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Abstract

We describe real-time, physically-based simulation algorithms for
haptic interaction with elastic objects. Simulation of contact with
elastic objects has been a challenge, due to the complexity of phys-
ically accurate simulation and the difficulty of constructing useful
approximations suitable for real time interaction. We show that this
challenge can be effectively solved for many applications. In par-
ticular global deformation of linear elastostatic objects can be effi-
ciently solved with low run-time computational costs, using pre-
computed Green’s functions and fast low-rank updates based on
Capacitance Matrix Algorithms. The capacitance matrices con-
stitute exact force response models, allowing contact forces to
be computed much faster than global deformation behavior. Ver-
tex pressure masks are introduced to support the convenient ab-
straction of localized scale-specific point-like contact with an elas-
tic and/or rigid surface approximated by a polyhedral mesh. Fi-
nally, we present several examples using the CyberGloveTM and
PHANToMTM haptic interfaces.

1 Introduction

Discrete linear elastostatic models (LEMs) are important
physically-based elastic primitives for computer haptics because
they admit a very high-degree of precomputation, or “numerical
compression” [1], in a way that affords cheap force response
models suitable for force feedback rendering of stiff elastic objects
during continuous contact. The degree of useful precomputation
is quite limited for many types of nonlinear and/or dynamical
elastic models, but LEMs are an exception, mainly due to the
precomputability of time-independent Green’s functions (GFs)
and the applicability of linear superposition principles. Intuitively,
GFs form a basis for describing all possible deformations of a
LEM. Thus, while LEMs form a relatively simple class of elastic
models in which geometric and material linearities are an ultimate
limitation, the fact that the model is linear is also a crucial enabling
factor. We conjecture that LEMs will remain one of the best
runtime approximations of stiff elastic models for simulations
requiring stable high-fidelity force feedback.

A central idea for LEMs in computer haptics is the formulation
of the boundary value problem (BVP) solution in terms of suitable
precomputed GFs using Capacitance Matrix Algorithms (CMAs).
Derived from the Sherman-Morrison-Woodbury formula for low-
rank updating of matrix inverses (and factorizations), CMAs have a
long history in linear algebra [30, 16], where they have been com-
monly used for static reanalysis [22], to efficiently solve LEM con-
tact mechanics problems [12, 25] and more recently for interactive
LEM simulations [6, 21].

For computer haptics, a fundamental reason for choosing to com-
pute the LEM elasticity solution using a CMA formulation, is that
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the capacitance matrix1 is the main quantity of interest: it is the
compliance matrix which relates the force feedback response to the
imposed contact displacements. Also, the precomputation of GFs
effectively decouples the global deformation and force response
calculations, so that the capacitance matrix can be extracted from
the the GFs at no extra cost; this is the fundamental mechanism
by which a haptic interface can efficiently interact with a LEM of
very large complexity. The user can feel no difference between
the force response of the complete system and the capacitance ma-
trix, because none exists. Lastly, CMAs are direct matrix solvers
whose deterministic operation count is appealing for real time ap-
plications.

The second part of this paper addresses the special case of
point-like interaction. It has long been recognized that point con-
tact is a convenient abstraction for haptic interactions, and the
PHANToMTM haptic interface is a testament to that fact. While
it is possible to consider the contact area to be truly a point for rigid
models, infinite contact pressures are problematic for elastic mod-
els and tractions need to be distributed over finite surface areas. We
propose to do this efficiently by introducing nodal traction distri-
bution masks which address at least two core issues. First, having
a point contact with force distributed over a finite area is some-
what contradictory, and the traction distribution is effectively an
underdetermined quantity without any inherent spatial scale. This
is resolved by treating the contact as a single displacement con-
straint whose traction distribution enters as a user (or manipulan-
dum) specified parameter. The distribution of force on the surface
of the model can then be consistently specified in a fashion which
is independent of the scale of the mesh. Second, given the model
is discrete, special care must be taken to ensure a sufficiently reg-
ular force response on the surface, since irregularities are very no-
ticeable during sliding contact motions. By suitably interpolating
nodal traction distributions, displacement constraints can be im-
posed which are consistent with regular contact forces for numerous
discretizations.

The remainder of the paper is organized as follows. After a dis-
cussion of related work (§2), the notation and definitions for a wide
class of linear elastostatic models used herein are given (§3). Fast
CMAs for general BVP solution using precomputed GFs of a par-
ticular reference BVP type are described in detail in §4. Particular
attention is given to the role of the capacitance matrix for the con-
struction of globally consistent stiffness matrices for use in local
haptic buffer models (§5). The special case of point-like contacts
are considered in detail, and we introduce (runtime computable)
vertex masks for haptic presentation of surface stiffness (§6). Some
results are given for our implementations (§7) followed by conclu-
sions and a discussion of future work (§8).

2 Related Work

While a significant amount of work has been done on interactive
simulation of physically-based elastic models, e.g., in computer

1The term “capacitance” is due to historical convention [16].
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graphics [14], only a relatively small subset of work has addressed
the simulation requirements of force feedback computer haptics.
Much of the computer haptics literature on deformable models has
been concerned with surgical simulation, while our focus is more
general. It is not our intent to survey all related haptic work here,
but simply to mention some relevant work combining kinesthetic
force feedback with elastic models.

2.1 Elastostatic Models

There are several instances in the literature of real time simulation
of linear elastostatic models based on precomputed GFs methods.
These models were used because of their low runtime costs, and
desirable force feedback properties. To date only polygonal mod-
els based on FEM and BEM discretizations have been considered,
although other variants are possible within the linear systems de-
scription presented in the following sections.

Of particular relevance is the work done by researchers at INRIA
who have made extensive use of a real time elastostatic FEM model
for liver related surgical simulations [6, 5, 9]. During a precompu-
tation phase they have used condensation [35] as well as iterative
methods [8] to compute displacement responses due to unit forces
applied to vertices on the “free” boundary. At run time, they solve
a small system of equations to determine the correct superposition
of responses to satisfy the applied surface constraints, which may
be identified as a case of the capacitance matrix approach. We note
that the point-like contact approach used in [8] could benefit from
pressure mask concepts (§6). Recently, they have used anisotropic
material properties for the liver [29]. Other groups have also used
the precomputed elastostatic FEM approach of [6] for surgical sim-
ulation, e.g., the KISMET surgical simulator [23] incorporates pre-
computed models to provide high-fidelity haptic force feedback.

A limitation of the GF precomputation strategy is that incre-
mental runtime modifications of the model require extra runtime
computations. While it may be too costly for interactive applica-
tions, this can also be efficiently performed using low-rank updating
techniques such as for static reanalysis in the engineering commu-
nity [22]. For surgical simulation, a practical approach has been
to use a hybrid domain decomposition approach in which a more
easily modified dynamic model is used in a smaller region to be
cut [9, 17].

