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Abstract

We describe the generation and use of “con-
tact response maps” for real time dynamic sim-
ulation. Contact response maps are geometry
and material dependent maps on physical ob-
jects which describe the surface tractions asso-
ciated with local deformations during contact.
We develop a technique for precomputing con-
tact response maps for elastic bodies using the
Boundary Element method to solve the corre-
sponding plane strain problem. Such maps can
then be used in a real-time simulation environ-
ment to accurately resolve collision dynamics.

1 Introduction

Much effort in the past few years has been fo-
cused on the simulation of contact and collision
phenomena. However, accurate simulation at
interactive rates remains challenging. Contact
events are extremely fast, and delays in simu-
lating the contact force and motion can lead to
instabilities in a control algorithm or destroy the
sense of realism in a virtual environment. Un-
fortunately, the contact response of real objects
is very complex; even with somewhat idealized
linear viscoelastic models of the materials, simu-
lation requires the numerical solution of partial
differential equations (PDEs) on domains with
complex shapes. Therefore, much effort has been
directed at developing empirical contact models
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that are sufficiently accurate, while being suffi-
ciently fast for real time simulation.

We present a solution to this problem by intro-
ducing a data structure associated with each col-
liding body called the contact response map. The
contact response map can produce a more accu-
rate collision response than the rigid body mod-
els used in the literature, since it is computed
from the governing partial differential equations
of the body. On the other hand, the contact re-
sponse map allows the collision response to be
computed rapidly, at rates suitable for control
and interactive simulation.

In this paper, we demonstrate this approach
with a model of a two dimensional elastic solid,
whose behavior is governed by Navier’s equa-
tion (a system of hyperbolic PDEs). We first
show that the response of an elastic solid varies
significantly with impact location — this phe-
nomenon is consistent with experimental results
(e.g., [SH96]). In addition, we describe an al-
gorithm to make use of the precomputed step
response functions in a real time dynamic simu-
lator.

The remainder of the paper is organized as
follows: The rest of section 1 discusses related
work in the field of impact mechanics. Section
2 discusses the theory of elastic solids subject to
impact. Section 3 quickly derives the boundary
element method. Section 4 contains the numeri-
cal results and relevant notes. Section 5 presents
a time stepping algorithm for dynamical simula-
tion. In Section 6 we consider the storage issues
for contact maps. Finally in section 7 we summa-
rize the results to date and discuss some possible
generalizations of this work.



1.1 Related Work

Most models intended for computationally de-
manding use, including the model in this paper,
employ the rigid body assumption. Rigid bodies
are idealized physical objects which deform only
locally during impacts. Following [Cha97], rigid
body impact models may be classified as impulse
response rigid or force response rigid.

Impulse response rigid models consider impact
events as occurring over an infinitely short period
of time, resulting in a discontinuous change in the
velocities of colliding bodies. Impulse models de-
fine a coefficient of restitution, e, relating post-
impact to pre-impact states, quantifying the loss
of kinetic energy due to a collision event. The
coeflicient was defined in terms of change in ve-
locity by Newton, change in normal momentum
[Kel86], [Bra89] or the change in normal work
[Stro0].

It is only recently that consistent algorithms
for resolving impulse response rigid collisions
were developed. In [WMS87], the authors present
a complete solution for two dimensional impul-
sive collision with friction. Three dimensional
impulsive collision is complicated by the exis-
tence of multiple solutions, as discussed in Bhatt
and Koechling [BK95]. A complete 3D impul-
sive collision algorithm is discussed in [Mir96].
Many other authors present analyses of the 3D
impact problem [Bra89, Bar92, PG96]. Chatter-
jee [Cha97] examined a number of 3D models for
energetic consistency and accuracy.

Force response rigid models attempt to model
the forces produced during contact. Models in
this category typically define a function f(u,u)
that gives force as a function of penetration
depth u and velocity @. Linear force functions
are considered in [GPS94a], while more general-
ized models are discussed in [HF'75]. The Hertz
model, in which f(u) u? can be derived from
physical principles as in [Gol60].

Resolving force response rigid collisions is ac-
complished by enforcing the action-reaction prin-
ciple (Newton’s third law), friction constraints,
and the force function. For most models this
results in a system of non-linear algebraic equa-
tions to be solved at each time step. See [Gol60]
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Figure 1: Steel Bar with Boundary Element
Nodes shown. 56 nodes are shown, 26 along the
bar length, and 28 on the tip. Nodes are more
dense near the tip where we apply displacements.

or [GPS94a, GPS94b] for detailed algorithms.

