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Abstract 

We describe a framework that helps students learn from 
examples by generating example problem solutions 
whose level of detail i s tailored to the students’ domain 
knowledge. The framework uses natural language 
generation techniques and a probabili stic student model 
to selectively introduce gaps in the example solution, so 
that the student can practice applying rules learned from 
previous examples in problem solving episodes of 
diff iculty adequate to her knowledge. Filli ng in solution 
gaps is part of the meta-cogniti ve skill known as self-
explanation (generate explanations to oneself to clarify 
an example solution), which is crucial to effectively 
learn from examples. In this paper, we describe how 
examples with tailored solution gaps are generated and 
how they are used to support students in learning 
through gap-filli ng self-explanation. 

1 Introduction 
Studying examples is one of the most natural ways of 
learning a new skill . Thus, substantial research in the field 
of Intelli gent Tutoring Systems (ITS) has been devoted to 
understand how to use examples to enhance learning. Most 
of this research has focused on how to select examples that 
can help a student during problem solving [e.g., Burrow and 
Weber 1996; Aleven and Ashley 1997]. In this paper, we 
focus on how to describe an example solution so that a 
student can learn the most by studying it previous to 
problem solving. In particular, we address the issue of how 
to vary the level of detail of the presented example solution, 
so that the same example can be equally stimulating for 
learners with different degrees of domain knowledge.  

This problem is novel in ITS, as it requires sophisticated 
natural language generation (NLG) techniques. While the 
NLG field has extensively studied the process of producing 
text tailored to a model of the user’s inferential capabiliti es 
[e.g., Horacek 1997; Korb, McConachy et al. 1997; Young 
1999], the application of NLG techniques in ITS are few 
and mainly focused on managing and structuring the tutorial 
dialogue [e.g., Moore 1996; Freedman 2000], rather than on 
tailoring the presentation of instructional material to a 
detailed student model. 

The rationale behind varying the level of detail of an 
example solution lies on cogniti ve science studies showing 
that those students who self-explain examples (i.e., generate 
explanations to themselves to clarify an example solution) 
learn better than those students who read the examples 
without elaborating them [Chi 2000]. One kind of self-
explanation that these studies showed to be correlated with 
learning involves filli ng in the gaps commonly found in 
textbook example solutions (gap filli ng self-explanation). 
However, the same studies also showed that most students 
tend not to self-explain spontaneously. In the case of gap 
filli ng, this phenomenon could be due to the fact that gap 
filli ng virtuall y requires performing problem solving steps 
while studying an example. And, because problem solving 
can be highly cogniti vely and motivationally demanding 
[Sweller 1988], if the gaps in an example solution are too 
many or too diff icult for a given student, they may hinder 
self-explanations aimed at filli ng them.  

We argue that, by monitoring how a student’s knowledge 
changes when studying a sequence of examples, it is 
possible to introduce in the examples solution gaps that are 
not too cogniti vely demanding, thus facilit ating gap filli ng 
self-explanation and providing a smooth transition from 
example study to problem solving. We are testing our 
hypothesis by extending  the SE-Coach, a framework to 
support self-explanation of physics examples [Conati and 
VanLehn 2000].  

The SE-Coach already effectively guides two other kinds 
of self-explanations that have been shown to trigger learning 
[Chi 2000]: (i) justify a solution step in terms of the domain 
theory (step correctness); (ii ) map a solution step into the 
high-level plan underlying the example solution (step 
utilit y). The internal representation of an example solution 
used by the SE-Coach to monitor students’ self-explanation 
is generated automaticall y. However, because the SE-Coach 
does not include any NLG capabilit y, the example 
description presented to the student and the mapping 
between this description and the internal representation is 
done by hand. Thus, each example has a fixed description, 
containing virtuall y no solution gaps.  

In this paper, we describe how we extended the SE-Coach 
with NLG techniques to (i) automaticall y generate the 



example presentation from the example internal 
representation (ii ) selectively insert gaps in the example 
presentation, tailored to a student’s domain knowledge.  

Several NLG computational models proposed in the 
literature generate concise text by taking into account the 
inferential capabiliti es of the user. [Young 1999] generates 
effective plan descriptions tailored to the hearer’s plan 
reasoning capabiliti es. [Horacek 1997] is an example of 
models that take into account the hearer’s logical inference 
capabiliti es. And [Korb, McConachy et al. 1997] proposes a 
system that relies on a model of user’s probabili stic 
inferences to generate suff iciently persuasive arguments. 