Finally, the authors presented a interactive animation technique
in [21] which combined precomputed GFs of boundary element
models with matrix-updating techniques for fast boundary value
problem (BVP) solution. Although computer haptics was an in-
tended application, no force feedback implementation was men-
tioned. This paper generalizes that approach with a broad GF-based
linear systems framework that subsumes the discretization issues of
both [21] and the FEM approaches of [6, 8].

2.2 Other Elastic Models

Various approaches have been taken to simulate dynamic elastic
models, by addressing commonly encountered difficulties such as
the computational complexity of time-stepping 3D models, and nu-
merical time integration issues, e.g., stiffness and stability. In or-
der to meet the intense demands of force feedback rendering rates,
most have opted for a multirate simulation approach. It is worth
noting explicitly that methods for interactively simulating soft dy-
namic objects are in many ways complementary to the CMA meth-
ods presented here for simulating relatively stiff LEM. A few no-
table examples are now mentioned.

Local buffer models were presented by Balaniuk in [2] for ren-
dering forces computed by e.g., deformable object, simulators
which can not deliver forces at fast rendering rates. An applica-
tion of the technique was presented for a virtual echographic exam

training simulator in [10]. While we do not use the same approach
here, the local buffer model concept is related to our capacitance
matrix method for force computation.

Astley and Hayward [1] introduced an approximation for linear
viscoelastic FEM models that also exploits linearity, in this case by
precomputing multilevel Norton equivalents for the system’s stiff-
ness matrix. By doing so, haptic interaction is possible by em-
ploying an explicit multirate integration scheme wherein a model
associated with the contact region is integrated at a higher rate than
the remaining coarser model.

Çavuşoǧlu and Tendick [7] also use a multirate approach. Bal-
anced model reduction of a linearization of their nonlinear dynam-
ical lumped element model is used to suggest a spatially localized
dynamic model approximation for force feedback rendering. While
promising, the example considered is a very special case of a sup-
ported model, and it is unclear how the local model would be de-
rived in more generic geometric cases, as well as in the presence
of nonlocal influences such as for multiple changing contacts, e.g.,
with surgical tools.

Debunne et al. [11] presented a space-time approach for simu-
lating a hierarchical multirate dynamic linear-strain model. Zhuang
and Canny [34] use a dynamic lumped finite element model exhibit-
ing nonlinear (Green’s) strain. It is capable of being time-stepped
at graphics frame rates for sufficiently soft objects using an ex-
plicit integration scheme. Interactive simulation of dynamic elastic
models exclusively for superquadric shapes was considered by Ra-
manathan and Metaxas [31]. Volumetric and voxel-based modeling
approaches for surgical simulation have also been considered, e.g.,
by Gibson et. al. [13].

3 Linear Elastostatic Boundary Model
Preliminaries

Linear elastostatic objects are essentially three-dimensional lin-
ear springs, and as such they are useful modeling primitives for
physically-based simulations. The unfamiliar reader might consult
a suitable background reference before continuing [3, 18, 35, 4, 21].

In this section, background material for a generic discrete GF
description for a variety of precomputed linear elastostatic mod-
els is provided. Conceptually, GFs form a basis for describing all
possible deformations of a LEM subject to a certain class of con-
straints. This is useful because it (1) provides a common language
to describe all discrete LEMs, (2) subsumes extraneous discretiza-
tion details by relating only physical quantities, and (3) clarifies the
generality of the force feedback algorithms described later.

Another benefit of using GFs is that they provide an efficient
means for exclusively simulating only boundary data (displace-
ments and forces) if desired. While it is possible to simulate various
internal volumetric quantities (see §3.5), simulating only boundary
data involves less computation. This is sufficient since we are pri-
marily concerned with interactive simulations that impose surface
constraints and provide feedback via surface deformation and con-
tact forces.

3.1 Geometry and Material Properties

Given that the fast solution method is based on linear systems prin-
ciples, essentially any linear elastostatic model with physical ge-
ometric and material properties is admissible. We shall consider
models in three dimensions, although many arguments also ap-
ply to lower dimensions. Suitable models would of course include
bounded volumetric objects with various internal material proper-
ties, as well as special subclasses such as thin plates and shells.
Since only a boundary or interface description is utilized for spec-
ifying user interactions, other exotic geometries may also be easily
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considered such as semi-infinite domains, exterior elastic domains,
or simply any set of parametrized surface patches with a linear re-
sponse. Similarly, numerous representations of the surface and as-
sociated displacement shape functions are also possible, e.g., poly-
hedral, NURBS or subdivision surfaces [32].

3.2 Nodal Displacements and Tractions

Let the undeformed boundary be denoted by Γ. The change in
shape of the surface is described by the surface displacement field
u(x), x ∈ Γ, and the surface force distribution is called the trac-
tion2 field p(x), x ∈ Γ. We will assume that each surface field is
parametrized by n nodal variables (see Figure 1), so that the dis-
crete displacement and traction vectors are

u = [u1, . . . , un]T (1)

p = [p1, . . . , pn]T , (2)

respectively, where each nodal value is a vector in R
3. This descrip-

tion admits a very large class of surface displacement and traction
distributions.

Γu

Figure 1: Illustration of discrete nodal displacements u defined at
vertices on the undeformed boundary Γ (solid blue line), that re-
sult in a deformation of the surface (to dashed red line). Although
harder to illustrate, a similar definition exists for the traction vec-
tor, p.

In order to relate traction distributions to forces, define a scalar
function space, L, on the model’s boundary:

L = span {φj(x), j = 1 . . . n, x ∈ Γ} , (3)

where φj(x) is a scalar basis function associated with the jth node.
The continuous traction field is then a 3-vector function with com-
ponents in L,

p(x) =
n∑

j=1

φj(x)pj , (4)

The force on any surface area is equal to the integral of p(x) on
that area. It then follows that the nodal force associated with any
nodal traction is given by

fj = ajpj where aj =

∫

Γ

φj(x)dΓx (5)

defines the area associated with the jth node.
Our implementation uses linear boundary element models, for

which the nodes are vertices of a closed triangle mesh. The mesh
is modeled as a Loop subdivision surface [24] to conveniently ob-
tain multiresolution models for rendering as well as uniformly pa-
rameterized surfaces ideal for BEM discretization and deformation
depiction. The displacement and traction fields have convenient
vertex-based descriptions

uj = u(xj), pj = p(xj),

2Surface traction describes force per unit area.

where xj ∈ Γ is the jth vertex. The traction field is a piecewise
linear function, and φj(x) represents a “hat function” located at the
jth vertex with φj(xj) = 1. Given our implementation, we shall
often refer to node and vertex interchangeably.

3.3 Discrete Boundary Value Problem (BVP)

At each step of the simulation, a discrete BVP must be solved
which relates specified and unspecified nodal values, e.g., to deter-
mine deformation and feedback forces. Without loss of generality,
it shall be assumed that either position or traction constraints are
specified at each boundary node, although this can be extended to
allow mixed conditions, e.g., normal displacement and tangential
tractions. Let nodes with prescribed displacement or traction con-
straints be specified by the mutually exclusive index sets Λu and
Λp, respectively, so that Λu∩Λp = ∅ and Λu∪Λp = {1, 2, ..., n}.
In order to guarantee an equilibrium constraint configuration we
will require that there is at least one displacement constraint, i.e.,
Λu 6=∅. We shall refer to the (Λu, Λp) pair as the BVP type.

