
Linköping Electronic Articles in
Computer and Information Science

Vol. 3(1998): nr 8

Linköping University Electronic Press
Linköping, Sweden

http://www.ep.liu.se/ea/cis/1998/008/

Decision Theory, the Situation
Calculus and Conditional Plans

David Poole
Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C., Canada V6T 1Z4

poole@cs.ubc.ca
http://www.cs.ubc.ca/spider/poole

Published on June 12, 1998 by
Linköping University Electronic Press

581 83 Linköping, Sweden

Linköping Electronic Articles in
Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c
�

1998 David Poole
Typeset by the author using LATEX

Formatted using étendu style

Recommended citation:� Author � . � Title � . Linköping Electronic Articles in
Computer and Information Science, Vol. 3(1998): nr 8.
http://www.ep.liu.se/ea/cis/1998/008/. June 12, 1998.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linköping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

This paper shows how to combine decision theory and logical representa-

tions of actions in a manner that seems natural for both. In particular, we

assume an axiomatization of the domain in terms of situation calculus, us-

ing what is essentially Reiter’s solution to the frame problem, in terms of

the completion of the axioms defining the state change. Uncertainty is han-

dled in terms of the independent choice logic, which allows for independent

choices and a logic program that gives the consequences of the choices. As

part of the consequences are a specification of the utility of (final) states,

and how (possibly noisy) sensors depend on the state. The robot adopts

conditional plans, similar to the GOLOG programming language. Within

this logic, we can define the expected utility of a conditional plan, based

on the axiomatization of the actions, the sensors and the utility. Sensors

can be noisy and actions can be stochastic. The planning problem is to find

the plan with the highest expected utility. This representation is related to

recent structured representations for partially observable Markov decision

processes (POMDPs); here we use stochastic situation calculus rules to spec-

ify the state transition function and the reward/value function. Finally we

show that with stochastic frame axioms, action representations in proba-

bilistic STRIPS are exponentially larger than using the representation pro-

posed here.

1

1 Introduction

This paper presents a way to combine decision theory, the situation calculus,
and conditional plans. It ignores many other issues such as concurrent ac-
tions, time, multiple agents, and the derivation of causal rules from domain
constraints. This follows from the idea that we want to separately study the
orthogonal issues, and try to devise solutions to individual subproblems that
are not incompatible with the solutions to other subproblems. The goal is
simplicity; the resulting system is simple, as one would hope when trying
to combine two fundamental concepts.

The rest of this introduction gives philosophical starting points for this
paper. Some of these arguments are standard and are given here to make
them open to scrutiny.

1.1 Reasoning about actions

In this paper, we consider reasoning about actions to be about one simple
problem: given a model of itself and the world, and some goals (or prefer-
ences), what should an agent do?

This is complicated because:� What an agent should do now depends on what it will do in the fu-
ture. The only reason I am typing these words now is because I plan
to submit this to a journal in the future. The only reason a robot may
be going in a particular direction is because it is going to get a key to
open a door.� What an agent will do in the future depends on what it will observe
in the future. Only a stupid agent, or one in a very uninteresting en-
vironment, would look at the world, decide what to do, and then act
without consulting its sensors. If I observe someone has written a re-
lated paper to this one, I will change what I write to reflect this. If my
robot notices that the door it is getting the key for is already open, or
notices that it’s path is blocked, it should change what it does to reflect
this new information.� What an agent will observe in the future depends on what it does now.
The classic example of this is in medical tests; it’s not uncommon for
doctors to inflict pain and risk on a patient for the sole purpose of find-
ing information from which they can condition future actions. Even
more mundanely an agent will observe different things depending on
whether it turns right or left.

Work on reactive robots (Brooks 1986, Brooks 1991) had proposed ignor-
ing the first point; the agent reacts to the environment without considering
what it will do in the future. There are many domains for which simple re-
action to the environment, without thinking, will not lead the agent to a de-
sirable state. What we can learn from the work on reactive robots is that
agents must be able to react (quickly) to the environment. The representa-
tion in this paper is not at odds with reactive agents (Poole, Mackworth &

2

Goebel 1998, Chapter 12), but rather emphasises how to reason about cur-
rent actions based on thinking about the future.

Classic planning work in AI (Fikes & Nilsson 1971, Yang 1997) has
ignored the second point. The idea is to make a linear plan based on as-
suming what the world is like, and to patch this plan or replan if execution
monitoring says that the plan has not worked. However, for virtually ev-
ery interesting domain there are no actions whose consequences can be pre-
dicted based on information known at planning time. When the information
needed to predict the consequences of actions will become known at execu-
tion time, you can use conditional planning (Manna & Waldinger 1980, Peot
& Smith 1992). It would seem that conditional planning lets us solve the
complications of planning as set out above; an agent can consider adopting
a conditional plan that lets it condition its actions on what it observes.

The traditional view of conditional planning (Manna & Waldinger 1980,
Peot & Smith 1992) assumes that the agent can achieve the goal no matter
which path through the conditional plan was taken. This assumes perfect
sensors and a perfect model of the world (apart from the conditions that will
be directly observable during execution) so that you can prove that your con-
ditional plan will reach the goal.

This means that you need to approximate the problem; the effects of ac-
tions are not completely predictable in the real world. Unexpected things
do happen, and you can’t always observe all of the conditions that affect
the outcome of an action. This is the idea of satisficing (Simon 1996); you
need to approximate the problem of finding the best plan to that of finding
a good-enough plan.

However both sequential (unconditional) and traditional conditional plan-
ning are problematic for a number of reasons:� Not all failures are born equal. The robot failing to pick up a key is

very different from it falling down the stairs. In the first case it can
just try again, in the second case you may need to repair or replace
the robot (and anything else it fell on). Sometimes it may be worth
the risk of falling down the stairs if it has to get past the stairs. At
other times it may not. It is important to consider not only the most
likely state of affairs, but also deviations from these.� Ignoring the possible effects that are not the most likely can lead to
bad plans. For example, it is usually a good idea to wear a seat belt
when driving in a car. However, when we only consider solving a
goal, we never come up with a plan to wear a seat belt. This is because
we don’t want it to be a goal state to have an accident while wearing a
seat belt (it is usually very easy to achieve having an accident). In fact,
we want to avoid having an accident! By approximating the problem
we preclude good solutions to the actual problem. This becomes even
more ridiculous, when we worry about finding exact solutions to these
approximate problems.� There may not be any normal state of affairs. There are many actions
where the outcomes are not completely predictable at all. For exam-

3

ple, the effect of picking up a cup often is that everything in the cup
remains in it, and that nothing else gets disturbed, but anyone with
kids knows that this isn’t the normal outcome (and robots are not, and
won’t be for a long time, as adept as kids in picking up cups).

The problem is that any model of a domain is an approximation of the do-
main. The idea of satisficing is good; to simplify the problem to make it
computationally easy to solve. It isn’t of much use when the simplified prob-
lem isn’t easy to solve or when the simplified problem does not lead itself
to approximate solutions. It is dangerous when we forget the formalization
is only an approximation, and treat it as the real thing.

There is an alternative. To quote Rich Sutton1:

Approximate the solution, not the problem.

It may be better to more accurately model the problem and our knowledge
and ignorance of the problem (including modelling the approximation caused
by the modelling activity itself). This doesn’t mean we have to model at
the lowest level of detail or that there cannot be a more accurate model of
the world, but rather that the model contains a true reflection of the knowl-
edge and ignorance contained in the model. We would also like a model that
allows for the existence of good-enough plans (or approximately optimal
plans). The specification of a “good enough” plan shouldn’t be embedded
in the model, but should be usable during inference. Providing a modelling
language that lets us model our knowledge of a domain and lets us find ap-
proximately optimal plans is the promise of decision-theoretic planning.

1.2 Decision Theory

Bayesian decision theory is one of the simplest, most universally applica-
ble, yet most misunderstood theory about reasoning and acting. Bayesian
decision theory specifies what an agent should (decide to) do, given its pref-
erences and partial information about its environment.

The appeal of Bayesian decision theory is based on theorems (Von Neu-
mann & Morgenstern 1953, Savage 1972) that say that under certain rea-
sonable assumptions about preferences, an agent will choose an action that
maximizes its expected utility (see Myerson (1991) and Ordeshook (1986)
for good introductions). It is normative in the sense that if an agent isn’t act-
ing according to the tenants of decision theory, it must be violating one of
the assumptions. This result does not mean that an agent has to explicitly
manipulate probabilities and utilities, but that its decisions can be rational-
ized in these terms. For AI researchers building intelligent systems, we can
argue that if we want to build a rational agent that acts according to the ten-
ants of decision theory, we should reason directly in terms of probabilities
and utilities: if the agent is going to act according to some probabilities and

1From Reinforcement Learning: Lessons for Artificial Intelligence,
A talk presented by Rich Sutton at the 1997 International Joint Con-
ference on Artificial Intelligence Nagoya, Japan, August 28, 1997.
http://www-anw.cs.umass.edu/ rich/IJCAI97/IJCAI97.html

4

utilities, we should let it act according to the most reasonable set of proba-
bilities and utilities.

