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Abstract

Significant local structure of terrain surfaces can be
described by structural lines which are connected sets
of points where the surface is approrimately cylindrical,
1.€., the ratio of the principal curvatures is large. At
each point curvature ts maxrimal in the curvature direc-
tion associated with the curvature with larger absolute
value. These lines form the skeleton of the surface for
constructing triangulated approximations.

Significant structures are best identified at coarse
scales but need to be deformed to fine scale before use.
Standard snake algorithms using prorimity in the im-
age plane do not suffice. Farlier work used the maxi-
mal curvature field as an intrinsic (curvature) coordi-
nate system. This leads to shrinkage of the open curves
under wnternal forces. A better solution is to restrict the
movement of the lines to the principal curvature direc-
tions forming an intrinsic coordinate system over the
surface.

We evaluate the results of deforming lines by utiliz-
ing the deformed lines as structural lines for triangula-
tion. Points at coarse scale move along curvature lines
to the proper location at fine scale. The resulting fine
scale lines are better positioned for terrain representa-
tion than those derived from prorimity alone and pro-
duce more compact triangulations.

1 Introduction

Many terrain surfaces have prominent structural
lines, such as ridges, cliffs, channels, and slope breaks,
that form the surface skeleton and are important in con-
structing Triangulated Irregular Network (TIN) models
from grid models of elevation, often called digital ele-
vation models (DEM)[5, 4, 8]. TINs are used in sur-
face visualization and interaction, where the number
of points in the triangulation determines its rendering
time. Structural lines are critical for applications ([9]) in
hydrographical and terrain analysis. Many techniques
for approximating a DEM with a TIN incrementally im-
prove an initial triangulation[5, 4] by adding points.

[3] first identify surface and slope discontinuities,
based on the local differential structure of the surface,
which is independent of the choice of coordinate sys-
tem, and include them in the resulting approximation.

-

Figure 1: (Top) Terrain with p-lines (black:o = 1.0, and
white:o = 4.0).

[7] also inserts “crest” lines into adaptive meshes to im-
prove stereo-driven surface approximation. [4] found
ridge and channel lines and inserted them in the trian-
gulation. Little and Shi[8] showed how to extract struc-
tural lines based on local curvature descriptions and use
them as the basis for a constrained Delaunay triangu-
lation of the surface. The structural lines for a small
section of the Crater Lake DEM are shown in white in

Fig. 1.

We control the scale of features by varying smooth-
ing. At small scales, i.e., when o of the Gaussian
smoothing is small, there are many local “creases” in
the surface (black lines in Fig. 1), whose inclusion need-
lessly increases the size of the triangulation; white lines
show structural lines when ¢ = 4.0. Smoothing the sur-
face isolates more important “structural” lines[8], at the
cost of displacement of the lines from their position at
fine scale. Any location error introduced in the initial
points/lines forces the triangulation method to intro-
duce further points. To achieve maximum compaction,
the coarse lines must be better localized.

In [2], edges at a series of closely spaced scales are
deformed successively from coarse to fine scale. The
method assigns each edge point at coarse scale to the
nearest point at the next finer scale. But image plane
proximity does not lead to the best localization; it re-
places continuous surface variation with distance to the
binary structural line. We provide an analysis of the lo-



cal differential structure of terrain curvature. We then
explain how to deform coarse scale structural lines along
lines of curvature to fine scale position, resulting in im-
proved localization.

2 Curvature Descriptions

The following section describes the differential geom-
etry of structural lines. The tangent plane at a point
is orthogonal to the surface normal 7. Cutting the sur-
face by a plane containing 7 defines a direction ¥ in the
tangent plane; in that direction the normal curvature
is the curvature of the curve formed by the intersection
of the surface and the plane. The principal directions
are the two orthogonal directions #; and ¢y where the
value of the normal curvature reaches its maximum and
minimum values, k; and k5. kq 1s the curvature of max-
imum absolute value and t_{ and t; are vectors 1n the
local tangent plane pointing the direction of maximum
and minimum curvature. A point is elliptic when both
curvatures are positive, hyperbolic when their signs are
mixed, and umbilic when both are equal. At a cylindri-
cal point one curvature is zero.