Typical boundary conditions for a force feedback loop consist of
specifying some (compactly supported) displacement constraints in
the area of contact, with “free” boundary conditions (zero traction)
and other (often zero displacement) support constraints outside the
contact zone. The solution to (7) yields the rendered contact forces
and surface deformation.

Denote the unspecified and complementary specified nodal vari-
ables by

vj =

{
pj : j ∈ Λu

uj : j ∈ Λp
and v̄j =

{
ūj : j ∈ Λu

p̄j : j ∈ Λp
, (6)

respectively. By linearity of the discrete elastic model, there for-
mally exists a linear relationship between all nodal boundary vari-
ables

0 = Av + Āv̄ = Av − z (7)

where the BVP system matrix A and its complementary matrix Ā
are, in general, dense block n-by-n matrices [18]. Body force terms
associated with other phenomena, e.g., gravity, have been omitted
for simplicity, but can be included since they only add an extra con-
tribution to the z term.

A key relationship between BVP system matrices (A, Ā) of dif-
ferent BVP types (Λu, Λp) is that they are related by exchanges of
corresponding block columns, e.g., (A:j, Ā:j), and therefore small
changes to the BVP type result in low-rank changes to the BVP
system matrices (see §4.2.1).

While the boundary-only system matrices in (7) could be con-
structed explicitly, e.g., via condensation for FEM models [35] or
using a boundary integral formulation (see next section), it need
not be in practice. The discrete integral equation in Equation 7 is
primarily a common starting point for later definition of GFs and
derivation of the CMA, while GFs may be generated with any con-
venient numerical method, or even robotically scanned from real
objects [28].

3.4 Example: Boundary Element Models

A simple closed-form definition of (A, Ā) is possible for mod-
els discretized with the boundary element method (BEM) [4, 21];
BEM discretizations are possible for models with homogeneous
and isotropic material properties. The surface-based nodal quan-
tities are related by the dense linear block matrix system

0 = Hu − Gp =
n∑

j=1

hijuj −
n∑

j=1

gijpj (8)
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where G and H are n-by-n block matrices, with each matrix el-
ement, gij or hij , a 3-by-3 influence matrix with known expres-
sions [4]. In this case, the jth block columns of A and Ā may be
identified as column exchanged variants of G and H:

A:j =

{
−G:j : j ∈ Λu

H:j : j ∈ Λp
(9)

Ā:j =

{
H:j : j ∈ Λu

−G:j : j ∈ Λp
(10)

While we use BEM models for our implementation, we reiterate
that the CMA is independent of the method used to generate the
GFs (explained next).

3.5 Fast BVP Solution with Green’s Functions

GFs of a single BVP type provide an economical means for solving
(7) for that BVP, and when combined with the CMA (§4) will also
be useful for solving other BVP types. From (7), the general solu-
tion of a BVP type (Λu, Λp) may be expressed in terms of discrete
GFs3 as

v = Ξv̄ =

n∑

j=1

ξj v̄j =
∑

j∈Λu

ξj ūj +
∑

j∈Λp

ξj p̄j , (11)

where the discrete GFs of the BVP system are the block column
vectors

ξj = −
(
A

−1
Ā

)

:j
(12)

and

Ξ = −A
−1

Ā = [ξ1ξ2 · · · ξn] . (13)

Equation (11) may be taken as the definition of the discrete GFs
(and even (7)), since it is clear that the jth GF simply describes the
linear response of the system to the jth node’s specified boundary
value, v̄j . Once the GFs have been computed for one BVP type,
that class of BVPs may be solved easily using (11). An attractive
feature for interactive applications is that the entire solution can be
obtained in 18ns flops4 if only s boundary values (BV) are nonzero
(or have changed since the last time step). Temporal coherence may
also be exploited by considering the effect of individual changes in
components of v̄ on the solution v.

Further leveraging linear superposition, each GF system re-
sponse may be augmented with other additional information in or-
der to simulate other precomputable quantities. Volumetric stress,
strain and displacement data may also be simulated at preselected
locations. Applications could use this to monitor stresses and
strains to determine, e.g., if fracture occurs or that a nonlinear cor-
rection should be computed.

3.6 Precomputation of Green’s Functions

Since the GFs for a single BVP type only depend on geometric and
material properties of the deformable object, they may be precom-
puted for use in a simulation. This provides a dramatic speed-up for
simulation by determining the deformation basis (the GFs) ahead
of time. While this is not necessary a huge amount of work (see
Table 2), the principal benefits for interactive simulations are the
availability of the GF elements via cheap look-up table operations,
as well as the elimination of redundant runtime computation when

3Note on GF terminology: we are concerned with discrete numerical ap-
proximations of continuous GFs, however for convenience these GF vectors
will simply be referred to as GFs.

4counting both + and ∗

computing solutions, e.g., using a haptic device to grab a vertex of
the model and move it around simply renders a single GF.

Once a set of GFs for a LEM are precomputed, the overall stiff-
ness can be varied at runtime by scaling BVP forces accordingly,
however changes in compressibility and internal material distribu-
tions do require recomputation. In practice it is only necessary to
compute the GF corresponding to nodes which may have changing
or nonzero boundary values during the simulation.

4 Fast Global Deformation using Capaci-
tance Matrix Algorithms (CMAs)

This section presents an algorithm for using the precomputed GFs
of a relevant Reference BVP (RBVP) type to efficiently solve other
BVP types. With an improved notation and emphasis on com-
puter haptics, this section unifies and extends the approaches pre-
sented in [21] exclusively for BEM models, and for FEM models
in, e.g., [6], in a way that is applicable to all LEMs regardless of
discretization, or origin of GFs [28]. Haptic applications are con-
sidered in §5.

4.1 Reference Boundary Value Problem (RBVP)
Choice

A key step in the GF precomputation process is the initial identifi-
cation of a RBVP type, denoted by (Λ0

u, Λ0
p), that is representative

of the BVP types arising during simulations. For interactions with
an exposed free boundary, a common choice is to have the uncon-
tacted model attached to a rigid support as shown in Figure 2. The
n-by-n block system matrices associated with the RBVP are iden-
tified with a subscript as A0 and Ā0, and the corresponding GFs are
hereafter always denoted by Ξ.

Note that the user’s choice of RBVP type determines which type
of nodal constraints (displacement of traction) are commonly spec-
ified (in order to define Ξ), but is independent of the actual numer-
ical boundary values v̄ used in practice. For example, there are no
requirements that certain boundary values are zero, although this
results in fewer summations (see (11)).