Recent work, especially that of Stoianovici
and Hurmuzlu [SH96], has shown the coefficient
of restitution to be a geometry dependent phe-
nomenon. In their study, a long thin steel bar
(fig. 1) was dropped onto a massive block. The
experimental setup allowed the angle of the bar
to be varied so that impact occurred at vari-
ous points around the rounded tip. Their results
show the restitution factor varying over a range
from .9 for normal impact to as low as .2 for a
critical impact angle of about 66 degrees.

All collision models above all try to capture
the impact behaviour of an object with a few
simple numbers such as the coefficient of resti-
tution, or spring and damping constants (for the
linear force law). With the advent of comput-
ers that have large memories, we can consider
a radically different approach in which we pre-
compute a large number of collision responses
for a given object using very accurate, but com-
putationally expensive methods such as finite el-
ements or boundary elements.



2 Theory

2.1 Elastic Approximation and Range
of Validity

In this study, we consider only impacts that oc-
cur at relatively low velocities. In the case of con-
tact between bodies moving slowly, there will be
no permanent deformation at the point of con-
tact, and we are justified in assuming that the
solids may be modeled by the elastic constitu-
tive equations.

A recent study by Lim and Stronge [LSar]
used finite element calculations to bound the pre-
impact velocity in terms of the yield strength of
a material. They demonstrated that velocities
in the 1-5 m/s range produce no plastic defor-
mation for typical metals such as aluminum or
steel.

2.2 Governing Equations

For simplicity we restrict our study to the 2D
case. We need to model the response of an elas-
tic solid to a contact event. In 2D, this is most
easily done using the equations of plane-strain
that model the response of an elastic solid which
has negligible variation in the third axis (out of
plane).

The field equations (Navier’s equation) are
written in component form as

pi g+ (A )i+ pbi = piii (1)

where u € Q, u; is the ¢’th component of the dis-
placement, g and A are Lamé’s constants, b; is
the 7’th component of the body force, and p is
the density. A comma denotes partial differenti-
ation with respect to the space component, i; is
the second time derivative of the :’th component
of u. We apply the summation convention to re-
peated indices. Under the plane strain assump-
tion, the indices ¢, 7 in Equation (1) run between
1 and 2. The equation is defined on Q C R2.

2.3 Boundary Conditions

The field equations (1) give the generic behavior
of an elastic body, but the boundary conditions

specify a particular situation. An elastic body
in free space not in contact with any other body
has Neumann type boundary conditions. This is
because the boundary is free to vibrate much like
the free end of a string undergoing wave motion.
Thus for all boundary points not in a contact
situation (we define this region as I'1), we can
say:
“_,
dn
where u € I'y and n is normal to the boundary
Fl.

Now for a boundary segment which is in con-
tact with an external body (I'z), we specify the
displacement explicitly using a Dirichlet condi-
tion

u-n=dj,

where u € I'y, and d; is the j’th displacement
depth (see below).

Given the field equations and boundary con-
ditions, we can solve the well posed PDE us-
ing a variety of numerical techniques. A pop-
ular choice is othe finite element method (FEM)
in which the region 2 is discretized to solve the
PDE. We consider instead the boundary element
method which has a number of advantages over
FEM, especially for elastodynamic contact prob-
lems.

3 Boundary Element Solution

There has been a great deal of work in the
past two or three decades in the boundary el-
ement community on the solution of elastostatic
and elastodynamic problems. Boundary element
(BEM) solution techniques are ideally suited to
contact problems because all of the unknowns
are on the boundaries of the colliding bodies. In
contrast, FEM (finite element) approaches deal
with the entire body and solve for stresses and
displacements at every point.

The basic idea of BEM is to formulate the
partial differential equation as an integral equa-
tion. There are several ways of doing this for
the Navier field equation. We briefly outline
one approach and refer the interested reader to
Dominguez [Dom93].