The principal directions on the surface define a mesh
except in umbilic regions. At a slope break, k; will be
large and ks will be small; the surface will be approx-
imately cylindrical. Figure 2(a) shows a surface with
the local geometrical structure.

To find structural lines we determine whether the
maximum curvature k; at each point is locally max-
imal in the direction #;. Figure 2(b) shows the struc-
tural lines for a surface with sinusoidal cross section; (c)
shows |k1| for the Crater Lake region. Non-maximum
suppression 1dentifies locally maximal points; it looks
in the direction of maximum curvature, ¢;, and marks
points where |kq| is greater than neighboring points
along the line of curvature.

A p-line connects points of locally maximal positive
curvature. An n-line has negative curvature. To find
these lines, we track lines and connect the points, em-
ploying hysteresis with thresholding, using the magni-
tude of the maximum curvature. Tracking, followed by
pruning short lines, produces the p-lines shown in Fig. 1.
As o increases the number of p-lines decreases.

2.1 Snakes: Deforming Large Scale Lines

Figure 1 shows how smoothing eliminates small sur-
face perturbations (Fig. 3)(a). Lines at a small scale
(¢ = 1.0) are too numerous and are not necessarily
globally significant. The lines at a coarse scale (o = 4.0)
may have been displaced by smoothing. The crest on
a hill where slope on one side is significantly steeper
will be displaced toward the shallower side (Fig. 3)(b).
When displaced lines are used as the skeleton, triangu-
lation includes undesirable “corrective” points near the
p-line to model the actual location of the crest.

The “snake” method[6, 1] moves the coarse-level line
to the location of the fine-level line. The snake method
allows the line to deform to minimize the sum of internal

Figure 2: (a)Local surface geometry: the principal di-
rections are orthogonal; #1 is the direction of maximum
curvature. (b) Surface structural lines where curvature
is locally maximal in direction 1. (c) |ki|, maximal
curvature, for the terrain section; darker is higher.

(a)

Figure 3: (a)A slice along column 70. Black: orig-
inal DEM; white: smoothed by Gaussian (o = 4.0).
(b) Smoothing an asymmetrical hill displaces the maxi-
mum, where the p-line lies, toward the shallower slope.

energy, the energy of stretching the line, and ezternal
energy, the attractive force applied by some external
source. [8] uses the maximal curvature field computed
at the fine scale (Fig. 2(c)).
2.2 Local curvature structure

Using the maximal curvature as the external force
field for snaking improves significantly upon simple
proximity, but it has unforeseen effects, including
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Figure 4: (a) The gradient of the maximal curvature
on the ellipsoid. (b) computed curvature lines for the
ellipsoid, in the direction of maximal curvature.

(a) (b)
(b) Hyperboloid

Figure 5: (a) Ellipsoid with p-line.
with p- and n-lines.

shrinking lines. We will examine local differential ge-
ometry of simple surfaces to understand these effects.

In the ellipsoid 22+ 2y? = 1 the p-line lies on the hor-
izontal axis; there is no n-line (Fig. 5(a)). The gradient
of the maximal curvature field appears in Fig. 4(a); the
curvature lines in the direction of maximal curvature
appear in (b). There are two curvature directions at all
but umbilic points; we show the ¢; direction of maximal
absolute curvature.

There is one line of maximal curvature through a
local extremum and two through a saddle. At an ex-
tremum, curvature i1s positive in both principal direc-
tions; only one curvature direction can be maximal. For
a saddle one line has negative normal curvature and the
other positive. Both are locally maximal in the absolute
value of curvature; one is a positive extremum and the
other negative.

Figure 6(a) shows the gradient of the maximum cur-
vature field for a hyperbolic surface (zy = 1); peaks
are located in the upper left and lower right; a p-line
runs between them and an n-line runs from lower left
to upper right (Fig. 5(b)). Figure 6(b) shows its cur-
vature lines. The normal curvature of the surface is
positive in direction z = y and negative in the orthogo-
nal direction. There are two sets of curvature lines; the
transition between one set and the other occurs at the
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Figure 6: (a) Gradient of maximal curvature.
imal curvature lines on the hyperboloid.
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Figure 7: Terrain curvature directions (o = 1.0) with
white structural lines (¢ = 4.0) and lines deformed us-
ing curvature lines and then snaked to ¢ = 1.0.

vertical and horizontal axes.