0
pΛ

0
uΛFixed Boundary;

Free Boundary;

Figure 2: Reference Boundary Value Problem (RBVP) example:
The RBVP associated with a model attached to a flat rigid support is
shown with boundary regions having fixed (Λ0

u) or free (Λ0
p) nodal

constraints indicated. A typical simulation would impose contacts
on the free boundary via displacement constraints with the CMA.

4.2 Capacitance Matrix Algorithm (CMA) for BVP
Solution

Precomputed GFs speed-up the solution to the RBVP, but they can
also dramatically reduce the amount of work required to solve re-
lated BVP when used in conjunction with CMAs. This section de-
scribes the CMA and presents the derivation of related formulae.
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4.2.1 Relevant Formulae

Suppose the constraint-type changes, e.g., displacement↔traction,
with respect to the RBVP at s nodes specified by the list of nodal in-
dices S = {S1, S2, . . . , Ss}. As mentioned earlier, it follows from
(6) and (7) that the new BVP system matrices (A, Ā) are related to
those of the RBVP (A0, Ā0) by s block column swaps. This may
be written as

A = A0 +
(
Ā0 − A0

)
EET (14)

Ā = Ā0 +
(
A0 − Ā0

)
EET (15)

where E is an n-by-s block matrix

E =
[

I
:S1

I
:S2

· · · I
:Ss

]

.

containing columns of the n-by-n identity block matrix, I, speci-
fied by the list of updated nodal indices S. Postmultiplication by
E extracts columns specified by S. Throughout, E is used to write
sparse matrix operations using dense data, e.g., Ξ, and like the iden-
tity matrix, it should be noted that there is no cost involved in mul-
tiplication by E or its transpose.

Since the BVP solution is

v = A
−1

z = −A
−1

Āv̄, (16)

substituting (15) for Ā and the Sherman-Morrison-Woodbury for-
mula [15] for A−1 (using the GF definition Ξ=−A−1

0 Ā0),

A
−1 = A

−1
0 + (I + Ξ)E(−ETΞE)−1

ETA
−1
0 , (17)

into (16), leads directly to an expression for the solution in terms of
the precomputed GFs5. The resulting capacitance matrix formulae
are

v = v
(0)

︸︷︷︸

n × 1

+ (E + (ΞE))
︸ ︷︷ ︸

n × s

C
−1

︸︷︷︸

s × s

ETv
(0)

︸ ︷︷ ︸

s × 1

(18)

where C is the s-by-s capacitance matrix, a negated submatrix of
Ξ,

C = −ETΞE, (19)

and v(0) is the response of the RBVP system to z=−Āv̄,

v
(0) = A

−1
0 z =

[
Ξ

(
I − EET

)
− EET

]
v̄. (20)

4.2.2 Algorithm for BVP Solution

With Ξ precomputed, formulae (18)-(20) immediately suggest an
algorithm given that only simple manipulations of Ξ and inversion
of the smaller capacitance submatrix are required. An algorithm for
computing all components of v is as follows:

• For each new BVP type (with a different C matrix) encoun-
tered, construct and temporarily store C−1 (or LU factors) for
subsequent use.

• Construct v(0).

• Extract ETv(0) and apply the capacitance matrix inverse to it,
C−1(ETv(0)).

• Add the s column vectors (E + (ΞE)) weighted by
C−1(ETv(0)) to v(0) for the final solution v.

5Similarly from [21] with δAS =(Ā0−A0)E.

4.2.3 Complexity Issues

Given s nonzero boundary values, each new capacitance matrix LU
factorization involves at most 2

3
s3 flops, after which each subse-

quent solve involves approximately 18ns flops (s � n). This is
particularly attractive when s�n is small, such as often occurs in
practice with localized surface contacts.

An important feature of the CMA for interactive methods is that
it is a direct matrix solver with a deterministic operation count. It is
therefore possible to predict the runtime cost associated with each
matrix solve and associated force feedback subcomputations (see
§5), thus making CMAs predictable for real-time computations.

4.3 Selective Deformation Computation

A major benefit of the CMA direct BVP solver is that it is possi-
ble to just evaluate selected components of the solution vector at
runtime, with the total computing cost proportional to the number
of components desired. This is a key enabling feature for force
feedback where, e.g., contact forces are desired at different rates
than the geometric deformations. Selective evaluation would also
be useful for optimizing (self) collision detection queries, avoiding
simulation of occluded or undesired portions of the model, as well
as rendering adaptive level of detail representations.

In general, any subset of solution components may be deter-
mined at a smaller cost than computing v entirely. Let the solution
be desired at nodes specified by the set of indices D, with the de-
sired components of v extracted by ET

D. Using (18), the selected
solution components may be evaluated as

ET
Dv = ET

Dv
(0) + ET

D (E + (ΞE)) C
−1

ETv
(0)

using only O(s2 + s|D|) operations. The case where S = D is
especially important for force feedback and is discussed exclusively
in the following section.

5 Capacitance Matrices as Local Buffer
Models

For force feedback enabled simulations in which user interactions
are modeled as displacement constraints applied to an otherwise
free boundary, the capacitance matrix has a very important role: it
constitutes an exact contact force response model by describing the
compliance of the contact zone. Borrowing terminology from [2],
we say that the capacitance matrix can be used as a local buffer
model. While the capacitance matrix is used in §4.2.2 to deter-
mine the linear combination of GFs required to solve a particular
BVP and reconstruct the global deformation, it also has the desir-
able property that it effectively decouples the global deformation
calculation from that of the local force response. The most relevant
benefit for haptics is that the local contact force response may be
computed at a much faster rate than the global deformation.

5.1 Capacitance Matrix Local Buffer Model

From (18), the S components of the solution v are

ETv = ET
[

v
(0) + (E + (ΞE)) C

−1
ETv

(0)
]

= ETv
(0) +

(
ETE

)

︸ ︷︷ ︸
C
−1

ETv
(0) +

(
ETΞE

)

︸ ︷︷ ︸
C
−1

ETv
(0)

↓ I − C (from (19))

= ETv
(0) + C

−1
ETv

(0) − ETv
(0)

= C
−1

(

ETv
(0)

)

. (21)
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Consider the situation, which naturally arises in haptic interactions,
in which the only nonzero constraints are updated displacement
constraints, i.e.,

v̄ = EETv̄ ⇒ v
(0) = −v̄ (using (20)). (22)

In this case, the capacitance matrix completely characterizes the
local contact response, since (using (22) in (21))

ETv = −C
−1

ETv̄. (23)

This in turn parametrizes the global response since these compo-
nents (not in S) are

(I − EET)v = (I − EET)
[

v
(0) + (E + (ΞE)) C

−1
ETv

(0)
]

= (I − EET)(ΞE)(ETv) (24)

where we have used (23) and the identity (I − EET)E = 0. Such
properties allow the capacitance matrix and Ξ to be used to derive
efficient local models for surface contact.