Bayesian decision theory is radical in that it suggests that all uncertainty
be summarised in terms of probabilities. This includes genuinely stochas-
tic phenomenon, ignorance, partial observability, or simplifications due to
modelling assumptions. In all of these cases, probability is a measure of the
agent’s beliefs. Bayesian decision theory goes against the permissive trend
that suggests that we try to integrate many different ways to handle uncer-
tainty2.

It is important to note that decision theory has nothing to say about rep-
resentations. Adopting decision theory doesn’t mean adopting any particu-
lar representation. While there are some representations that can be directly
extracted from the theory, such as the explicit reasoning over the state space
or the use of decision trees, these become intractable as the problem domains
become large; it is like theorem proving by enumerating the interpretations.
Adopting logic doesn’t mean you have to enumerate interpretations or gen-
erate the semantic tree (Chang & Lee 1973), nor does adopting decision the-
ory mean you have to use such representations.

Finally it should be noticed that decision-theoretic planning is very dif-
ferent from probabilistic planning (Kushmerick, Hanks & Weld 1995), where
the aim is to find a plan that reaches the goal with probability greater than
some threshold. Rather than having a goal, we specify the value of each
outcome. It is quite possible that the optimal plan never achieves the best-
possible goal; the risk in trying to get to that goal may not be worthwhile
when compared to another plan that gets to a less-valuable state (e.g., it may
not be worth trying to achieve world peace if that entails a risk of killing ev-
eryone on Earth).

1.3 Logic and Uncertainty

There are many normative arguments for the use of logic in AI (Nilsson
1991, Poole et al. 1998). These arguments are usually based on reasoning
with symbols with an explicit denotation, allowing relations amongst indi-
viduals, and quantification over individuals. This is often translated as need-
ing (at least) the first-order predicate calculus. Unfortunately, the first-order
predicate calculus has very primitive mechanisms for handling uncertainty,
namely the use of disjunction and existential quantification.

If we accept the normative arguments of Bayesian decision theory with

2One such theory that has been advocated is Dempster-Shafer theory (Shafer 1976)
which could be described as allowing disjunctive assertions about probabilities. This may be
useful for theoretical (as opposed to practical) reasoning about other agents, where you can
be uncertain about their probability. It doesn’t make sense to be uncertain about your own
beliefs when your beliefs are exactly a measure of your uncertainty. In practical reasoning
where you have to act, you will act according to some probabilities, and these are your be-
liefs. For an alternative to the view expressed here, the transferable belief model (Smets &
Kennes 1994) suggests using belief functions to represent beliefs and then converting them
to probabilities for decision making. This is more an argument about representing all up-
dating in terms of Bayesian conditioning. Smets (1991) gives a nice overview of different
models of update.

5

those for logic (and they don’t seem to be contradictory), then we have to
consider how to handle uncertainty. Bayesian decision theory specifies that
all uncertainty be handled by probability.

The independent choice logic (ICL) (Poole 1997, Poole 1998) recon-
ciles Bayesian decision theory with logic. It is designed to include the ad-
vantages of logic, but to handle all uncertainty using Bayesian decision or
game theory.

The idea is, rather than using disjunction to handle uncertainty, to allow
agents, including nature, to make choices from a choice space, and use a re-
stricted underlying logic to specify the consequences of the choices. We can
adopt acyclic logic programs (Apt & Bezem 1991) under the stable model
semantics (Gelfond & Lifschitz 1988) as the underlying logical formalism.
This logic includes no uncertainty in the sense that every acyclic logic pro-
gram has a unique stable model3. All uncertainty is handled by indepen-
dent stochastic mechanisms. A deterministic logic program gives the con-
sequences of the agent’s choices and the random outcomes.

What is interesting is that simple logic programming solutions to the
frame problem (see Shanahan 1997, Chapter 12) seem to be directly trans-
ferable to the ICL which has more sophisticated mechanisms for handling
uncertainty than the predicate calculus. I would even dare to venture that the
main problems with formalizing action within the predicate calculus arise
because of the inadequacies of disjunction to represent the sort of uncer-
tainty we need.

When mixing logic and probability, one can extend a rich logic with
probability, and have two kinds of uncertainty: that uncertainty from the
probabilities and that from disjunction in the logic (Bacchus 1990, Halpern
& Tuttle 1993). An alternative that is pursued in the independent choice
logic is to have all of the uncertainty in terms of probabilities.

1.4 Representations of Actions and Uncertainty

The combination of decision theory and planning (Feldman & Sproull 1975)
is very appealing. The general idea of planning is to construct a sequence of
steps, perhaps conditional on observations that solves a goal. In decision-
theoretic planning, this is generalised to the case where there is uncertainty
about the environment and we are interested in, not only solving a goal, but
what happens under any of the contingencies. Goal solving is extended to
the problem of maximizing the agent’s expected utility, where the utility is
an arbitrary function of the final state (or the accumulation of rewards re-
ceived earlier).

Recently there have been claims made that Markov decision processes
(MDPs) (Puterman 1990) are the appropriate framework for developing de-
cision theoretic planners (e.g., Boutilier, Dearden & Goldszmidt 1995). MDPs,
and dynamical system in general (Luenberger 1979) are based on the notion
of a state: what is true at a time such that the past at that time can only affect

3We can conclude either a or � a for every closed formula a. This cannot use disjunction
to encode uncertainty because a � b is only a consequence if one of a or b is. Note that this
is a property of the underlying logic, not a property of the ICL.

6

the future from that time by affecting the state. In terms of probability, the
future is independent of the past given the state. This is called the Markov
property. In the discrete-time Markovian view, the notion of an action is
straightforward: an action is a stochastic function from states into states.
That is, an action and a state leads to a probability distribution over result-
ing states. Again, this is the semantics of actions, it doesn’t lead to efficient
representations.

The naive representation is to represent actions explicitly; for each ac-
tion and state, give the probability distribution over states. An action can
then be represented as a s � s matrix, where s is the number of states (Luenberger
1979). As you can imagine, this soon explodes for all but the smallest state-
spaces.

Artificial intelligence researchers are very interested in finding good rep-
resentations. We usually think of the world, not in terms of states, but in
terms of propositions (or random variables). We would then like to specify
actions in terms of how the propositions at one time affect the propositions
at the next time. This is the idea behind two slice temporal Bayesian net-
works (Dean & Kanazawa 1989): we divide the state into random variables
and, for each action, write how the random variables at one time affect the
random variables at the next time. When the value of a random variable is
only affected by a few (a bounded number of) random variables at the pre-
vious stage for each action, the complexity is the number of variables times
the number of actions. This is a significant improvement over the explicit
state-space representation as the state space is exponentially larger than the
number of variables (if there are n binary variables, there are s �	� n states).

This problem is similar to the frame problem (McCarthy & Hayes 1969,
Shanahan 1997): how to concisely specify the consequences of an action
(and how to effectively use that concise specification computationally). In
the frame problem, the assumption is that an action only affects a few propo-
sitions. There have been many suggestions as to how to get compact repre-
sentations of actions under these assumptions (Shanahan 1997). This pa-
per shows how one such representation, the situation calculus (McCarthy
& Hayes 1969) can be combined with decision theory.

1.5 Modelling Agents

Another dimension for considering actions is in the capabilities of agents;
what sensing they can do, and how they choose which actions to do next.
Essentially an agent should be seen as a function of its history (what it has
done and what it has observed now and in the past) into its next action. This
is known as a transduction (Zhang & Mackworth 1995, Poole et al. 1998).
The problem with this as a specification of an agent is that an agent doesn’t
have access to its history; it only has access to what it can sense and has
remembered. There are two traditions on how to implement transductions
in agents:� In the first tradition, agents have internal states (called belief states)

and we build agents by constructing a state transition function that

7

specifies how the agent’s belief state is updated from its previous be-
lief state and its observations, and a command function (policy) that
specifies what the agent should do based on its observations and be-
lief state (Poole et al. 1998, Chapter 12). In fully observable MDPs,
the agent can observe the actual state and so doesn’t need belief states.
In partially observable MDPs (POMDPs), we assume (noisy) sensors,
where the sensor output is a stochastic function of the action and the
state. In these models, the belief state is a probability distribution
over the actual states of the system, and the state transition function
is given by the model of the action and the observation (the value re-
ceived by the sensor) and Bayes’ rule. In between these are agents
that have limited memory or limited reasoning capabilities.� In the second tradition, we can think of agents implementing robot
plans as in GOLOG (Levesque, Reiter, Lespérance, Lin & Scherl 1997).
These plans consider sequences of steps, with conditions, loops, as-
signments of values to local variables, and other features we expect
to find in programming languages. In order to react to the world, we
would expect the conditions in the branching to be observations about
the world (the values received by potentially noisy sensors) as well as
the values of internal variables (Levesque 1996).

Policies (functions from belief state and observations) and plans (composed
of primitive actions and built from sequential composition, conditionals and
iteration) are different although each can be simulated by the other. A policy
can be simulated by an iterative structure over a conditional4. A plan can
be simulated by having a program counter as part of the state (this is how
computers work).

