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Abstract

In this paper, we introduce pressure masks for support-
ing the convenient abstraction of localized scale-specific
point-like contact with a discrete elastic object. While
these masks may be defined for any elastic model, spe-
cial attention is given to the case of point-like contact
with precomputed linear elastostatic models for pur-
poses of haptic force-feedback.

1 Introduction

It has long been recognized that point contact is a
convenient abstraction for haptic interactions, and the
PHANToMTM haptic interface is a testament to that
fact. While it is possible to consider the contact area
to be truly a point for rigid models, this is not possible
for elastic models, as infinite contact pressure can lead
to various inconsistencies. The solution is simply to as-
sume the contact zone has tractions distributed over a
finite surface area. We propose to do this efficiently and
consistently by introducing pressure masks for defining
nodal traction distributions. This addresses at least two
core issues. First, having a point contact with force dis-
tributed over a finite area is somewhat contradictory,
and the traction distribution is effectively an underde-
termined quantity without any inherent spatial scale.
This is resolved by treating the contact as a single dis-
placement constraint whose traction distribution enters
as a user (or manipulandum) specified parameter. The
distribution of force on the surface of the model can then
be consistently specified in a fashion which is indepen-
dent of the scale of the mesh. Second, given the model
is discrete, special care must be taken to ensure a suffi-
ciently regular force response on the surface, since irreg-
ularities are very noticeable during sliding contact mo-
tions. By suitably interpolating nodal force responses,
displacement constraints can be imposed which will re-
sult in regular haptic force-feedback.

The pressure mask approach is particularly effective
for haptics when used with linear elastostatic models
with precomputed Green’s functions, since force re-
sponse can usually be computed at O(1) cost. In §2,
minimal definitions and notation for discussing the elas-
tostatic model are presented. Afterwards, in §3, the
construction and definition of pressure masks is given,
and it is shown how to compute nodal (or vertex) stiff-
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nesses for elastostatic models and then use these to con-
sistently define the surface’s stiffness.

Much of this material is presented in much greater
detail in [JP]; throughout, an identical notation is used.

Figure 1: Point Contact Must Not be Taken Literally
for Elastic Models : This figure illustrates the devel-
opment of a displacement singularity associated with a
concentrated surface force as the continuum limit is ap-
proached. In the left image, a unit force applied to a
vertex of a discrete elastic model results in a finite vertex
displacement. As the model’s mesh is refined (middle
and right image), the same concentrated force load even-
tually tends to produce a singular displacement at the
contact location, and the stiffness of any single vertex
approaches zero (see Table 6).

2 Linear Elastostatic Model Back-
ground

Precomputed linear elastostatic models of various dis-
cretization origins are efficient candidates for real time
haptic interaction [BC96, JP99, JP]. A general bound-
ary Green’s function description is now very briefly pre-
sented for use in §3.

2.1 Nodal Displacement and Traction Variables

Consider a discrete elastic model with n surface nodes,
e.g., polyhedral mesh vertices, for which nodal quanti-
ties are defined. Specifically, let the surface displace-
ment u(x) and traction p(x) fields be parametrized by
n-vectors of nodal variables,

u = [u1, . . . , un]
T (1)

p = [p1, . . . , pn]
T , (2)

where each of the values uk and pk belong to R3. Since
our boundary element implementation uses vertex-
based triangle mesh models, we shall often refer to a
node as a vertex.



2.2 Reference Boundary Value Problem
(RBVP) Definition

A major benefit of using linear elastostatic models for
haptics is that it is possible to precompute the Green’s
functions to one particular class of boundary value prob-
lem (BVP), a relevant reference BVP (RBVP), and be
able to efficiently compute components of those solu-
tions rapidly at run time (see Figure 2).

Without loss of generality, assume that either posi-
tion or traction constraints are specified at each bound-
ary node. Let the mutually exclusive nodal index sets
Λ0
u and Λ0

p specify nodes with displacement and trac-

tion constraints, respectively, so that Λ0
u ∩ Λ0

p = ∅ and

Λ0
u ∪ Λ0

p = {1, 2, ..., n}. Specifying boundary values at
each of the n nodes defines a BVP to be solved for de-
sired unknown variables, e.g., haptic contact forces, at
each step of the simulation. Denote the unspecified and
complementary specified nodal variables by

vj =

�
pj : j ∈ Λ0

u

uj : j ∈ Λ0
p

and v̄j =

�
ūj : j ∈ Λ0

u

p̄j : j ∈ Λ0
p

(3)
respectively.
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Figure 2: Reference Boundary Value Problem (RBVP)
Example: The RBVP associated with a model attached
to a rigid support is shown with boundary regions hav-
ing fixed (Λ0

u) or free (Λ0
p) nodal constraints indicated.

A typical haptic simulation would then impose contacts
on the free boundary nodes, Λ0

p.