For example, given the specified contact zone displacements

uS = ETv̄, (25)

the resulting tractions are

pS = ETv = −C
−1 (

ETv̄
)

= −C
−1

uS, (26)

and the rendered contact force is

f = aT
S pS =

(
−aT

S C−1
)
uS = KSuS, (27)

where KS is the effective stiffness of the contact zone used for force
feedback rendering,

aS = (aS1 , aS2 , . . . , aSs)
T ⊗ I3 (28)

represents nodal areas (5), and I3 is the scalar 3-by-3 identity ma-
trix. A similar expression may be obtained for torque feedback.
The visual deformation corresponding to solution components out-
side the contact zone is then given by (24) using pS =ETv.

5.2 Example: Single Displacement Constraint

A simple case, which will be discussed in much greater detail in §6,
is that of imposing a displacement constraint on single a node k
which otherwise had a traction constraint in the RBVP6. The new
BVP therefore has only a single constraint switch with respect to
the RBVP, and so s=1 and S= {k}. The capacitance matrix here
is just C=−Ξkk so that the kth nodal values are related by

pk = −C
−1

ūk = (Ξkk)−1
ūk or ūk = Ξkkpk.

The capacitance matrix can generate the force response, f =akpk,
required for haptics in O(1) operations, and for graphical feedback
the corresponding global solution is v=ξkpk.

5.3 Force Feedback for Multiple Displacement
Constraints

When multiple force feedback devices are interacting with the
model by imposing displacement constraints, the force and stiff-
ness felt by each device are tightly coupled in equilibrium. For
example, the stiffness felt by the thumb in Figure 3 will depend
on how the other fingers are supporting the object. For multiple
contacts like this, the capacitance matrix again provides an efficient
force response model for haptics. Without presenting the equations
in detail, we shall just mention that the force responses for each of
the contact patches can be derived from the capacitance matrix in a
manner similar to equations (25)-(28).

6This case occurs, for instance, when the tip of a haptic device comes
into contact with the free surface of an object.

Figure 3: Grasping simulation: Using a CyberTouch data input de-
vice from Virtual Technologies Inc. (Top), a virtual hand (Bottom)
was used to deform an elastostatic BEM model with approximately
900 surface degrees of freedom (dof) at graphical frame rates (>30
FPS) on a personal computer. The capacitance matrix algorithm
was used to impose displacement constraints on an otherwise free
boundary, often updating over 100 dof per frame. While force feed-
back was not present, the capacitance matrices computed could also
have been used to render contact forces at a rate higher than that of
the graphical simulation.

6 Surface Stiffness Models for Point-like
Contact

The second part of this paper concerns a special class of boundary
conditions describing point-like contact interactions. Such interac-
tions are commonly in the haptics literature for rigid surface mod-
els [26, 19]. Unlike their rigid counterparts, special care must be
taken with elastic models to define finite contact areas for point-like
interactions since point-like contacts defined only as single-vertex
(§5.2) or nearest neighbour [8] constraints lead to mesh-related ar-
tifacts, and ambiguous interactions as the mesh is refined (see Fig-
ure 4). However, the benefit of point-like contacts comes from the
convenience of the point-like parameterization of the contact and
not because the contact is highly concentrated or “pin-like”. We
present an approach using vertex pressure masks which maintains
the single contact description yet distribute forces on a specified
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scale. This allows point contact stiffnesses to be consistently de-
fined as the mesh scale is refined, and provides an efficient method
for force feedback rendering of forces with regular spatial variation
on irregular meshes.

Figure 4: Point contact must not be taken literally for elastic mod-
els: This figure illustrates the development of a displacement sin-
gularity associated with a concentrated surface force as the contin-
uum limit is approached. In the left image, an upward unit force ap-
plied to a vertex of a discrete elastic model results in a finite vertex
displacement. As the model’s mesh is refined (middle and right im-
age), the same concentrated force load eventually tends to produce
a singular displacement at the contact location, and the stiffness of
any single vertex approaches zero (see Table 1). Such point-like
constraints are mathematically ill-posed for linear models based on
a small-strain assumption, and care must be taken to meaningfully
define the interaction.

6.1 Vertex Pressure Masks for Distributed Point-
like Contacts

In this section, the distribution of force is described using
compactly-supported per-vertex pressure masks defined on the free
boundary in the neighbourhood of each vertex.

6.1.1 Vertex Pressure Mask Definition

Scalar pressure masks provide a flexible means for modeling vec-
tor pressure distributions associated with each node. This allows
a force applied at the ith node to generate a traction distribution
which is a linear combination of {φj(x)} and not just φi(x).

In the continuous setting, a scalar surface density ρ(x) : Γ→R

will relate the localized contact force f to the applied traction p via7

p(x) = ρ(x)f

which in turn implies the normalization condition
∫

Γ

ρ(x)dΓx = 1. (29)

In the discrete setting, the piecewise linear surface density on Γ is

ρ(x) =
n∑

j=1

φj(x)ρj ∈ L, (30)

and is parameterized by the discrete scalar vertex mask vector,

ρ = [ρ1, ρ2, . . . , ρn]T .

Substituting (30) into (29), the discrete normalization condition sat-
isfied becomes

aT ρ = 1, (31)

where a are the vertex areas from (5). Notice that the mask density
ρ has units of 1

area
.

In practice, the vertex pressure mask ρ may be specified in a va-
riety of ways. It could be specified at runtime, e.g., as the byprod-
uct of a physical contact mechanics solution, or be a user specified
quantity. We shall consider the case where there is a compactly

7Tensor-valued masks for torque feedback can also be computed.

supported scalar function ρ(x) specified at each vertex on the free
boundary. The corresponding discrete vertex mask ρ may then be
defined using nodal collocation (see Figure 5),

ρj =

{
ρ(xj), j ∈ Λ0

p,
0, j ∈ Λ0

u.
,

followed by suitable normalization,

ρ :=
ρ

aT ρ
,

to ensure the satisfaction of (31).

(x)ρ

0

p

f

Figure 5: Collocated scalar masks: A direct means for obtaining a
relative pressure amplitude distribution about each node, is to em-
ploy a user-specified scalar functional of the desired spatial scale.
The scalar pressure mask is then given by nodal collocation (left),
after which the vector traction distribution associated with a nodal
point load is then computed as the product of the applied force vec-
tor and the (compactly supported) scalar mask (right).

In the following, denote the density mask for the ith vertex by
the n-vector ρi, with nonzero values being indicated by the set of
masked nodal indices Mi. Since the intention is to distribute force
on the free boundary, masks will only be defined for i∈Λ0

p. Addi-
tionally, these masks will only involve nodes on the free boundary,
Mi⊂Λ0

p, as well as be nonempty, |Mi| > 0.

6.1.2 Example: Spherical Mask Functionals

Spherically symmetric radially decreasing mask functionals with
a scale parameter were suitable candidates for constructing vertex
masks via collocation on smooth surfaces. One functional we used
(see Figure 6 and 7) had linear radial dependence,

ρi(x; r) =

{

1 − |x−xi|
r

, |x − xi| < r,
0, otherwise.