Because the value of the maximum curvature is not
constant along structural lines, the gradient of the max-
imum curvature field is not aligned with the lines of cur-
vature. Far from the maximal curvature lines the gra-
dient points directly to the lines, but as it approaches
them it turns gradually to approach them. In contrast,
curvature lines become orthogonal close to the struc-
tural line. Without internal forces (springs between
points along the line), points moving to reduce exter-
nal forces will move along the gradient of the maximal
curvature, hence retracting or shrinking the lines.

2.3 Retraction

In a snake external forces attracts the curves and
stretching links between points generates energy as the
curve deforms to fit external forces. In an open curve,
the curve will retract toward local maxima where the
energy reduction by retraction balances the energy in-
crease by moving away from the maximum. The curve
can reduce energy by moving its end point. An endpoint
at position 0 will move to position 1 only if the reduc-
tion in energy from external forces dFE = (F; — Eg) — K
is negative; dF < 0 means the point will move. Fj; is



Figure 8: The results of sliding along curvature lines
from coarse scale to fine scale (black); standard snaking
applied to the results of sliding (white).

the external energy at position i. K balances exter-
nal and internal forces; — K represents the reduction in
stretching energy from moving one unit. If the end of
the line lies near a relative maximum of attractive force,
the endpoint will move toward the maximum, along the
line, thus shrinking the line. Reducing K to 0 is not
a solution, since the snaked line then adjusts to small
local variations in the curvature field, losing its fidelity
to coarse scale structure.
2.4 Moving on the curvature line

To avoid retraction, we implemented sliding: each
point moves independently along the maximal curva-
ture line. There are no internal forces in our simple
implementation. A point on a coarse scale line moves
along the finer scale curvature line until it reaches a lo-
cal maximum of the maximal curvature or lies upon the
structural line found at the finer scale (Fig. 8: black).
The points are not restricted to moving to lattice points
but can use curvature directions interpolated between
the lattice points. After the points have been moved
to be near or upon the fine scale lines, they are snaked
by dynamic programming using the maximal curvature

field(Fig. 8: white).

3 Experiments

To determine whether including structural lines can
improve the resulting triangulation, we compare the size
of triangulations based on structural lines deformed ei-
ther by the maximal curvature field or the curvature
lines. The fine scale lines are better localized, but may
not be significant. The goal of deforming the lines from
coarse scale to fine scale is to balance localization with
fidelity to the larger structure of the surface. A good re-
sult approximates the surface well leading to a compact
approximation of the DEM.

We can vary the quality of the TIN approximation to
the DEM by varying the target RMS error. The metric
is the relative reduction of the size of the TIN relative
to the TIN without using structural lines; the lines are
most effective in reducing the TIN size for rough ap-
proximations. We report the average relative size for a

broad range of target RMS error and for rough RMS
error. The curvature sliding method improves upon the
best result reported in [8], reducing the size by 22% for
broad range and 42% for rough TINs. When the final
snaking stage is omitted, the reductions are 18% and
36%), indicating that final curve repositioning matters
and that retraction along the lines aids the fit since it
reduces the size of the lines.

Instead of deforming lines at coarse scale to fine scale
we can dilate the coarse scale lines and mask the fine
scale lines. The resulting subset of the fine scale lines
leads to reasonable reduction on average (18%), but rel-
atively poor rough fits (23% vs. 42%), where the bene-
fits of structural lines are most significant.

4 Discussion

Choosing the proper intrinsic coordinate system to
determine the external field for deformation improves
the mapping from coarse to fine scales. Proximity in
the image plane does not lead to proper tracking across
scale, nor does using the gradient of maximal curvature.
Selecting the curvature directions based on maximal
curvature leads to a better balance between coarse scale
detection and fine scale localization. This avoids retrac-
tion caused by movement along the structural lines. The
resulting localized lines form an improved skeleton for
triangulation and reduce the number of points needed
to achieve a given error.
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