and HMMC.

x HMMC Mixture of HMM
train test train test

0.0 92 91 81 81
0.1 91 89 81 82
0.2 91 88 81 84
0.3 88 84 80 82
0.4 88 83 81 82
0.5 87 81 82 83

Table 1. Classification accuracies ( � ) for
training and test sequences using the HMMC
and the mixture of HMMs presented in [21].

pressionsequenceswerelabeledandusedto trainasetof 5
HMMs, onefor eachexpression.The initialization proce-
durewasidentical.Recognitionwasperformedby choosing
the modelwhich gave the highestlikelihoodof the obser-
vations. A leave-one-outprocedurewasalsousedfor this
experiment,andtheaveragerecognitionratewas ��÷�� . Un-
supervisedlearningdecreasesrecognitionrates,becausethe
learningproceduremustuncoverboththecategoriesof ex-
pressionand learnthemodelswithin eachcategory. How-
ever, if we alsomodelthehigh-level dynamicsin a tempo-
rally well structuredenvironment,we canachieve recogni-
tion ratesapproachingthe supervisedcase(to within ù�� ).
Without thesehigh-level dynamics,the recognitionrates
drop(to below B_ö�� lessthanthesupervisedcase).

6. Conclusions

We presenteda hierarchicaldynamicBayesiannetwork
for unsupervisedclassificationof expressionsequences.We
showed how to simultaneouslylearn low and high level
modelsof events. Currentwork is focussingon automatic
segmentation,on recognizingsubtlefacialexpressions,and
onusingexpressionsto guidea tutoringagent.
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