,

where r specifies the radial scale8. The effect of changing r is
shown in Figure 6.

Figure 6: Illustration of changing mask scale: An exaggerated
pulling deformation illustrates different spatial scales in two un-
derlying traction distributions. In each case, pressure masks were
generated using the linear spherical mask functional (see §6.1.2) for
different values of the radius parameter, r.

8r may be thought of as the size of the haptic probe’s tip.
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(a) a(x) (b) ‖K(x)‖ (c) masked ‖K(x)‖

Figure 7: Effect of pressure masks on surface stiffness: Even models with reasonable mesh quality, such as this simple BEM kidney model,
can exhibit perceptible surface stiffness irregularities when single-vertex stiffnesses are used. A plot (a) of the vertex area, a, clearly indicates
regions of large (dark red) and small (light blue) triangles. In (b) the norm of the single-vertex surface stiffness, ‖K(x)‖, reveals a noticeable
degree of mesh-related stiffness artifacts. On the other hand, the stiffness plotted in (c) was generated using a pressure mask (collocated linear
sphere functional (see §6.1.2) of radius twice the mesh’s mean edge length) and better approximates the regular force response expected of
such a model. Masks essentially provide anti-aliasing for stiffnesses defined with discrete traction distributions, and help avoid “soft spots.”

6.2 Vertex Stiffnesses using Pressure Masks

Having consistently characterized point-like force loads using ver-
tex pressure masks, it is now possible to calculate the stiffness of
each vertex. In the following sections, these vertex stiffnesses will
then be used to compute the stiffness at any point on model’s sur-
face for haptic rendering of point-like contact.

6.2.1 Elastic Vertex Stiffness, KE

For any single node on the free boundary, i ∈ Λ0
p, a finite force

stiffness, Ki∈R
3×3, may be associated with its displacement, i.e.,

f = Kiui, i ∈ Λ0
p.

As a sign convention, it will be noted that for any single vertex
displacement

ui · f = ui · (Kiui) ≥ 0, i ∈ Λ0
p

so that positive work is done deforming the object.
Given a force f applied at vertex i∈Λ0

p, the corresponding dis-
tributed traction constraints are

pj = ρi
jf .

Since the displacement of the ith vertex is

ui =
∑

j∈Mi

ρi
jΞijf ,

therefore the effective elastic stiffness of the masked vertex is

Ki = K
E
i =




∑

j∈Mi

ρi
jΞij





−1

, i ∈ Λ0
p. (32)

Some examples are provided in Table 1 and Figure 7.
Therefore, in the simple case of a single masked vertex displace-

ment constraint ui, the local force response model exactly deter-
mines the resulting force, f = Kiui, distributed in the masked re-
gion. The corresponding globally consistent solution is

v = ζif =




∑

j∈Mi

ρi
jξj



 f

where ζi is the convolution of the GFs with the mask ρ, and char-
acterizes the distributed force load. The limiting case of a single
vertex constraint corresponds to Mi ={i} with ρi

j =δij/ai so that
the convolution simplifies to ζi =ξi/ai.

Mesh Level Vertices ‖K‖F , Single ‖K‖F , Masked
1 34 7.3 13.3
2 130 2.8 11.8
3 514 1.1 11.2

Table 1: Vertex stiffness dependence on mesh resolution: This ta-
ble shows vertex stiffness (Frobenius) norms (in arbitrary units) at
the top center vertex of the BEM model in Figure 10(a), as geomet-
rically modeled using Loop subdivision meshes for three different
levels of resolution. The stiffness corresponding to a single vertex
constraint exhibits a large dependence on mesh resolution, and has
a magnitude which rapidly decreases to zero as the mesh is refined.
On the other hand, the stiffness generated using a vertex pressure
mask (collocated linear sphere functional (see §6.1.2) with radius
equal to the coarsest (level 1) mesh’s mean edge length) has sub-
stantially less mesh dependence, and quickly approaches a nonzero
value.

6.2.2 Rigid Vertex Stiffness, KR

For rigid surfaces a finite force response may be defined using an
isotropic stiffness matrix,

K
R = kRigidI3 ∈ R

3×3, kRigid > 0.

This is useful for defining responses at position constrained vertices
of a deformable model,

Ki = K
R, i ∈ Λ0

u, (33)

for at least two reasons. First, while it may seem physically am-
biguous to consider contacting a constrained node of a deformable
object, it does allow us to define a response for these vertices with-
out introducing other simulation dependencies, e.g., how the haptic
interaction with the elastic object support is modeled. Second, we
shall see in §6.3 that defining stiffness responses at these nodes is
important for determining contact responses on neighbouring trian-
gles which are not rigid.

8



Vol. 2, Number 1, Haptics-e, September 27, 2001
http://www.haptics-e.org

6.3 Surface Stiffness from Vertex Stiffnesses

Given the vertex stiffnesses, {Ki}
n
i=1, the stiffness of any location

on the surface is defined using nodal interpolation

K(x) =
n∑

i=1

φi(x)Ki, x ∈ Γ, (34)

so that (K(x))kl ∈ L. Note that there are no more than three
nonzero terms in the sum of (34), corresponding to the vertices of
the face in contact. In this way, the surface stiffness may be contin-
uously defined using only |Λ0

p| free boundary vertex stiffnesses and
a single rigid stiffness parameter, kRigid, regardless of the extent of
the masks. The global deformation is then visually rendered using
the corresponding distributed traction constraints.

For a point-like displacement constraint ū applied at x∈Γ on a
triangle having vertex indices {i1, i2, i3}, the corresponding global
solution is

v =
∑

i∈{i1,i2,i3}∩Λ0
p

ζiφi(x)f . (35)

This may be interpreted as the combined effect of barycentrically
distributed forces, φi(x)f , applied at each of the triangle’s three
masked vertex nodes, which is consistent with (38).

6.4 Rendering with Finite Stiffness Haptic De-
vices

Similar to haptic rendering of rigid objects, elastic objects with
stiffnesses greater than some maximum renderable magnitude (due
to hardware limitations) have forces displayed as softer materials
during continuous contact. This can be achieved using a haptic ver-
tex stiffness, KH

i , which is proportional to the elastic vertex stiffness,
KE

i . While the stiffnesses could all be uniformly scaled on the free
boundary, this can result in very soft regions if the model has a wide
range of surface stiffness. Another approach is to set

K
H
i = ηiK

E
i where ηi = min

(

1,
‖KR‖

‖KE
i ‖

)

,

so that the elastic haptic model is never more stiff than a rigid hap-
tic model. The surface’s haptic stiffness KH(x) is then determined
using (34), so that ‖KH(x)‖ ≤ ‖KR‖, ∀x ∈ Γ.