If we are doing exact computation (finding the optimal agent) they should
be essentially the same, as they would implement the same transduction.
When we are finding approximately optimal agents, they may be very dif-
ferent as a simple plan may not correspond to a simple policy and vice versa.

In this paper we consider simple plans made up of sequential composi-
tion and conditionals (conditioning on the output of potentially noisy sen-
sors). Iteration and local variables are explored briefly in Section 2.10. In
other work, we have considered the policies within the ICL including mul-
tiple agents and noisy sensors (Poole 1997). We have also investigated con-
tinuous time in the same framework (Poole 1995).

1.6 The Situation Calculus and the ICL

The independent choice logic (Poole 1997) (an extension of probabilistic
Horn abduction (Poole 1993) to include multiple agents and negation as fail-
ure) is a simple framework consisting of independent choices make by na-
ture (and potentially other agents) and an acyclic logic program to give the
consequences of choices.

4In the traditional view of policies, the conditional would be a case statement over all
possible states. A while loop over an arbitrary condition would be like the tree-structured
policies of (Boutilier et al. 1995); these trees are representations of conditional statements.

8

In this section we sketch how the situation calculus can be embedded in
the ICL. We only need to axiomatise the deterministic aspects in the logic
programs; the uncertainty is handled separately. What gives us confidence
that we can use simple solutions to the frame problem, for example, is that
every statement that is a consequence of the facts that doesn’t depend on the
atomic choices is true in every possible world. Thus, if we have a property
that depends only on the facts and is robust to the addition of atomic choices,
then it will follow in the ICL; we would hope than any logic programming
solution to the frame problem would have this property. One such property
is Clark’s completion (Clark 1978), which is true for every predicate defined
by the logic program and isn’t part of a choice (Poole 1998).

Before we show how to add the situation calculus to the ICL, there are
some design choices that need to be made.� In the deterministic case, the trajectory of actions by the agent up to

some time point determines what is true at that point. Thus, the tra-
jectory of actions, as encapsulated by the situation term of the situa-
tion calculus (McCarthy & Hayes 1969, Reiter 1991) can be used to
denote the state, as is done in the traditional situation calculus. How-
ever, when dealing with uncertainty, the trajectory of an agent’s ac-
tions up to a point, does not uniquely determine what is true at that
point. What random occurrences or exogenous events occurred also
determines what is true. We have a choice: we can keep the semantic
conception of a situation (as a state) and make the syntactic character-
ization more complicated by perhaps interleaving exogenous actions,
or we can keep the simple syntactic form of the situation calculus, and
use a different notion that prescribes truth values. We have chosen
the latter, and distinguish the situation denoted by the trajectory of
actions, from the state that specifies what is true in the situation. In
general there will be a probability distribution over states resulting
from a set of actions by the agent. It is this distribution over states,
and their corresponding utility, that we seek to model.

This division means that agent’s actions are treated very differently
from exogenous actions. The situation terms define only the agent’s
actions in reaching that point in time. The situation calculus terms
indicate only the trajectory, in terms of steps, of the agent and essen-
tially just serve to delimit time points at which we want to be able to
say what holds. This is discussed further in Section 3.3.� None of our representations assume that actions have preconditions;
all actions can be attempted at any time. The effect of the actions can
depend on what else is true in the world. This is important because
the agent may not know whether the preconditions of an action hold,
but, for example, may be sure enough to want to try the action.� When building conditional plans, we have to consider what we can
condition these plans on. We assume that the agent has passive sen-
sors, and that it can condition its actions on the output of these sen-
sors. We only have one sort of action, and these actions only affect the

9

world (which includes both the robot and the environment). All we
need to do is to specify how the agent’s sensors depend on the world.
This does not mean that we cannot model information-producing ac-
tions (e.g., looking in a particular place) — these information produc-
ing actions produce effects that make the sensor values correlate with
what is true in the world. The sensors can be noisy; the value they
return does not necessarily correspond with what is true in the world
(of course if there was no correlation with what is true in the world,
they would not be very useful sensors).

2 The Independent Choice Logic

In this section we present the independent choice logic (ICL). The seman-
tic base is the same as that in (Poole 1997, Poole 1998), but the agents are
modelled differently. In particular, all of the choices here are controlled by
nature.

2.1 Background: Acyclic Logic Programs

We use the Prolog conventions with variables starting an upper case let-
ter and constants, function symbols, and predicate symbols starting with
lower case letters. A term is either a variable, a constant, or is of the form
f
 t ���������� tm � where f is a function symbol and t ����������� tm are terms. An atomic
formula (atom) is either a predicate symbol or is of the form p
 t � ��������� tm �
where p is a predicate symbol and t � ��������� tm are terms. A formula is either
an atom or is of the form � f , f � g or f � g where f and g are formulae. A
clause is either an atom or is a rule of the form a � f where a is an atom
and f is a formula (the body of the clause). Free variables are assumed to
be universally quantified at the level of a clause. A logic program is a set
of clauses.

A ground term is a term that does not contain any variables. A ground
instance of a term/atom/clause c is a term/atom/clause obtained by uniformly
replacing ground terms for the variables in c. The Herbrand base is the set
of ground instances of the atoms in the language (inventing a new constant
if the language does not contain any constants). A Herbrand interpreta-
tion is an assignment of true or false to each element of the Herbrand base.
If P is a program, let gr
 P � be the set of ground instances of elements of P.

Definition 2.1 (Gelfond & Lifschitz 1988) Interpretation M is a stable model5

of logic program � if for every ground atom h, h is true in M if and only if
either h � gr
�� � or there is a rule h � b in gr
�� � such that b is true in M.
Conjunction f � g is true in M if both f and g are true in M. Disjunction
f � g is true in M if either f or g (or both) are true in M. Negation � f is true
in M if and only if f is not true in M.

5This is a slight generalization of the normal definition of a stable model to include more
general bodies in clauses. This is done here because it is easier to describe the abductive
operations in terms of the standard logical operators. Note that under this definition b ���� a is the same as b � a.

10

Definition 2.2 (Apt & Bezem 1991) A logic program F is acyclic if there is
an assignment of a natural number (non-negative integer) to each element of
the Herbrand base of F such that, for every rule in gr
 F � the number assigned
to the atom in the head of the rule is greater than the number assigned to each
atom that appears in the body.

Acyclic programs are surprisingly general. Note that acyclicity does not
preclude recursive definitions. It just means that all such definitions have to
be well founded. They have very nice semantic properties, including the
following that are used in this paper:

Theorem 2.3 (Apt & Bezem 1991) Acyclic logic programs have the fol-
lowing properties:

1. There is a unique stable model.

2. Clark’s completion (Clark 1978) characterises what is true in this model.

Apt & Bezem (1991) give many examples to show that acyclic logic
programs are a good representation for models of deterministic state change
under complete knowledge.

2.2 Choice Space, Facts and the Semantics

An independent choice space theory is made of two principal components:

Choice space � : a set of sets of ground atomic formulae, such that if � � ,
and � � are in the choice space, and � �"!�#�$� then � �$% � �&�('*) . An
element of a choice space is called a choice alternative (or sometimes
just an alternative). An element of a choice alternative is called an
atomic choice.

Facts � : an acyclic logic program such that no atomic choice unifies with
the head of a clause.

Definition 2.4 Given choice space � , a selector function is a mapping +-,�/.102� such that +3
4� � �-� for all �5�6� . The range of selector function+ , written 76
�+ � is the set '8+3
4� � ,9�:�6�;) . The range of a selector function
is called a total choice. In other words, a total choice is a selection of one
member from each element of � .

The semantics of an ICL is defined in terms of possible worlds. There
is a possible world for each selection of one element from each alternative.
The atoms which follow from these atoms together with � are true in this
possible world.

Definition 2.5 Suppose we are given an ICL theory <=�>�?�&@ . For each se-
lector function + there is a possible world w A . We write w ACB �"DFEHG IKJ f , read
“f is true in world w A based on <=�C�L�&@ ”, iff f is true in the (unique) stable
model of �M0N76
�+ � . When understood from context, the <=�C�L�&@ is omitted
as a subscript of B � .

11

The fact that every proposition is either true or false in a possible world
follows from the fact that acyclic logic programs have exactly one stable
model.

Note that, for each alternative �O�P� and for each world w A , there is
exactly one element of � that’s true in w A . In particular, w A B �Q+3
4� � , and
w A !B �	R for all RM�S�UT:'8+3
V� �) .
2.3 Probabilities

The next part of the formalism is a probability distribution over the alterna-
tives6. That is, we assume we are given a function

P WX,Y02�/.[Z]\^��_L`
such thata �5�6�C�cbdfe9g P Wh
�R � �(_Y�
The probability of a proposition is defined in the standard way. For a finite
choice space, the probability of any proposition is the sum of the probabil-
ities of the worlds in which it is true. The probability of a possible world
is the product of the probabilities of the atomic choices that are true in the
world. That is, the atomic choices are (unconditionally) probabilistically
independent. Poole (1993) proves that such independent choices together
with an acyclic logic program can represent any finite probability distribu-
tion. Moreover the structure of the rule-base mirrors the structure of Bayesian
networks (Pearl 1988)7. Similarly we can define the expectation of a func-
tion that has a value in each world, as the value averaged over all possible
worlds, weighted by their probability.