2.3 RBVP Solution using Green’s Functions

The general solution of the RBVP is conveniently ex-
pressed using Green’s functions of the RBVP as

v = Ξv̄ =
X
j∈Λ0

u

ξj ūj +
X
j∈Λ0

p

ξj p̄j , (4)

where the reference system Green’s functions (RSGFs)
are the block columns of the matrix

Ξ = [ξ1ξ2 · · · ξn] ∈ R3n×3n. (5)

The jth RSGF describes the effect of the jth node’s spec-
ified boundary value, v̄j. In practice it is only necessary
to compute RSGFs for nodes which may have changing
nonzero boundary values during the simulation.

Since the RSGFs only depend on the RBVP and the
geometric and material properties of the deformable ob-
ject, they may be precomputed for use in a simulation.

Note that this applies to any discrete linear elastostatic
model, regardless of internal material properties or the
discretization technique employed.

3 Surface Stiffness Models for Point-
like Contact

This section presents the pressure mask approach for
elastic models (§3.1), then specializes to linear elasto-
static models for which the pressure masks may be used
to compute vertex stiffnesses (§3.2) which are in turn
used to compute the surface stiffness (§3.3).

3.1 Pressure Masks for Distributed Point-like
Contacts

In this section, pressure masks are defined and used to
specify the traction distribution associated with force
applied via a masked vertex constraint.

3.1.1 Discrete Traction Space Definitions

In order to characterize traction distributions for the
discussion of mask construction and the smoothness of
force response, it is necessary to define a discrete scalar
function space, L, on the model’s boundary, Γ. Let

L = span {φj(x), j = 1 . . . n, x ∈ Γ} , (6)

where φj(x) is a scalar basis function associated with

the jth node. The traction field is then a vector function
whose components lie in L,

p = p(x) =

nX
j=1

φj(x)pj .

(x)ρ

0

p

f

Figure 3: Collocated Scalar Masks: A direct means
for obtaining a relative pressure amplitude distribution
about each node, is to employ a user-specified scalar
functional of the desired spatial scale. The scalar pres-
sure mask is then given by nodal collocation (left), after
which the vector traction distribution associated with a
nodal point load is then computed as the product of
the applied force vector and the (compactly supported)
scalar mask (right).

3.1.2 Pressure Mask Definition

Scalar relative pressure masks provide a flexible means
for modeling vector pressure distributions associated
with each node. This allows a force applied at the ith



node to generate a traction distribution which is a linear
combination of {φj(x)} and not just φi(x).

In the continuous setting, a scalar surface density
ρ(x) : Γ → R will relate the localized contact force f
to the applied traction p via

p(x) = ρ(x)f

which in turn implies the normalization conditionZ
Γ

ρ(x)dΓx = 1. (7)

In the discrete setting, the surface density on Γ is

ρ(x) =

nX
j=1

φj(x)ρj ∈ L, (8)

and is parameterized by scalar pressure mask vector,

ρ = [ρ1, ρ2, . . . , ρn]
T .

Substituting (8) into (7), the discrete normalization con-
dition satisfied becomes

aT ρ = 1, (9)

where

ai =

Z
Γ

φi(x)dΓx (10)

defines the vertex area. Notice that the mask density ρ
has units of 1

area
.

In practice, the vertex pressure mask ρ may be speci-
fied in a variety of ways. It could be specified at runtime,
e.g., as the byproduct of a physical contact mechan-
ics solution, or be a user specified quantity. We shall
consider the case where there is a compactly supported
scalar function ρ(x) specified at each vertex on the free
boundary. The corresponding pressure mask ρmay then
be defined using nodal collocation (see Figure 3),

ρj =

�
ρ(xj), j ∈ Λ0

p,
0, j ∈ Λ0

u.
,

followed by suitable normalization to satisfy (9).
In the following, denote the density mask for the ith

vertex by the n-vector ρi, with nonzero values being in-
dicated by the set of masked nodal indices Mi. Since
the intention is to distribute force on the free bound-
ary, masks will only be defined for i∈Λ0

p. Additionally,
these masks will only involve nodes on the free bound-
ary, Mi⊂Λ0

p, as well as be nonempty, |Mi| > 0.

3.1.3 Example: Spherical Mask Functionals

Spherically symmetric mask functionals with a scale pa-
rameter were suitable candidates for constructing vertex
masks via collocation on smooth surfaces. One exam-
ple, which was commonly used (see Figure 4 and 6), is
a functional with linear radial dependence,

ρi(x; r) =

�
1− |x−xi|

r , |x− xi| < r,
0, otherwise.

,

Figure 4: Illustration of Changing Mask Scale: Exag-
gerated pulling deformations clearly illustrate different
spatial scales in the underlying traction distribution. In
each case, pressure masks were automatically generated
using the linear spherical mask functional (see §3.1.3)
for different values of the radius parameter, r. This ex-
ample shows (left) a single vertex mask, and (right) a
mask involving several nearby vertices. Note that in
each case the surface has been once refined using Loop
subdivision.

where r specifies the radial scale1. The effect of chang-
ing r is shown in Figure 4.