In contrast, our generation system tailors the content and 
organisation of an example to a probabili stic model of the 
user logical inferences, which allows us to explicitl y 
represent the inherent uncertainty involved in assessing a 
learner’s knowledge and reasoning processes. Furthermore, 
our system maintains information on what example parts are 
not initiall y presented (i.e., solution gaps), which is criti cal 
to support gap-filli ng self-explanations for those students 
who tend not to self-explain autonomously.    

In the following sections, we first ill ustrate our general 
framework for example generation. We then describe in 
detail the NLG techniques used and an example of the 
tailored presentations they generate.  Finall y, we show how 
the output of the NLG process supports an interface to guide 
gap filli ng self-explanation.  

2 The Framework for Example Generation  
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Figure 1: Framework for example generation 

Figure 1 shows the architecture of our framework for 
generating tailored example presentations. The part of the 
framework labelled “before run-time” is responsible for 
generating the internal representation of an example solution 
from (i) a knowledge base (KB) of domain and planning 
rules (for physics in this particular application); (ii ) a formal 
description of the example initial situation, given quantities 
and sought quantities [Conati and VanLehn 2000]. A 
problem solver uses these two knowledge sources to 
generate the example solution represented as a dependency 
network, known as the solution graph.  The solution graph 
encodes how each intermediate result in the example 
solution is derived from a domain or planning rule and from 
previous results matching that rule’s preconditions. 
Consider, for instance, the physics example in Figure 2 
(Example1). Figure 3 shows the part of solution graph that 
derives the first three steps mentioned in Example1 solution: 

establi sh the goal to apply Newton’s 2nd Law; select the 
body to which to apply the law; identify the existence of a 
tension force on the body. 

In the solution graph, intermediate solution facts and goals 
(F- and G- nodes in Figure 3) are connected to the rules (R- 
nodes) used to derive them and to previous facts and goals 
matching these rules’ enabling conditions. The connection 
goes through rule-application nodes (RA- nodes in Figure 
3), expli citl y representing the application of each rule in the 
context of a specific example. Thus, the segment of network 
in Figure 3 encodes that the rule R-try-Newton-2law 
establishes the goal to apply Newton’s 2nd Law (node G-try-
Newton-2law) to solve the goal to find the force on Jake 
(node G-force-on Jake).  

 
Figure 2: Sample Newtonian physics example 

The rule R-goal-choose-body sets the  subgoal to find a 
body to apply the Newton’s 2nd  Law (node G-goal-choose-
body), while the rule R-find-forces sets the subgoal to find 
all the forces on the body (node G-find-forces). The rule R-
body-by-force dictates that, if one has the goals to find the 
force on an object and to select a body to apply Newton’s 
2nd Law, that object should be selected as the body. Thus, in 
Figure 3 this rule selects Jake as the body for Example1 
(node  F-Jake-is the body).  The rule R-tension-exists says 
that if an object is tied to a taut string, then there is a tension 
force exerted by the string on the object. When applied to 
Example1, this rule generates the fact that there is a tension 
force on Jake (node F-tension-on-Jake in Figure 3). 

The solution graph can be seen as a model of correct self-
explanation for the example solution, because for each 
solution fact it encodes the various types of self-
explanations relevant to understand it: step correctness  
(what domain rule generated that fact), step utilit y (what 



goal that fact fulfil s) and gap filli ng (how the fact derives 
from previous solution steps).  
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Figure 3: Segment of solution graph for Example1 

In the SE-Coach, every time a student is shown an 
example, the corresponding solution graph provides the 
structure for a Bayesian network (see right bottom side of 
Figure 1) that uses information on  how the student reads 
and self-explains that example to generate a probabili stic 
assessment of how well the student understands the example 
and the related rules [Conati and VanLehn 2001]. The prior 
probabiliti es to initiali se the rule nodes in the Bayesian 
network come from the long-term student model (see Figure 
1), which contains a probabili stic assessment of a student’s 
current knowledge of each rule in the KB. This assessment 
is updated every time the student finishes studying an 
example, with the new rule probabiliti es computed by the 
corresponding Bayesian network.   

  In the SE-Coach, the solution graph and Bayesian 
network described above are used to support students in 
generating self-explanations for correctness and utilit y only.  
No explicit monitoring and support for gap filli ng self-
explanation is provided. This is because in the SE-Coach, 
the description of the example solutions presented to the 
student and the mapping between these descriptions and the 
corresponding solution graphs are done by hand. This 
makes it impossible to tailor an example description to the 
dynamicall y changing student model by inserting gaps at the 
appropriate diff iculty level for a given student. We have 
overcome this limitation by adding to the SE-Coach the 
example generator (see right part of Figure 1), a NLG 
system that can automaticall y tailor the detail l evel of an 
example description to the student’s knowledge, in order to 
stimulate and support gap-filli ng self-explanation. 