When the choice space isn’t finite we can define probabilities over mea-
surable sets of worlds. In particular, it suffices to give a measure over finite
sets of finite atomic choices (Poole 1993, Poole 1998).

2.4 The ICLSC

Within the ICL we can use the situation calculus as a representation for change.
Within the logic, there is only one agent, nature, who controls all of the al-
ternatives. These alternatives thus have probability distributions over them.
The probabilities are used to represent our ignorance of the initial state and
the outcomes of actions. We can then use the situations to reflect the time
at which some fluents are true or not.

The following defines what needs to be specified as part of an indepen-
dent choice logic (for the situation calculus) theory. Note that a possible
world defines a complete history. It will specify the truth value for every
fluent in every situation. Notice that situations do not appear in this defini-
tion. This is analogous to defining the first-order predicate calculus without

6In terms of (Poole 1997), all of the alternatives are controlled by nature.
7This mapping also lets us see the relationship between the causation that is inherent in

Bayesian networks (Pearl 1995) and that of the logical formalisms. See Poole (1993) for a
discussion on the relationship, including the Bayesian network solution to the Yale shooting
problem and stochastic variants.

12

any need to define situations. Situations will provide a standard interpreta-
tion for some of the terms.

Definition 2.6 An ICLSC theory is a tuple <i�jWY� A �k-� P W�L�&@ where

�jW called nature’s choice space, is a choice space.

A called the action space, is a set of primitive actions that the agent can
perform.

k the observables, is a set of terms.

P W is a function 02�jWj.lZm\n��_L` such that

a �o�:�jW , p dfe9g P Wq
�R � �r_Y� I.e.,
P W is a probability measure over the alternatives controlled by nature.

� called the facts, is an acyclic logic program such that no atomic choice
(in an element of �jW) unifies with the head of any clause.

We model all randomness as independent stochastic mechanisms, such
that an external viewer that knew the initial state (i.e., what is true in the
situation s W), and knew how the stochastic mechanisms resolved themselves
would be able to predict what was true in any situation. This external viewer,
would thus know which possible world was the actual one, and would thus
know what is true in every situation. As we don’t know the actual world,
we have a probability distribution over them. The ICL lets us model this
in terms of independent stochastic mechanisms (these are the alternatives
with associated probability distributions) and a logic program to give the
consequences.

Before we introduce the probabilistic framework we present the situ-
ation calculus (McCarthy & Hayes 1969). The general idea is that robot
actions take the world from one situation to another situation. We assume
there is a situation s W that is the initial situation, and a function do
 A � S � that
given action A and a situation S returns the resulting situation. An agent that
knows what it has done, knows what situation it is in. It however does not
necessarily know what is true in that situation. The robot may be uncertain
about what is true in the initial situation, what the effects of its actions are
and what exogenous events occurred.

We use logic (i.e., the facts �) to specify the transitions specified by ac-
tions and thus what is true in a situation. What is true in a situation depends
on the action attempted, what was true before and what stochastic mecha-
nism occurred. A fluent is a predicate (or function) whose value in a world
depends on the situation; we use the situation as the last argument to the
predicate (function). We assume that for each fluent we can axiomatise in
what situations it is true based on the action that was performed, what was
true in the previous state and the outcome of the stochastic mechanisms.

Note that a possible world in this framework corresponds to a complete
history. A possible world specifies what is true in each situation. In other
words, given a possible world and a situation, we can determine what is true
in that situation.

13

r101 r111 r123

d
s

oor

stairs

Figure 1: The example robot environment

2.5 An Example Domain

The following ongoing example is used to show the power of the formalism.
It is not intended to be realistic.

Example 2.7 Suppose we have a robot that can travel around an office build-
ing, pick up keys, unlock doors, and sense whether the key is at the location
it is currently at. In the domain depicted in Figure 1, we assume we want
to enter the lab, and there is uncertainty about whether the door is locked or
not, and uncertainty about where the key is (and moreover the probabilities
are not independent). There are also stairs that the robot can fall down, but
it can choose to go around the long way and avoid the stairs. The utility of a
plan depends on whether it gets into the lab, whether it falls down the stairs
and the resources used. The robot starts at r _*_Y_ .
Example 2.8 We can write standard situation calculus rules; the only dif-
ference is that some of the elements of the body of a rule may be atomic
choices. The following rule says that the robot is carrying the key after it
has (successfully) picked it up:

carrying
 key � do
 pickup
 key � � S ��� �
at
 robot � Pos � S � �
at
 key � Pos � S � �
pickup succeeds
 S � �

Here pickup succeeds
 S � is true if the agent would succeed if it picks up
the key and is false if the agent would fail to pick up the key. The agent
typically does not know the value of pickup succeeds
 S � in situation S, or
even the position of the key. We would expect that each ground instance of
pickup succeeds
 S � would be an atomic choice. That isa

S ' pickup succeeds
 S � � pickup fails
 S �)t�6�"W
P Wq
 pickup succeeds
 S �u� reflects how likely it is that the agent succeeds in
carrying the key given that it was at the same position as the key and at-

14

tempted to pick it up. For the example below we assume P WY
 pickup succeeds
 S ��� �\n�]v*v
The general form of a frame axiom specifies that a fluent is true after a situ-
ation if it were true before, and the action were not one that undid the fluent,
and there was no mechanism that undid the fluent.8

Example 2.9 For example, an agent is carrying the key as long as the ac-
tion was not to put down the key or pick up the key9, and the agent did not
accidentally drop the key while carrying out another action:

carrying
 key � do
 A � S �=� �
carrying
 key � S � �
A !� putdown
 key � �
A !� pickup
 key � �
keeps carrying
 key � S � �

If there were no other clauses for carrying, we mean the completion of these
two rules (Clark 1978). Thus the agent is carrying the key if and only if one
of the bodies is true. Note that this implies that putting down the key always
succeeds.

keeps carrying
 key � S � may be something that the agent does not know
whether it is true — there may be a probability that the agent will drop the
key. If dropping the key is independent at each situation, we can model this
as: a

S ' keeps carrying
 key � S � � drops
 key � S �)&�6� W
The above clause thus forms a stochastic frame axiom. For the example be-
low we assume

P Wh
 keeps carrying
 key � S �u� �	\n�]w*x
2.6 Axiomatising Utility

Given the notion of an ICLSC theory, we can write rules for utility. Assume
the utility depends on the situation that the robot ends up in and the possible
world. In particular we allow for rules that imply utility
 U � S � , which is true
in a possible world if the utility is U for situation S in that world. That is,
utility
 U � S � means that if the robot stops in situation S it will get utility U.
The utility depends on what is true in the state defined by the situation and
the world — thus we write rules that imply utility. In order to make sure that

8This is now a reasonably standard logic programming solution to the frame problem
(Shanahan 1997, Chapter 12), (Apt & Bezem 1991). It is essentially the same as Reiter’s
(1991) solution to the frame problem. It is closely related to Kowalski’s (1979) axiomatiza-
tion of action, but for each proposition, we specify which actions are exceptional, whereas
Kowalski specifies for every every action which propositions are exceptional. Kowalski’s
representation could also be used here.

9We want the condition A yz pickup { key | to cover the case where the agent is carrying
the key and tries to pick it up. In this case only the first rule is applicable, and this situation
is like the case where the agent is picking up the key. If we didn’t have this condition, then
the rules would say that the agent is only not carrying the key if both the pickup failed and
the robot dropped the key.

15

we can interpret these rules as utilities we need to have utility being func-
tional: for each situation S, and for each possible world w A , there exists a
unique U such that utility
 U � S � true in w A . If this is the case we say the the-
ory is utility complete. Ensuring utility completeness can be done locally;
we have to make sure that the rules for utility cover all of the cases and there
aren’t two rules that imply different utilities whose bodies are compatible.

Example 2.10 Suppose the utility is the sum of a prize plus the remaining
resources:

utility
 R } P � S � �
prize
 P � S � �
resources
 R � S � �

The prize depends on whether the robot reached its destination or it crashed.
No matter what the definition of any other predicates is, the following defini-
tion of prize will ensure there is a unique prize for each world and situation:

prize
~TX_�\Y\Y\n� S � � crashed
 S � �
prize
~_�\Y\Y\n� S � � in lab
 S � �-� crashed
 S � �
prize
�\n� S � ��� in lab
 S � �-� crashed
 S � �

The resources used depends not only on the final state but on the route taken.
To model this we make resources a fluent, and like any other fluent we ax-
iomatise it:

resources
��*\Y\n� s W � �
resources
 R T Cost � do
 goto
 To � Route � � S �=� �

at
 robot � From � S � �
path
 From � To � Route � Risky � Cost � �
resources
 R � S � �

resources
 R � do
 A � S �=� �
crashed
 S � �
resources
 R � S � �

resources
 R T�_�\^� do
 A � S �=� �� gotoaction
 A � �� crashed
 S � �
resources
 R � S � �

gotoaction
 goto
 To � Route ��� �
Here we have assumed that non-goto actions cost _�\ , and that paths have

costs. Note that we are assuming that if the robot has crashed it isn’t at any
location. Once it has crashed, attempting to do an action doesn’t incur any
cost (but doesn’t achieve anything either).