In accordance with force reflecting contact, the deformed elas-
tic state corresponds to the haptic force applied at the contact lo-
cation xC. This produces geometric contact configurations simi-
lar to that shown in Figure 8, where the haptic displacement uH

can differ from the elastic displacement uE. The geometric defor-
mation is determined from the applied force f and equation (35).
Note that when the haptic and elastic stiffnesses are equal, such
as for soft materials, then so are the elastic and haptic displace-
ments. In all cases, the generalized “god object” [36] or “surface
contact point” [33] is defined as the parametric image of xC on the
deformed surface.

7 Experimental Results

GFs were precomputed using the boundary element method (BEM)
with piecewise linear boundary elements. Table 2 provides timings
for the BEM precomputation stages as well as the submillisecond
cost of simulating point-like deformations using GFs. Further tim-
ings of CMA suboperations are shown in Table 3, and reflect inter-
active performance for modest numbers of constraint type changes,
s. All timings were performed using unoptimized Java code on
a single processor Pentium III, 450MHz, 256MB computer with

f
H

Ex

nE
uE

Hu

nC

xC

x

Figure 8: Geometry of point-like contact: The surface of the
static/undeformed geometry (curved dashed line) and that of the de-
formed elastic model (curved solid line) are shown along with: ap-
plied force (f ), static contact location (xC), deformed elastic model
contact location (xE), haptic probe-tip location (xH), haptic con-
tact displacement (uH = xH − xC), elastic contact displacement
(uE =xE−xC), static contact normal (nC) and elastic contact normal
(nE). Once the contact is initiated by the collision detector, the slid-
ing frictional contact can be tracked in surface coordinates at force
feedback rates.

Sun’s JDK 1.3 client JVM for Windows. These times can be signif-
icantly reduced by using hardware-optimized matrix libraries, and
current computing hardware.

An application of the CMA for multiple distributed contacts with
unilateral contact constraints was the grasping task illustrated in
Figure 3 using the LEM from Figure 10(a). A short video clip is
also available online [20].

Our current force feedback implementation is based on the point-
like contact approach discussed in the previous section. Forces
are rendered by a 3 dof PHANToMTM haptic interface (model 1.0
Premium), on a dual Pentium II computer running Windows NT.
The haptic simulation was implemented in C++, partly using the
GHOST c© toolkit, and interfaced to our ARTDEFO elastostatic ob-
ject simulation written in JavaTMand rendered with Java 3DTM. The
frictional contact problem is computed by the haptic servo loop at
1 kHz, which then prescribes boundary conditions for the slower
graphical simulation running at 25–80 Hz. For a point-like con-
tact, it was only necessary to perform collision detection on the
undeformed model, so this was done using the GHOST c© API. A
photograph of the authors demonstrating the simulation is shown
in Figure 9, and a number of screen shots for various models are
shown in Figure 10. A short video clip is also available online [20].

We observed that the vertex masks were successful in producing
noticeable improvements in the smoothness of the sliding contact
force, especially when passing over regions with irregular trian-
gulations (see Figure 7). We have not conducted a formal human
study of the effectiveness of our simulation approach. However,
the haptic simulation has been demonstrated to hundreds of users
at two conferences: the 10th Annual PRECARN-IRIS (Institute for
Robotics and Intelligent Systems) Conference (Montreal, Quebec,
Canada, May 2000) and in the ACM SIGGRAPH 2000 Exhibition
(New Orleans, Louisiana, USA, July 2000). Users reported that
the simulation felt realistic. In general, the precomputed LEM ap-
proach was found to be both stable and robust.

8 Summary and Discussion

We have presented a detailed approach for real time solution of
boundary value problems for discrete linear elastostatic models
(LEM), regardless of discretization, using precomputed GFs in con-
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(a) A simple nodular shape with a fixed base region.

(b) A kidney-shaped model with position constrained vertices on part of the occluded side.

(c) A plastic spatula with a position constrained handle.

(d) A seemingly gel-filled banana bicycle seat with matching metal supports.

Figure 10: Screenshots from real time haptic simulations: A wide range of ARTDEFO models are shown subjected to various displacements
using the masked point-like contacts of §6. For each model, the middle of the three figures is uncontacted by the user’s interaction point (a
small green ball).

10
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Elastic Model # Vertices (n) # Faces Precomp (min) LUD % Simulate (ms)
Nodule 130v (89 free) 256f 1.1 1.1% 0.05
Kidney 322v (217 free) 640f 7.7 3.1% 0.13
Spatula 620v (559 free) 1248f 45 5.7% 0.34
Banana Seat 546v (245 free) 1088f 25 20.0% 0.15

Table 2: GF precomputation and simulation times for the BEM models depicted in Figure 10. All GFs corresponding to moveable free
vertices (in Λ0

p) were computed, and the precomputation time (Precomp) of the largest model is less than an hour. As is typical of BEM
computations for models of modest size (n < 1000), the O(n2) construction of the matrices (H and G in equation 8) is a significant portion
of the computation, e.g., relative to the O(n3) cost of performing the LU decomposition (LUD %) of the A matrix. The last column indicates
that submillisecond graphics-loop computations (Simulate) are required to determine the point contact deformation response of each model’s
free boundary.

# Updates, s LU Factor (ms) LU Solve (ms) (ΞE)(ETv̄) for n=100 (ms)
10 0.54 0.03 0.38
20 2.7 0.15 0.74
40 19 0.58 1.7
100 310 5.7 5.7

Table 3: Timings of CMA suboperations such as LU decomposition (LU Factor) and back-substitution (LU Solve) of the capacitance matrix,
as well as the weighted summation of s GFs (per 100 nodes) are shown for different sizes of updated nodal constraints, s.

Figure 9: : Photograph of simulation in use: Users were able to
push, slide and pull on the surface of the model using a point-like
manipulandum. Additionally, it was possible to change the surface
friction coefficient, as well as the properties of the pressure mask,
with noticeable consequences. The PHANToMTM (here model 1.0
Premium) was used in all force feedback simulations, and is clearly
visible in the foreground.

junction with capacitance matrix algorithms (CMAs). The data-
driven CMA formulation highlights the special role of the capac-
itance matrix in computer haptics as a contact compliance useful
for generating contact force and stiffness models, and provides a
framework for extending the capabilities of these models.

Additionally, the important special case of point-like contact was
addressed with special attention given to the consistent definition
of contact forces for haptics. While this topic has been discussed
before, we have introduced vertex masks to specify the distribution
of contact forces in a way which leads to physically consistent force
feedback models which avoid the numerical artifacts which lead to
nonsmooth rendering of contact forces on discrete models, as wells
as ill-defined contacts in the continuum limit.

There are several issues to be addressed by future work on the
simulation of LEMs for computer haptics.

One of the promises of linear GF models is that it should be pos-
sible to precompute and haptically touch large-scale models even if
they are too large to be graphically rendered. However, the CMA
presented here is very efficient for small models (small n) and lim-
ited constraints (small s), but further optimizations and required for
precomputing, storing and simulating large-scale LEMs. Extending
LEMs to accomodate geometric and material nonlinearities is also
an area of study. Results addressing these problems will appear
shortly in subsequent publications.