3.2 Vertex Stiffnesses using Pressure Masks

Having consistently characterized point-like force loads
using vertex pressure masks, it is now possible to cal-
culate the stiffness of each vertex. In the following sec-
tions, these vertex stiffnesses will then be used to com-
pute the stiffness at any point on model’s surface for
haptic rendering of point-like contact.

3.2.1 Elastic Vertex Stiffness

For any single node, i, on the free, i∈Λ0
p, or rigidly fixed

boundary, i∈Λ0
u, a finite force stiffness, Ki∈R3×3, may

be associated with its displacement, i.e.,

f = Kiui, i ∈ Λ0
p.

Given a force f applied at vertex i∈Λ0
p, the correspond-

ing distributed traction constraints are

pj = ρijf . (11)

Then using (4), the displacement of the ith vertex is

ui =
X
j∈Mi

Ξijpj =
X
j∈Mi

ρijΞijf ,

so that the effective stiffness of the masked vertex is

Ki =

0
@ X
j∈Mi

ρijΞij

1
A
−1

, i ∈ Λ0
p. (12)

It follows from (4) and (11) that the corresponding glob-
ally consistent solution is

v = ζif =

0
@ X
j∈Mi

ρijξj

1
A f (13)

1r may be thought of as the size of the haptic probe’s tip.



where ζi is the convolution of the RSGFs with the mask
ρi, and characterizes the distributed force load.

# Vertices Single ‖K‖2 Masked ‖K‖2
34 7.3 13.3
130 2.8 11.8
514 1.1 11.2

Figure 5: Vertex Stiffness Dependence on Mesh Reso-
lution: This table shows vertex stiffness magnitudes
(arbitrary units) for a BEM model at three different
Loop subdivision mesh resolutions. The stiffness corre-
sponding to a single vertex constraint exhibits a large
dependence on mesh resolution, and has a magnitude
which rapidly decreases to zero as the mesh is refined.
On the other hand, the stiffness generated using a ver-
tex pressure mask (collocated linear sphere functional
(see §3.1.3) with radius equal to the coarsest mesh’s
mean edge length) has substantially less mesh depen-
dence, and quickly approaches a nonzero value.

3.2.2 Rigid Vertex Stiffness

For surfaces of rigid models, a finite force response may
be defined using an isotropic stiffness matrix,

KR = kRigid I3 ∈ R3×3, kRigid ∈ R.

This is useful for defining a response at position con-
strained vertices of a deformable model,

Kj = KR, j ∈ Λ0
u, (14)

for determining contact responses on neighbouring tri-
angles which are not rigid.

(a) a(x) (b) ‖K(x)‖2 (c) ‖K(x)‖2

Figure 6: Effect of Pressure Masks on Surface Stiff-
ness: Even models with reasonable mesh quality, such
as this simple BEM kidney model, can exhibit haptically
perceptible surface stiffness irregularities when single-
vertex stiffnesses are used. A plot (a) of the vertex area,
a, clearly indicates regions of large (dark red) and small
(light blue) triangles. In (b) the norm of the single-
vertex surface stiffness, ‖K(x)‖2, reveals a noticeable
degree of mesh-related stiffness artifacts. On the other
hand, the stiffness plotted in (c) was generated using a
pressure mask (collocated linear sphere functional (see
§3.1.3) of radius twice the mesh’s mean edge length) and
better approximates the regular force response expected
of such a model.

3.3 Surface Stiffness from Vertex Stiffnesses

Given the vertex stiffnesses, {Kj}nj=1, the surface stiff-
ness is defined using nodal interpolation

K(x) =

nX
j=1

φj(x)Kj, x ∈ Γ, (15)

so that (K(x))ij ∈L. Note that there are usually only a

small number of nonzero terms in the sum of (15). In
this way, the surface stiffness may be continuously de-
fined using only |Λ0

p| free boundary vertex stiffnesses and
a single rigid stiffness parameter, kRigid , regardless of the
extent of the masks. The benefit of pressure masks is
clearly visible in Figure 6 for piecewise linear L.

It follows [JP] that the global deformation corre-
sponding to the displacement constraint ū applied on
the free boundary at x∈Γ is

v =
X
i∈Λ0

p

ζiφi(x)f =
X
i∈Λ0

p

0
@ X
j∈Mi

ρijξj

1
Aφi(x)f . (16)

We note that this may be interpreted as an elastostatic
generalization of force shading [MS96].

4 Summary and Conclusion

We have introduced pressure masks for the consistent
definition of forces arising from point-like haptic in-
teractions. This leads to a computationally efficient
means for obtaining regular surface force responses
from discrete elastostatic models. Experiments using
a PHANToMTM interface confirmed that the pressure
masks produced a perceptible improvement.
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