Paths and their risks and costs are axiomatised using

path
 From � To � Route � Risky � Cost �
that is true if the path from From to To via Route has risk given by Risky and

16

costs Cost. An example of this relation for our domain is:

path
 r _�\n_Y� r _Y_Y_Y� direct � yes �_�\ � �
path
 r _�\n_Y� r _Y_Y_Y� long � no �_�\Y\ � �
path
 r _�\n_Y� r _��Y�n� direct � yes ��x*\ � �
path
 r _�\n_Y� r _��Y�n� long � no ��wY\ � �
path
 r _�\n_Y� door � direct � yes ��x*\ � �
path
 r _�\n_Y� door � long � no ���Y\ � �

2.7 Axiomatising Sensors

We also need to axiomatise how sensors work. We assume that sensors are
passive; this means that they receive information from the environment, rather
than doing anything; there are no sensing actions. This seems to be a bet-
ter model of actual sensors, such as eyes, ears, cameras or sonar and makes
modelling simpler than when sensing is an action. So called “information
producing actions” (such as opening the eyes, moving a camera, perform-
ing a biopsy on a patient, or exploding a parcel to see if it is (was) a bomb)
are normal actions that are designed to change the world so that the sen-
sors correlate with the value of interest. Note that under this view, there are
no information producing actions, or even informational effects of actions;
rather various conditions in the world, some of which are under the robot’s
control and some of which are not, work together to give varying values for
the output of sensors.

A robot cannot condition its action on what is true in the world; it can
only condition its actions on what it senses and what it remembers (which
we don’t consider till Section 2.10). The only use for sensors is that the out-
put of a sensor depends, perhaps stochastically, on what is true in the world,
and thus can be used as evidence for what is true in the world.

Within our situation calculus framework, we write axioms to specify
how sensed values depend on what is true in the world. What is sensed de-
pends on the situation and the possible world. We assume that there is a
predicate sense
 C � S � that is true if C is sensed in situation S. Here C is a
term in our language, that represents one value for the output of a sensor. C
is observable (that is, C �6k in Definition 2.6).

Example 2.11 A sensor may be able to detect whether the robot is at the
same position as the key. It is not reliable; sometimes it says the robot is at
the same position as the key when it is not (a false positive), and sometimes
it says that the robot is not at the same position when it is (a false negative).
Suppose that noisy sensor at key detects whether the agent is at the same
position as the key. Fluent sense
 at key � s � is true (in a world) if the robot
senses that it is at the key in situation s. It can be axiomatised as:

sense
 at key � S � �
at
 robot � P � S � �
at
 key � P � S � �
sensor true pos
 S � �

17

sense
 at key � S � �
at
 robot � P � � S � �
at
 key � P ��� S � �
P �X!� P ���
sensor false pos
 S � �

The fluent sensor false pos
 S � is true if the sensor is giving a false-positive
value in situation S, and sensor true pos
 S � is true if the sensor is not giv-
ing a false negative in situation S. Each of these could be part of an atomic
choice, which would let us model sensors whose errors at different times are
independent.a

S ' sensor true pos
 S � � sensor false neg
 S �)X�6�jWa
S ' sensor false pos
 S � � sensor true neg
 S �)X�6�jW

Suppose the sensor has a 3% false positive rate and an 8% false negative
rate. In the syntax of our implementation, this can be written as

random
=Z sensor true pos
 S � ,Y\n�]wY�n� sensor false neg
 S � ,Y\n�]\Yv�` � �
random
=Z sensor false pos
 S � ,Y\n�]\Y�^� sensor true neg
 S � ,Y\n�]wY��` � �

where P W
 sensor true pos
 S ��� �	\n�mwY� , and P W
 sensor false pos
 S ��� ��\n�]\Y� .
Alternatively, if we had a theory about how sensors break, we could

write rules that imply these fluents.

2.8 Conditional Plans

The idea behind the ICLSC is that agents get to choose situations (they get to
choose what they do, and when they stop), and nature gets to choose worlds
(there is a probability distribution over the worlds that specifies the distri-
bution of effects of the actions).

Agents get to choose situations, but they do not have to choose situations
blind. We assume that agents can sense the world, and choose their actions
conditional on what they observe. Moreover agents can have sequences of
acting and observing.

Agents do not directly adopt situations, they adopt plans or programs.
In general these programs can involve atomic actions, conditioning on ob-
servations, loops, nondeterministic choice and procedural abstraction (Levesque
et al. 1997). In this paper we only consider simple conditional plans which
are programs consisting only of sequential composition and conditioning on
observations (Levesque 1996, Poole 1996)).

Example 2.12 An example of a conditional plan is:

a � if c then b else d � e endIf � g
An agent executing this plan will start in situation s W , then do action a, then
it will sense whether c is true in the resulting situation. If c is true, it will do b
then g, and if c is false it will do d then e then g. Thus this plan either selects
the situation do
 g � do
 b � do
 a � sW ���u� or the situation do
 g � do
 e � do
 d � do
 a � s W ������� .
It selects the former in all worlds where sense
 c � do
 a � s W ��� is true, and se-
lects the latter in all worlds where sense
 c � do
 a � s W ��� is false. Note that each

18

world is definitive on each fluent for each situation. The expected utility of
this plan is the weighted average of the utility for each of the worlds and the
situation chosen for that world. The only property we need of c is that its
value in situation do
 a � s W � will be able to be observed. The agent does not
need to be able to determine its value beforehand.

Definition 2.13 A conditional plan, or just a plan, is of the form

skip
A where A is a primitive action
P � Q where P and Q are plans
if C then P else Q endIf

where C is observable; P and Q are plans

Note that “skip” is not an action; the skip plan means that the agent does not
do anything — time does not pass. This is introduced so that the agent can
stop without doing anything (this may be a reasonable plan), and so we do
not need an “if C then P endIf” form as well; this would be an abbreviation
for “if C then P else skip endIf”.

Plans select situations in worlds. We can define a relation:

trans
 P � W � S ��� S � �
that is true if doing plan P in world W from situation S � results in situation
S � . This is similar to the DO macro of Levesque et al. (1997) and the Rdo of
Levesque (1996), but here what the agent does depends on what it observes,
and what the agent observes depends on which world it happens to be in.

We can define the trans relation in pseudo Prolog as:

trans
 skip � W � S � S � �
trans
 A � W � S � do
 A � S �=� �

primitive
 A � �
trans
�
 P � Q � � W � S � � S � � �

trans
 P � W � S � � S � � �
trans
 Q � W � S �L� S � � �

trans
�
 if C then P else Q endIf � � W � S � � S � � �
W B � sense
 C � S � � �
trans
 P � W � S � � S � � �

trans
�
 if C then P else Q endIf � � W � S � � S � � �
W !B � sense
 C � S � � �
trans
 Q � W � S � � S � � �

Now we are at the stage where we can define the expected utility of a
plan. The expected utility of a plan is the weighted average, over the set of
possible worlds, of the utility the agent receives in the situation it ends up
in for that possible world:

19

Definition 2.14 If our theory is utility complete, the expected utility of plan
P is10:�
 P � � b A p
 w A � � u
 w Af� P �
(summing over all selector functions + on �"W) where

u
 W � P � � U if W B � utility
 U � S �
where trans
 P � W � s W� S �

(this is well defined as the theory is utility complete), and

p
 w A � � �g8��eh�2� A�� P W
4� W �
u
 W � P � is the utility of plan P in world W. p
 w A � is the probability of world
w A . The probability is the product of the independent choices of nature.

2.9 Details of our Example

We can model dependent uncertainties. Suppose we are uncertain about whether
the door is locked, and where the key is (it could be in room r _�\^_ or room
r _��*�), and suppose that these are not independent, with the following prob-
abilities:

P
 locked
 door � s W ��� �	\^�]w
P
 at
 key � r _�\^_Y� s W � B locked
 door � s W ��� ��\n�]�
P
 at
 key � r _�\^_Y� s W � B unlocked
 door � s W ��� �	\n�]�

(from which we conclude P
 at key
 r _�\n_Y� s W ��� �	\n�m�Yx .)
Following the methodology outlined in (Poole 1993) this can be mod-

elled as:

random
=Z locked
 door � s W � ,Y\n�]wn�
unlocked
 door � s W � ,Y\n��_L` � �

random
=Z at key lo
 r _�\n_Y� s W � ,Y\n�]�n�
at key lo
 r _��*�n� s W � ,Y\n�m��` � �

random
=Z at key unlo
 r _�\^_Y� s W � ,Y\n�]�n�
at key unlo
 r _��Y�n� sW � ,f\n�]v�` � �

at
 key � R � s W � �
at key lo
 R � s W � �
locked
 door � s W � �

at
 key � R � s W � �
at key unlo
 R � s W � �
unlocked
 door � s W � �

where random
=Z a � , p � �������u� an , pn ` � means ' a � ��������� an)��6�jW and P Wh
 ai � �
pi. This is the syntax used by our implementation.