3 The Example Generator (EG) 
EG is designed as a standard pipelined NLG system 

[Reiter and Dale 2000]. A text planner [Young and Moore 
1994] selects and organizes the example content, then a 

microplanner and a sentence generator reali ze this content 
into language. In generating an example, EG relies on two 
key communicative knowledge sources (right part of Figure 
1): (i) a set of explanation strategies that allow the text 
planner to determine the example’s content, organization 
and rhetorical structure; (ii ) a set of templates that specifies 
how the selected content can be phrased in English. 

The design of these sources involved a complex 
acquisition process. We obtained an abstract model of an 
example’s content and organisation from a detailed analysis 
of the rules used to generate the solution graph. This was 
combined with an extensive examination of several physics 
textbook examples, which also allowed us to model the 
examples’ rhetorical structure and the syntactic and 
semantic structure of their clauses. To analyse the rhetorical 
structure of the examples, we followed Relational Discourse 
Analysis (RDA) [Moser, Moore et al. 1996], a coding 
scheme devised to analyse tutorial explanations. The 
semantic and syntactic structure of the examples’ clauses 
was used to design the set of templates that map content into 
English.   

We now provide the detail s of the selection and 
organisation of the example content. In EG, this process 
relies on the solution graph and on the probabili stic long 
term student model.  It consists of two phases, text planning 
and revision,  to reduce the complexity of the plan operators 
and increase the eff iciency of the planning process. Text 
planning selects from the solution graph a knowledge pool 
of all the propositions (i.e., goals and facts) necessary to 
solve a given example, and it organizes them according to 
ordering constraints also extracted from the solution graph. 
The output of this phase, if reali zed, would generate a full y 
detailed example solution. After text planning, a revision 
process uses the assessment in the student’s long-term 
model to decide whether further content selection can be 
performed to insert appropriate solution gaps. Text planning 
and revision are described in the following sub-sections.  

3.1 Text Planning Process 
The input to the text planner consists of (i) the abstract 

communicative action of describing an example solution; 
(ii ) the example solution graph; (iii ) the explanation 
strategies. The planning process selects and organizes the 
content of the example solution by iterating through a loop 
of communicative action decomposition1. Abstract actions 
are decomposed until primiti ve communicative actions 
(executable as speech acts) are reached. In performing this 
task, the text planner relies on the set of explanation 
strategies that specify possible decompositions for each 
communicative action and the constraints dictating  when 
they may be applied. These constraints are checked against     

                                                   
1 Communicative actions satisfy communicative goals. So, text 
planning actuall y involves two intertwined processes of goal and 
action decomposition. To simpli fy our presentation, we only refer 
to communicative actions and their decomposition. 



(Describe example1)

(Inform-about-problem find-force)

(Inform-about (choose-simple-body Jake))
(Describe-step  choose-body)

(Inform-about-method Newton’s-2nd-Law)

(Describe-step   body’s-properties)

(Describe-step all -forces-on-body)
(Inform-about (act-on Jake tension))

(Inform-about (act-on Jake weight))

(Show free-body-diagram)

(Describe-solution-method Newton’s-2nd-
Law)

(Describe-substeps-method Newton’s-2nd-Law)

Enable Goal:Act

Joint Step1:Step2

Enable Preparation:Act

Enable Goal:Act

Communicative action decomposition Intentional/Informational relations

Graphical
actions…

(Describe-step specify-component-equations)

(Describe-step write-component-equations)
(Describe-step choose-coordinate-axes)

(Describe-solution-method ?method
 :constraints
           (find-steps ?method ?steps)
 :sub-actions
     ((a1 (Inform-about ?method))
       (a2 (describe-method-steps ?steps)))
:relations
     ((r1 (Enable a2 a1))
       (r2 (Goal:Act a1 a2))))

(a)

(b)

 

Figure 4: (a) Sample explanation strategy. (b) Portion of the text plan 

the solution graph and when they are satisfied the 
decomposition is selected and appropriate content is also 
extracted from the solution graph. For ill ustration, Figure 
4(a) shows a simpli fied explanation strategy that 
decomposes the communicative action describe-solution-
method. Possible arguments for this action are, for instance, 
the Newton’s-2nd-Law and the Conservation-of-Energy 
methods. Looking at the detail s of the strategy, the function 
find-steps (:constraints field)  checks in the solution graph 
whether the method has any steps. If this is the case, the 
steps are retrieved from the solution graph and the describe-
solution-method action is decomposed in an inform-about 
primiti ve action and in a describe-method-steps abstract 
action. The output of the planning process is a text plan, a 
data structure that specifies what propositions the example 
should convey, a partial order over those propositions and 
the example rhetorical structure. A portion of the text plan 
generated by EG for Example1 is shown in Figure 4(b). 