A key challenge for interactively rendering elastic models is the
plausible approximation of friction in the presence of multiple dis-
tributed elastic-rigid and elastic-elastic contacts. While large con-
tact areas are a potential problem for LEM haptics, i.e., due to
large update costs, the accompanying collision detection and fric-
tion problems appear to be at least as difficult. Incorporation of
LEMs into hybrid interactive dynamical simulations is also a rela-
tively unexplored area.

Finally, the same issues (perceptible force regularity and spatial
consistency) which motivated our approach for a single point-like
contact, also arise for multiple point-like contacts and in general
with multiple distributed contacts. The tight coupling of force stiff-
nesses between all contact zones, and therefore each (networked)
force feedback device, can make this a difficult problem in prac-
tice.

A Justification of Interpolated Traction
Distributions for Point Contact

This section derives the nodal boundary conditions associated with
a localized point contact at an arbitrary mesh location. The prac-
tical consequence is that the discrete traction distribution may be
conveniently interpolated from suitable nearby nodal distributions
or masks.

Given a continuous surface traction distribution, p(x), a corre-
sponding discrete distribution Φ(x)p may be determined by a suit-
able projection into L of each Cartesian component of p(x). For
example, consider the projection of a scalar function on Γ defined
as the minimizer of the scalar functional E : R

3n 7→ R,

E(p) =

∫

Γ

[
‖p(x) − Φ(x)p‖2

2 + ‖BΦ(x)p‖2
2

]
dΓx,

where B :L 7→R is some linear operator that can be used, e.g., to

11



Vol. 2, Number 1, Haptics-e, September 27, 2001
http://www.haptics-e.org

penalize nonsmooth functions, and Φ(x) : R
3n 7→ R

3 is a nodal
interpolation matrix defined on the surface,

Φ(x) = [φ1(x)φ2(x) · · ·φn(x)] ⊗ I3, x ∈ Γ,

where I3 is the 3-by-3 identity matrix. The Euler-Lagrange equa-
tions for this minimization are

∑n

j=1

(∫

Γ
[φi(x)φj(x) + (Bφi(x)) (Bφj(x))] dΓx

)
pj

=
∫

Γ
φi(x)p(x)dΓx i = 1, 2, . . . , n,

which, in an obvious notation, is written as the linear matrix prob-
lem

Ap = f (36)

to be solved for the nodal traction values p. Note that A has units
of area.

The relevant traction distribution for point-like contact is a scale-
independent concentrated point load

p(x) = p
δ(x) = f

δδ(x − x
δ)

which models a force f δ delivered at xδ ∈Γ. The force n-vector in
equation (36) has components

fi = φi(x
δ)f δ

and the corresponding pressure distribution’s nodal values are

p = A−1
f.

For compactly supported basis functions, φi(x), f has only a small
number of nonzero components for any given x. Hence φi(x

δ) are
the interpolation weights describing the contribution of the nearby
nodal pressure distributions, here specified by the columns of A−1.

As an example, consider the important case where L is a contin-
uous piecewise linear function space with φi(xj) = δij . This was
the space used in our implementation. In this case, at most only
three components of f are nonzero, given by the indices {i1, i2, i3}
which correspond to vertices of the contacted triangle τ δ , i.e., for
which xδ ∈ τ δ . The values φi(x

δ) are the barycentric coordinates
of xδ in τ δ . The pressure distribution’s nodal values are then

p = A−1
f (37)

=

3∑

k=1

(
A−1)

:ik
fik

=

3∑

k=1

φik
(xδ)

[(
A−1)

:ik
f

δ
]

=
3∑

k=1

φik
(xδ)p(ik), (38)

where p(ik) is the pressure distribution corresponding to the appli-
cation of the load directly to vertex ik, and ():ik

refers to block
column ik of the matrix. Therefore the piecewise linear pressure
distribution for a point load applied at a barycentric location on a
triangle is equal to the barycentric average of the pressure distri-
butions associated with the point load applied at each of the trian-
gle’s vertices. This may be recognized as an elastic generalization
of force shading [27] for rigid models.

Note that the jth column of A−1 is a vertex mask that describes
the nodal distribution of the load applied to the jth vertex. Modify-
ing the penalty operator B results in masks with varying degrees of
smoothness and spatial localization.
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[23] U. Kühnapfel, H.K. Çakmak, and H. Maaß. 3d modeling for
endoscopic surgery. In Proceedings of IEEE Symposium on
Simulation, pages 22–32, Delft University, Delft, NL, October
1999.

[24] Charles Loop. Smooth subdivision surfaces based on tri-
angles. Master’s thesis, University of Utah, Department of
Mathematics, 1987.

[25] K. W. Man, M. H. Aliabadi, and D. P. Rooke. Analysis of
Contact Friction using the Boundary Element Method. In
M. H. Aliabadi and C. A. Brebbia, editors, Computational
Methods in Contact Mechanics, chapter 1, pages 1–60. Com-
putational Mechanics Publications and Elsevier Applied Sci-
ence, 1993.

[26] T. H. Massie and J. K. Salisbury. The phantom haptic inter-
face: A device for probing virtual objects. In ASME Winter
Annual Meeting, Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, Chicago, IL, Nov.
1994.

[27] Hugh B. Morgenbesser and Mandayam A. Srinivasan. Force
shading for haptic shape perception. In Proceedings of the
ASME Dynamics Systems and Control Division, volume 58,
1996.

[28] Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen
Lang, John E. Lloyd, Joshua L. Richmond, and Som H. Yau.
Scanning Physical Interaction Behavior of 3D Objects. In
Computer Graphics Proceedings (SIGGRAPH 2001). ACM
Siggraph, 2001.

[29] G. Picinbono, J. C. Lombardo, H. Delingette, and N. Ayache.
Anisotropic elasticity and force extrapolation to improve re-
alism of surgery simulation. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, San Fran-
cisco, USA, 2000.

[30] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes: The Art of Scien-
tific Computing, chapter Sherman-Morrison and Woodbury,
pages 66–70. Cambridge University Press, Cambridge, 1987.

[31] R. Ramanathan and D. Metaxas. Dynamic deformable mod-
els for enhanced haptic rendering in virtual environments. In
IEEE Virtual Reality Conference, 2000.

[32] P. Schröder, D. Zorin, T. DeRose, D. R. Forsey, L. Kobbelt,
M. Lounsbery, and J. Peters. Subdivision for modeling and
animation. SIGGRAPH 99 Course Notes, August 1999.

[33] Sensable Technologies, Inc. GHOST SDK,
http://www.sensable.com.

[34] Yan Zhuang and John Canny. Haptic interaction with global
deformations. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, 2000.

[35] O. C. Zienkiewicz. The Finite Element Method. McGraw-
Hill Book Company (UK) Limited, Maidenhead, Berkshire,
England, 1977.

[36] C. B. Zilles and J. K. Salisbury. A constraint-based god-object
method for haptic display. In ASME Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems, volume 1, pages
149–150, Chicago, IL (US), 1994.

13