10We need a slightly more complicated construction when we have infinitely many
worlds. We need to define probability over measurable subsets of the worlds (Poole 1993,
Poole 1998), but that would only complicate this presentation.

20

We can model complex stochastic actions using the same mechanism.
The action goto is risky; whenever the robot goes past the stairs there is a
10% chance that it will fall down the stairs.

This is modelled with the choice alternatives:

random
=Z would fall down stairs
 S � ,Y\n��_Y�
would not fall down stairs
 S � ,Y\n�]w�` � �

which meansa
S ' would fall down stairs
 S � �

would not fall down stairs
 S �)t�6�jWa
S P Wq
 would fall down stairs
 S ��� �	\^��_

These atomic choices are used in the bodies of rules. We can define the
propositional fluent at:

at
 robot � To � do
 goto
 To � Route � � S ��� �
at
 robot � From � S � �
path
 From � To � Route � no � Cost � �
resources
 R � S � �
R � Cost �

at
 robot � To � do
 goto
 To � Route � � S ��� �
at
 robot � From � S � �
path
 From � To � Route � yes � Cost � �
would not fall down stairs
 S � �
resources
 R � S � �
R � Cost �

at
 robot � Pos � do
 A � S ��� �� gotoaction
 A � �
at
 robot � Pos � S � �

at
 X � P � S � �
X !� robot �
carrying
 robot � X � S � �
at
 robot � P � S � �

at
 X � Pos � do
 A � S �=� �
X !� robot �� carrying
 robot � X � S � �
at
 X � Pos � S � �

In those worlds where the path is risky and the agent would fall down the
stairs, then it crashes:

crashed
 do
 A � S ��� �
crashed
 S � �

crashed
 do
 A � S ��� �
risky
 A � S � �

21

would fall down stairs
 S � �
risky
 goto
 To � Route � � S � �

path
 From � To � Route � yes � � �
at
 robot � From � S � �

An example plan is:

goto
 r _�\n_Y� direct � �
if at key

then
pickup
 key � �
goto
 door � long �

else
goto
 r _��*�n� direct � �
pickup
 key � �
goto
 door � direct �

endIf;
unlock door �
enter lab

Given the situation calculus axioms, and the choice space, this plan has an
expected utility. This is obtained by deriving utility
 U � S � for each world
that is selected by the plan, and using a weighted average over the utilities
derived. The possible worlds correspond to choices of elements from alter-
natives. We do not need to generate the possible worlds — only the expla-
nations (Poole 1998) of the utility and the conditions used in the plans. For
example, in all of the worlds where the following are true,' locked
 door � s W � � at key lo
 r _�\n_Y� s W � �

would not fall down stairs
 s W � �
sensor true pos
 do
 goto
 r _�\f_Y� direct � � s W ��� �
pickup succeeds
 do
 goto
 r _�\n_9� direct � � s W ���
keeps carrying
 key � do
 pickup
 key � � do
 goto
 r _�\n_9� direct � � s \ ���u�)

the sensing succeeds (and so the “then” part of the condition is chosen), the
prize is _�\Y\Y\ , and the resources left are the initial �Y\Y\ , minus the _�\ going
from r _Y_Y_ to r _�\n_ , minus the �*\ going to the door, minus the �*\ for the other
three actions. Thus the resulting utility is _�\YwY\ . The sum of the probabilities
for all of these worlds is the product of the probabilities of the choices made,
which is \n�]w��N\n�m�j�6\n�]w"�N\n�]w*�j�6\n�]vYv"�N\n�mwYxt��\n���q�Y� .

Similarly all of the the possible worlds with would fall down stairs
 s W �
true have prize TX_�\Y*\ , and resources _�w*\ , and thus have utility T&vn_�\ . The
probability of all of these worlds sums to \n��_ .

The expected utility of this plan can be computed by enumerating the
other cases. We don’t have to enumerate the worlds, just the explanations
(Poole 1998) of the different values for the utility and the conditional. In
particular, we need to explain:

sense
 at key � do
 goto
 r _�\n_*� direct � � s \ ��� �
utility
 V � do
 enter lab � do
 unlock door � do
 goto
 door � long � �

22

do
 pickup
 key � � do
 goto
 r _�\f_Y� direct � � s \ �����=����� �� sense
 at key � do
 goto
 r _\n_*� direct � � s \ ��� �
utility
 V � do
 enter lab � do
 unlock door � do
 goto
 door � direct � �

do
 pickup
 key � � do
 goto
 r _��9�n� direct � �
do
 goto
 r _�\n_*� direct � � s \ ���=�����=��� �

2.10 Richer Plan Language

There are two notable deficiencies in our definition of a plan; these were
omitted in order to make the presentation simpler.

1. Our programs do not contain loops.

2. There are no local variables; all of the internal state of the robot is
encoded in the program counter.

One way to extend the language to include iteration in plans, is by adding a
construction such as

while C do P endDo

as a plan (where C is observable and P is a plan), with the corresponding
definition of trans being11:

trans
�
 while C do P endDo � � W � S � � S � � �
W !B � sense
 C � S � � �

trans
�
 while C do P endDo � � W � S � � S � � �
W B � sense
 C � S � � �
trans
 P � W � S � � S � � �
trans
�
 while C do P endDo � � W � S �L� S � � �

This would allow for interesting programs including loops such as

while everything ok do wait endDo

(where wait has no effects) which is very silly for deterministic programs,
but is perfectly sensible in stochastic domains, where the agent loops until
an exogenous event occurs that stops everything being OK. This is not part
of the current theory as it violates utility completeness, however, for many
domains, the worlds where this program does not halt have measure zero —
as long as the probability of failure ��\ , given enough time something will
always break

Local variables can easily be added to the definition of a plan. For ex-
ample, we can add an assignment statement to assign local variables values,
and allow for branching on the values of variables as well as observations.
This (and allowing for arithmetic values and operators) will expand the rep-
resentational power of the language (Levesque 1996).

11Note that we really need a second-order definition, as in (Levesque 1996), to properly
define the trans relation rather than the recursive definition here. This will let us characterize
loop termination.

23

The addition of local variables will make some programs simpler, such
as those programs where the agent is to condition on previous values for a
sensor. For example, suppose the robot’s sensor can tell whether a door is
unlocked a long time before it is needed. With local variables, whether the
door is unlocked can be remembered. Without local variables, that informa-
tion needs to be encoded in the program counter; this can be done by branch-
ing on the sense value when it is sensed, and having different branches de-
pending on whether the door was open or not.

3 Comparison with Other Representations

3.1 Probabilistic STRIPS

One of the popular action representations for stochastic actions is proba-
bilistic STRIPS (Kushmerick et al. 1995, Draper, Hanks & Weld 1994, Boutilier
& Dearden 1994, Haddawy, Doan & Goodwin 1995). In this section we
show that the proposed representation is more concise in the sense that the
ICLSC representation will not be (more than a constant factor) larger than
the corresponding probabilistic STRIPS representation plus a rule for each
predicate, but that sometimes probabilistic STRIPS representation will be
exponentially larger than the corresponding ICLSC representation.

It is easy to translate probabilistic STRIPS into ICLSC: using the nota-
tion of (Kushmerick et al. 1995), each action a is represented as a set 'q< ti � pi � ei @L) .
Each tuple can be translated into the rule of form:

bi
 a � S � � ti Z S `q� ri Z S `
(f Z S ` means the state term is added to every atomic formula in formula f),
where bi is a unique predicate symbol, the different ri for the same trigger
are collected into an alternative set, such that P Wq
 ri
 S ��� � pi for all S. For
those positive elements p of ei, we have a rule:

p Z do
 a � S � `�� bi
 a � S �
For those negative elements p of ei we have the rule,

undoes
 p � a � S � � bi
 a � S �
and the frame rule for each predicate:

p Z do
 A � S � `�� p Z S `q�-� undoes
 p � A � S � �
The ICLSC action representation is much more modular for some prob-

lems than probabilistic STRIPS, where, as in STRIPS, the actions have to be
represented all at once. Probabilistic STRIPS is worse than the ICLSC repre-
sentation when actions effect fluents independently. At one extreme (where
the effect does not depend on the action), consider stochastic frame axioms
such as the axiom for carrying presented in Example 2.9. In probabilistic
STRIPS the conditional effects have to be added to every tuple represent-
ing an action — in terms of (Kushmerick et al. 1995), for every trigger that
is compatible with carrying the key, we have to split into the cases where

24

the agent drops the key and where the agent doesn’t. Thus the probabilis-
tic STRIPS representation grows exponentially with the number of indepen-
dent stochastic frame axioms: consider n fluents which persist stochastically
and independently and the wait action, with no effects. The ICLSC represen-
tation is linear in the number of fluents, whereas the probabilistic STRIPS
representation is exponential in n. Note that if the persistence of the fluents
are not independent, then the ICLSC representation will also be the expo-
nential in n — we cannot get better than this; the number of probabilities
that have to be specified is also exponential in n. In some sense we are ex-
ploiting the conciseness of Bayesian networks — together with structured
probability tables (Poole 1993) — to specify the dependencies amongst the
outcomes.