The propositions that the example should convey are 
specified as arguments of the primiti ve actions in the text 
plan. In Figure 4(b) all primiti ve actions are of type inform. 
For instance, the primiti ve action (Inform-about (act-on 
Jake weight)) specifies the proposition (act-on Jake weight), 
which is reali zed in the example description as “ the other 
force acting on Jake is his weight” . In the text plan, the 
communicative actions are partiall y ordered. This ordering 
is not shown in the figure for clarity’s sake; the reader can 
assume that the actions are ordered starting at the top. The 
example rhetorical structure consists of the action 
decomposition tree and the informational/intentional 
relations among the communicative actions. For instance, in 
(b), the rhetorical structure associated with the action 
describe-solution-method specifies that, to describe the 
solution method, the system has to perform two actions: (i) 
inform the user about the method adopted; (ii ) describe all 
the steps of the method. Between these two actions the 
Enable intentional relation and the Goal:Act informational 
relation hold. All the informational /intentional relations 
used in EG are discussed in [Moser, Moore et al. 1996]. We 

clarify here only the meaning of the Enable relation because 
this relation is criti cal in supporting gap-filli ng self-
explanations. An intentional Enable relation holds between 
two communicative actions if one provides information 
intended to increase either the hearer’s understanding of the 
material presented by the other, or her abilit y to perform the 
domain action presented by the other. 

3.2 The Revision Process 
Once the text planner has generated a text plan for the 
complete example, the revision process revises the plan to 
possibly insert solution gaps that can make the example 
more stimulating for a specific student. The idea is to insert 
solution gaps of adequate diff iculty,  so that the student can 
practice applying newly acquired knowledge without 
incurring in the excessive cogniti ve load that too demanding 
problem solving can generate [Sweller 1988].  

The revision process performs further content selection by 
consulting the probabili stic long-term student model that 
estimates the current student’s domain knowledge. More 
specificall y, the revision process examines each proposition 
specified by a primiti ve communicative action in the text 
plan and, if according to the student model, there is high 
probabilit y that the student knows the rule necessary to infer 
that proposition, the action is de-activated. De-activated 
actions are kept in the text plan but are not reali zed in the 
text, thus creating solution gaps. However, as we will see in 
the next section, de-activated actions may be reali zed in 
follow-up interactions.  

As an ill ustration of the effects of the revision process on 
content selection, compare the example solutions shown in 
Figure 6 and Figure 7. Figure 6 displays the worked out 
solution for  Example2 which,  similarly to Example1, does 
not contain any solution gaps. In contrast, the same portion 
of Example2 solution shown in Figure 7 is much shorter, 
including several solution gaps. As previously described, 
EG determines what information to leave out by consulting 
the long-term probabili stic student model. In particular, the 
concise solution in Figure 7 is generated by EG if the 



student had previously studied Example1 with the SE-
Coach and generated self-explanations of correctness and 
utilit y providing suff icient evidence that she understands the 
rules used to derive Example1 solution. When selecting the 
content for Example2, EG leaves out all the propositions 
derived from the rules that the student has learned from 
Example1. Notice, for instance, that the concise solution in 
Figure 7 does not mention the solution method used and the 
weight force.  Also, the choice of the body and of the 
coordinate system is only conveyed indirectly. 

 

  

Figure 6 Portion of Example2 without solution gaps 

Even if a student has suff icient knowledge to fill i n the 
solution gaps inserted by the revision process, she may  not 
actuall y perform the required inferences when studying the 
example. As a matter of fact, cogniti ve science studies show 
that most students tend not to self-explain spontaneously 
[Chi 2000]. Thus, once the text plan is revised and reali zed, 
the system presents the concise example with tools designed 
to stimulate gap filli ng self-explanation as we ill ustrate in 
the next section. 