3.2 MPD and POMDP Representations

The ICLSC representation is closely related to two slice temporal Bayesian
networks (Dean & Kanazawa 1989) or the action networks of (Boutilier et al.
1995, Boutilier & Poole 1996) that are used for Markov decision processes
(MDPs). The latter represent in trees what is represented here in rules —
see (Poole 1993) for a comparison between the rule language presented here
and Bayesian networks. The situation calculus rules can be seen as struc-
tured representations of the state transition function, and the rules for utility
can be seen as a structured representation of the reward or value function12.
One problem with the action networks is that the problem representations
grow with the product of the number of actions and the number of state vari-
ables — this is exactly the frame problem (McCarthy & Hayes 1969) that is
solved here using Reiter’s solution (Reiter 1991); if the number of actions
that affect a fluent is bounded, the size of the representation is proportional
the number of fluents (state variables).

In partially observable Markov decision processes (POMDPs), the state
of the world isn’t observable by the agent. As in this paper, the agent can
only observe the values of its sensors. The representation in this paper can
be seen as a representation for POMDPs. POMDP researchers (Kaelbling,
Littman & Cassandra 1996) have proposed policy trees, which correspond
to the plans developed here. Boutilier & Poole (1996) exploit the action
network representation for finding optimal policies in partially observable
MDPs. The general idea behind their structured POMDP algorithm is to
use what is essentially regression (Waldinger 1977) on the situation calculus
rules to build plans of future actions contingent on observations — policy
trees. The difficult part for exact computation is to not build plans that are
stochastically dominated13 (Kaelbling et al. 1996).

12At least for finite stage MDPs. Infinite stage MDPs usually use a reward for each time
step and the value of a policy is the cumulative reward. Often rewards at future times are
discounted compared to immediate rewards (Puterman 1990). This isn’t a big distinction
when comparing representations, although it is when comparing algorithms.

13Intuitively, conditional plan � can be stochastically dominated by a set of conditional
plans, if whatever the agent believes (i.e., whatever its probability distribution over states),
the expected utility of one of the plans in the set of plans will be greater than or equal to the
expected utility of � .

25

In contrast to (Haddawy & Hanks 1993), we allow a general language
to specify utility. Utility can be an arbitrary function of the final state, and
because any information about the past can be incorporated into the state,
we allow the utility to be an arbitrary function of the history. The aim of this
work is not to identify useful utility functions, but rather to give a language
to specify utilities.

The use of probability in this paper should be contrasted to that in (Bacchus,
Halpern & Levesque 1995). The agents in the framework presented here
do not (have to) do probabilistic reasoning. As in MDPs, the probabilistic
reasoning is about the agent and the environment. An optimal agent (or an
optimal program for an agent) may maintain a belief state that is updated by
Bayes’ rule or some other mechanism, but it does not have to. It only has to
do the right thing. Moreover we let the agent condition its actions based on
its observations, and not just update its belief state. We can also incorporate
non-deterministic actions.

3.3 Independent Choice Logic and Reactive Policies

There is a conceptually different way to use the ICL to model time and ac-
tion. Here we can only sketch the idea; see Poole (1997) for details. We only
consider discrete time here. See Poole (1995) for a way to handle continu-
ous time (allowing for integration and differentiation with respect to time)
using a method similar to the event calculus.

The idea is to represent agents and nature in the same way. For the situa-
tion calculus axiomatization above, the single agent was treated quite differ-
ently to nature. Symmetry is important when we consider multiple agents.

We represent time in terms of the integers. The fact that the agent at-
tempted an action is represented by a proposition indexed by time. We use a
predicate do
 A � T � that is true if the agent attempted action A at time T. What
is true at a time depends on what was true at the previous times and what ac-
tions have occurred, and the outcome of stochastic mechanisms. This places
actions by the agent at the same level as actions by nature (or actions by
other agents).

There are two parts to axiomatise. The first is to axiomatise the effect
of actions, and the second is to specify what an agent will do based on what
it observes (i.e., its policy).

To axiomatise the effect of actions, for the discrete time case we write
how what is true at one time depends on what was true at the previous time
(including what actions occurred). We would write similar axioms to the
situation calculus, but indexed by time, and using do as a predicate.

Example 3.1 The axiom for carrying of Example 2.8 can be stated as:

carrying
 key � T }�_ � �
do
 pickup
 key � � T � �
at
 robot � Pos � T � �
at
 key � Pos � T � �
pickup succeeds
 T � �

26

The frame axiom for carrying in Example 2.9 would look like:

carrying
 key � T }�_ � �
carrying
 key � T � �� do
 putdown
 key � � T � �� do
 pickup
 key � � T � �
keeps carrying
 key � S � �

These don’t look very different to the situation calculus axioms!

Similarly axioms for sensing that only refer to a single situation/state,
such as those of Example 2.11 would remain the same, but the variables are
quantified over times, not situations.

This slight change to the representation of the facts has profound effects
on the plans. There are no situations. What an agent does is a set of propo-
sitions for different times. Within this framework, it is natural to think in
terms of agents adopting policies.

What an agent does depends on what it observes and what it remembers.
A policy is a logic program that specifies what an agent will do based on
what it senses and what it has remembered (Poole 1997).

Example 3.2 The following rule could be one part of a policy for the robot:

do
 pickup
 key � � T � �
sense
 at key � T � �
recall
 want key � T � �

Here recall could be a predicate that represents the internal state of the agent.
It can be axiomatised like any other relation.

This rule is very different to a situation calculus program, because it says
that whenever the robot senses it is at a key, and wants it, it should pick it up
(as well as doing any other actions that are implied by other rules). In order
to implement a situation-calculus type plan using such rules, the robot needs
to maintain something like a program counter or continuations. In order for
a situation calculus program to implement such rules, it has to loop over a
conditional statement that checks the conditions of the rules, and does the
appropriate concurrent actions.

With axioms about utility, a policy has a utility in a possible world, and
so, by averaging over possible worlds it has an expected utility. The goal is
to choose the policy with the highest expected utility.

Within the policy-based framework, concurrent actions and multiple agents
are easy to represent. The proposed framework here is, like the event calcu-
lus, narrative-based (Shanahan 1997) in that it is reasoning about a particu-
lar course of events. This is true for each possible world, but we can have
a probability distribution over possible worlds. We have a mechanism for
allowing multiple agents to choose which events that they can control oc-
cur for each context, and to allow a probability distribution over events that
nature controls (Poole 1997).

Extending the situation calculus version to multiple agents isn’t as straight-
forward. The way we have treated the situation calculus (and we have tried

27

hard to keep it as close to the original as possible) really gives an agent-
oriented view of time — the situations in some sense mark particular time
points that correspond to the agent completing its actions. Everything else
(e.g., actions by nature or other agents) then has to meld with this division
of time. This is even trickier when we realize that when agents have sloppy
actuators and noisy sensors, the actions defining the situations correspond
to action attempts; the agent doesn’t really know what it did, it only knows
what it attempted and what its sensors now tell it. When there are multiple
agents, either there has to be a common clock, some master agent with which
the other agents define their state transition, or complex actions (Reiter 1996,
Lin & Shoham 1995). These all mean that the actions need to be carried
out lock-step, removing the intuitive appeal of the situation calculus, and
making it much closer to the event calculus. The work of Reiter (1996) and
Lin & Shoham (1995) assumes a very deterministic world. Not only must
the world unfold deterministically, but you must know how it unfolds. This
is very different to the assumptions that hold here, where an agent doesn’t
even know what it has done, only what it has attempted. The work here may
show how to reconcile such an omnipotent view with stochastic actions and
limited sensing.

4 Conclusion

This paper has presented a formalism that lets us combine situation calcu-
lus axioms, conditional plans and Bayesian decision theory in a coherent
framework. It is closely related to structured representations of POMDP
problems. The hope is that we can form a bridge between work in AI plan-
ning and in POMDPs, and use the best features of both. This is the basis for
ongoing research.

We are also investigating (Poole 1995, Poole 1997) alternate representa-
tions for actions that are much closer to the event calculus. Which will turn
out to be a more useful representation is a matter for debate, further research
and, eventually, history to determine.

We are betting that decision theory will be eventually seen as the appro-
priate formal basis for acting under uncertainty (as it is in many disciplines).
You can ignore it at the peril of your work becoming irrelevant. Workers
in knowledge representation should take heart that the need for knowledge
representation won’t go away; we will still need good representations and
good algorithms.

Acknowledgements

This work was supported by Institute for Robotics and Intelligent Systems,
Phase III (IRIS-III), project “Dealing with Actions”, and Natural Sciences
and Engineering Research Council of Canada Operating Grant OGPOO44121.
Thanks to Valerie McRae for proofreading.

28

References

Apt, K. R. & Bezem, M. (1991). Acyclic programs, New Generation Com-
puting 9(3-4): 335–363.

Bacchus, F. (1990). Representing and Reasoning with Uncertain Knowl-
edge, MIT Press, Cambridge, Massachusetts.

Bacchus, F., Halpern, J. Y. & Levesque, H. J. (1995). Reasoning about noisy
sensors in the situation calculus, Proc. 14th International Joint Conf.
on Artificial Intelligence (IJCAI-95), Montréal, Québec, pp. 1933–
1940.

Boutilier, C., Dearden, R. & Goldszmidt, M. (1995). Exploiting structure in
policy construction, Proc. 14th International Joint Conf. on Artificial
Intelligence (IJCAI-95), Montréal, Québec, pp. 1104–1111.

Boutilier, C. & Poole, D. (1996). Computing optimal policies for par-
tially observable decision processes using compact representations,
Proc. 13th National Conference on Artificial Intelligence, Portland,
OR, pp. 1168–1174.

Boutilier, R. & Dearden, R. (1994). Using abstractions for decision-
theoretic planning with time constraints, Proc. 12th National Confer-
ence on Artificial Intelligence, Seattle, WA, pp. 1016–1022.

Brooks, R. (1986). A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation 2(1): 14–23.

Brooks, R. A. (1991). Intelligence without reason, Proc. 12th International
Joint Conf. on Artificial Intelligence (IJCAI-91), Sydney, Australia,
pp. 569–595.

Chang, C. L. & Lee, R. C. T. (1973). Symbolic Logical and Mechanical
Theorem Proving, Academic Press, New York.

Clark, K. L. (1978). Negation as failure, in H. Gallaire & J. Minker (eds),
Logic and Databases, Plenum Press, New York, pp. 293–322.

Dean, T. & Kanazawa, K. (1989). A model for reasoning about persistence
and causation, Computational Intelligence 5(3): 142–150.

Draper, D., Hanks, S. & Weld, D. (1994). Probabilistic planning with infor-
mation gathering and contingent execution, Proceedings of the Second
International Conference on AI Planning Systems, Menlo Park, CA,
pp. 31–36.

Feldman, J. R. & Sproull, R. F. (1975). Decision theory and artificial intel-
ligence II: The hungry monkey, Cognitive Science 1: 158–192.

Fikes, R. E. & Nilsson, N. J. (1971). STRIPS: A new approach to the appli-
cation of theorem proving to problem solving, Artificial Intelligence
2(3-4): 189–208.

29

Gelfond, M. & Lifschitz, V. (1988). The stable model semantics for logic
programming, in R. Kowalski & K. Bowen (eds), Proceedings of the
Fifth Logic Programming Symposium, Cambridge, MA, pp. 1070–
1080.

Haddawy, P., Doan, A. & Goodwin, R. (1995). Efficient decision-theoretic
planning: Techniques and empirical analysis, in P. Besnard & S. Hanks
(eds), Proc. Eleventh Conf. on Uncertainty in Artificial Intelligence
(UAI-95), Montréal, Québec, pp. 229–236.

Haddawy, P. & Hanks, S. (1993). Utility models for goal-directed
decision-theoretic planners, Technical Report 93-06-04, University of
Washington, Department of Computer Science and Engineering.
*ftp://ftp.cs.washington.edu/pub/ai/haddawy-hanks-aij-
submission.ps.Z

Halpern, J. & Tuttle, M. (1993). Knowledge, probability, and adversaries,
Journal of the ACM 40(4): 917–962.

Kaelbling, L. P., Littman, M. L. & Cassandra, A. R. (1996). Planning and
acting in partially observable stochastic domains, Technical Report
CS-96-08, Department of Computer Science, Brown University.
*http://www.cs.brown.edu/publications/techreports/reports/CS-96-
08.html

Kowalski, R. (1979). Logic for Problem Solving, Artificial Intelligence Se-
ries, North-Holland, New York.

Kushmerick, N., Hanks, S. & Weld, D. S. (1995). An algorithm for proba-
bilistic planning, Artificial Intelligence 76: 239–286. Special issue on
planning and scheduling.

Levesque, H. J. (1996). What is planning in the presence of sensing?,
Proc. 13th National Conference on Artificial Intelligence, Portland,
OR, pp. 1139–1146.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F. & Scherl, R. B. (1997).
GOLOG: A logic programming language for dynamic domains, Jour-
nal of Logic Programming, Special issue on Reasoning about Action
and Change 31: 59–83.
*ftp://ftp.cs.toronto.edu/pub/cogrob/README.html

Lin, F. & Shoham, Y. (1995). Provably correct theories of action, Journal
of ACM 42(2): 283–320.
*ftp://ftp.cs.toronto.edu/pub/cogrob/README.html

Luenberger, D. G. (1979). Introduction to Dynamic Systems: Theory, Mod-
els and Applications, Wiley, New York.

Manna, Z. & Waldinger, M. (1980). A deductive approach to program syn-
thesis, ACM Transactions on Programming Languages and Systems
2(1): 90–121.

30

McCarthy, J. & Hayes, P. J. (1969). Some philosophical problems from the
standpoint of artificial intelligence, in M. Meltzer & D. Michie (eds),
Machine Intelligence 4, Edinburgh University Press, pp. 463–502.

Myerson, R. B. (1991). Game Theory: Analysis of Conflict, Harvard Uni-
versity Press, Cambridge, MA.

Nilsson, N. J. (1991). Logic and artificial intelligence, Artificial Intelligence
47: 31–56.

Ordeshook, P. C. (1986). Game theory and political theory: An introduc-
tion, Cambridge University Press, New York.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, San Mateo, CA.

Pearl, J. (1995). Causal diagrams for empirical research, Biometrika
82(4): 669–710.

Peot, M. A. & Smith, D. E. (1992). Conditional nonlinear planning, in
J. Hendler (ed.), Proc. First International Conference on AI Planning
Systems (AIPS-92), College Park, Maryland, pp. 189–197.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks, Ar-
tificial Intelligence 64(1): 81–129.

Poole, D. (1995). Logic programming for robot control, Proc. 14th Inter-
national Joint Conf. on Artificial Intelligence (IJCAI-95), Montréal,
Québec, pp. 150–157.
*ftp://ftp.cs.ubc.ca/ftp/local/poole/papers/lprc.ps.gz

Poole, D. (1996). A framework for decision-theoretic planning I: Combin-
ing the situation calculus, conditional plans, probability and utility, in
E. Horvitz & F. Jensen (eds), Proc. Twelfth Conf. on Uncertainty in
Artificial Intelligence (UAI-96), Portland, OR, pp. 436–445.
*http://www.cs.ubc.ca/spider/poole/abstracts/iclsc.html

Poole, D. (1997). The independent choice logic for modelling multiple
agents under uncertainty, Artificial Intelligence 94: 7–56. special issue
on economic principles of multi-agent systems.
*http://www.cs.ubc.ca/spider/poole/abstracts/icl.html

Poole, D. (1998). Abducing through negation as failure: stable models in the
Independent Choice Logic, Journal of Logic Programming to appear.
*http://www.cs.ubc.ca/spider/poole/abstracts/abnaf.html

Poole, D., Mackworth, A. & Goebel, R. (1998). Computational Intelli-
gence: A Logical Approach, Oxford University Press, New York.

Puterman, M. L. (1990). Markov decision processes, in D. P. Heyman &
M. J. Sobel (eds), Handbooks in OR and MS, Vol. 2, Elsevier Science
Publishers B. V., chapter 8, pp. 331–434.

31

Reiter, R. (1991). The frame problem in the situation calculus: A simple
solution (sometimes) and a completeness result for goal regression, in
V. Lifschitz (ed.), Artificial Intelligence and the Mathematical Theory
of Computation: Papers in Honor of John McCarthy, Academic Press,
San Diego, CA, pp. 359–380.

Reiter, R. (1996). Natural actions, concurrency and continuous time in
the situation calculus, Proc. Fifth International Conf. on Principles of
Knowledge Representation and Reasoning, Cambridge, MA.
*ftp://ftp.cs.toronto.edu/pub/cogrob/README.html

Savage, L. J. (1972). The Foundation of Statistics, 2nd edn, Dover, New
York.

Shafer, G. (1976). A Mathematical Theory of Evidence, Princeton Univer-
sity Press, Princeton, NJ.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Inves-
tigation of the Common Sense Law of Inertia, MIT Press, Cambridge,
MA.

Simon, H. (1996). The Sciences of the Artificial, third edn, MIT Press, Cam-
bridge, MA.

Smets, P. (1991). About updating, in B. D’Ambrosio, P. Smets & P. Bonis-
sone (eds), Proc. Seventh Conf. on Uncertainty in Artificial Intelli-
gence (UAI-91), UCLA, pp. 378–385.

Smets, P. & Kennes, R. (1994). The transferable belief model, Artificial
Intelligence 66: 191–234.

Von Neumann, J. & Morgenstern, O. (1953). Theory of Games and Eco-
nomic Behavior, third edn, Princeton University Press, Princeton, NJ.

Waldinger, R. (1977). Achieving several goals simultaneously, in E. Elcock
& D. Michie (eds), Machine Intelligence 8: Machine Representations
of Knowledge, Ellis Horwood, Chichester, England, pp. 94–136.

Yang, Q. (1997). Intelligent Planning: A Decomposition and Abstraction-
Based Approach, Springer–Verlag, New York.

Zhang, Y. & Mackworth, A. (1995). Constraint nets: A semantic model
for hybrid dynamic systems, Theoretical Computer Science 138: 211–
239.