4 Support for Gap Filling Self-explanation 
To support gap-filli ng self-explanation, we have extended 

the interface that the SE-Coach uses to support self-
explanations for step correctness and utilit y. In this 
interface, each example’s graphical element and solution 
step presented to the student is covered with grey boxes. 
Figure 8(a) shows a segment of the example solution in 
Figure 7 as presented with the masking interface.  

To view an example part, the student must move the 
mouse over the box that covers it, thus allowing the 
interface to track what the student is reading. When the  

 

 

Figure 7 Portion of Example2 with solution gap 

(a)

(b)
Figure 8 Interface tools for  gap filling self-explanation 

student uncovers an example part, a “self-explain” button 
appears next to it  (see Figure 8(a)). Cli cking on this button 
generates more specific prompts that suggest one or more of 
the self-explanations for correctness, utilit y or gap filli ng, 
depending upon which of them are needed by the current 
student to full y understand the uncovered step. In particular, 
the text plan produced by EG is the key element in 
determining whether a prompt for gap filli ng is generated. A 
prompt for gap filli ng is generated whenever some of the 
primiti ve communicative actions that  were de-activated 
during the revision process are related through an Enable 
intentional relation to the communicative action expressing 
the uncovered example part.  The rationale behind this 
condition is that a solution gap with respect to an example 
part comprises all the solution steps that were left out, but 
whose understanding is a direct precondition to derive that 
example part. For instance, given the example part 
uncovered in Figure 8(a), there is only one solution gap 
preceding it, namely the one corresponding to the 
communicative action Inform-about (choose-simple-body-
Jake)2. As shown in Figure 8(a), the prompt for gap filli ng 
is generated by adding the item “filli ng in missing steps” to 
the self-explain menu. If the student cli cks on this item, the 
                                                   
2 Since the text plans for Example1 and Example2 are structurall y 
the same, this can be verified in Figure 4(b) 

Text item for gap 

Fill i n the following miss ing step(s) 

FILLING MISSING STEPS 

Text item for gap 

Submit Done 

SOLUTION 

The force N exerted on the wagon by 
the ground is a normal force 

The force N exerted on the wagon by the  

ground is a normal force Self-Explain 

Filli ng in miss ing step(s) 

This fact is true because… 

The role of this fact in the solution 
plan is… 



interface inserts in the solution text an appropriate number 
of masking boxes, representing the missing steps (see 
Figure 8(b), left panel, first box from top). The interface 
also activates a dialogue box containing a blank for each 
missing step, that the student can use to fill i n the step (see 
Figure 8(b), right panel). Since the interface currently does 
not process natural language input, the student fill s each 
blank by selecting an item in the associated pull -down 
menu. EG generates the entries in this menu by applying the 
reali sation component to unrealised communicative actions 
in the text plan (see Figure 1).  

 The student receives immediate feedback on the 
correctness of his selection, which is also sent to the 
Bayesian network built for the current example (see Figure 
1). The network fact node that corresponds to the missing 
step is clamped to either true or false, depending on the 
correctness of the student’s selection, and the network 
updates the probabilit y of the corresponding rule 
consequently. Thus, if the student’s actions show that he is 
not ready to apply a given rule to fill a solution gap, this 
rule’s probabilit y will decrease in the long-term student 
model. As a consequence, the next presented example 
involving this rule will i nclude the solution steps the rule 
generates, giving the student another opportunity  to see 
how the rule is applied.   

5 Conclusions and Future Work 
We have presented a tutoring framework that integrates 

principles and techniques from ITS and NLG to improve the 
effectiveness of example studying for learning. Our 
framework uses an NLG module and a probabili stic student 
model to introduce solution gaps in the example solutions 
presented to a student. Gaps are introduced when the 
student model assesses that the student has gained from 
previous examples suff icient knowledge of the rules 
necessary to derive the eliminated steps. The goal is to 
allow the student to practice applying these rules in problem 
solving episodes of diff iculty adequate for his knowledge.   

Our framework is innovative in two ways. First, it extends 
ITS research on supporting the acquisition of the learning 
skill known as self-explanation, by providing tailored 
guidance for gap filli ng self-explanation. Second, it extends 
NLG techniques on producing user-tailored text by relying 
on a dynamicall y updated probabili stic model of the user 
logical inferences.  

The next step in our research will be to test the 
effectiveness of our framework through empirical studies. 
These studies are crucial to refine the probabilit y threshold 
currently used to decide when to leave out a solution step, 
and possibly to identify additional principles to inform the 
text plan revision.  Additional future work involves NLG 
research on how the example text plan can be used to 
maintain the coherence of the other example portions, when 
the student fill s a solution gap. 
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