Denote the solution to Eq. 1 by u, with stress
field ¢ and body forces b. Consider a second
solution to the field equation (1) — with differ-
ent initial conditions — for the same geometry,
u* with stress field ¢* and body forces b*. The
weighted residual of the two solutions is written
as

/ (Ohs % ul)d2 + / p(by * u3)dQ
Q Q
- [ ol upye =0, (2)
Q

where * denotes a convolution product. Ap-
plying the divergence theorem, we can rewrite
this as

[ iy
T
n /Q p(be % 5+ okl + ol )dQ
= /(pz * ug)dl
T
n /Q (b5 % g+ Wity + Wun)dD,

(3)

where ugr = ug(z,0), 4o = Uk (z,0) are initial
displacements and velocities respectively. Now,
we generate the reciprocal solution u* as a so-
lution of the field equations when an impulsive
load is applied at the point 2’ in the direction /,
ie.,

pby = 8(t)6(x — =)oy (4)

Further, assume the initial conditions are iden-
tically zero and that the body forces of the pri-
mary solution may be neglected. Then we can
write Eq. 3 as

ul(aji, t) = /F(U?kk * pk) - (uk * p?k)d‘rv (5)

which gives the displacement at point z* in di-
rection [ as a function of the boundary. Note
that this same expression can be obtained from
a variational principle (see [AP92]).

The integrals in Equation 5 are difficult or im-
possible to solve analytically. The numerical so-
lution to these integrals constitutes the boundary
element method.

Observe that we need only to discretize the
boundary, which immediately reduces the di-
mension of the problem by one. In contrast,
the FEM approach requires the domain € to
be discretized. Typical BEM algorithms divide
up the boundary into piecewise constant, linear
or quadratic elements. Corners require special
treatment. Also, it is not uncommon for the re-
sulting integrals to be highly singular, in which
case, the Cauchy principal value is used.

As a result of the discretization of the bound-
ary and approximate evaluation of the integrals,
we obtain a system of linear algebraic equations
for the unknown boundary displacements or trac-
tions. Although the system is much smaller than
a similar FEM system, the matrix presents no
special symmetry or sparseness properties and
must be solved using dense matrix techniques.

When the integral (5) is discretized, the result-
ing linear equations can be rearranged so that
for nodes on which displacements are given, the
tractions are solved for and for nodes with given
traction, the displacement is solved for. Hence
for our boundary conditions, the BEM gives the
surface traction (force response) for the point at
which we specify the displacement. We write this
as

FAw), (6)

which is the contact response at node j for body
A. We store a discrete representation of fJA(t) at
a each boundary node j on a geometric model of
body A. This is the contact response map.

4 Numerical Results

We considered a metal bar with the same di-
mensions as in [SH96], 20 cm in length with
a diameter of 12.5mm and spherical ends (see
fig. 1). The boundary was discretized us-
ing 28 quadratic boundary elements, with three
node points each. Using software developed by
Dominguez [Dom93] for the simulation of elas-
todynamic systems, we computed the traction
response at a number of node points to a step
displacement. Calculations were performed on a
Pentium 11 266MHz computer, with each curve
taking 3-4 minutes to generate. The results are
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Figure 2: Step response curves for various im-

pact angles at bar end. Angles are measured

with respect to the horizontal axis of the bar in

Figure 1.

shown in fig. 2 and clearly demonstrate the de-
pendence on geometry of impact location.

The traction response curves shown in fig. 2
can be utilized for dynamic simulation in a va-
riety of ways. Because we use a linear elastic
model, the traction due to an arbitrary displace-
ment trajectory u(t) can be reconstructed from
the contact response map by the superposition
principle. We describe this in §5.

One could also use the contact response map
to estimate parameters for simpler contact mod-
els. For instance, consider the steady state re-
sponse calculated from the tail end of the step
response using an average (constant fit). In us-
ing only the steady state, we are effectively gen-
erating the proportionality (“spring”) constant &
in a force response rigid law f(y) = —ky. This
law is only intended to demonstrate the simplest
application of these results. Nevertheless, even
this approximation demonstrates the geometry
dependence of the contact response. This can be
seen in Figure 3, which plots the effective spring
constant k£ with respect to the contact position
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Figure 3: Steady state tractions giving the spring
constant for each impact angle.

(angle) on the bar tip.

More complex force models can be fit to BEM
data by modifying the displacement function. In
our examples we use a step function, but suppose
we wanted to generate coefficients for a model
such as f(u,u) = —au>. One approach would
be to calculate the force response for a linear
displacement wu(t) = ¢, and then fit the given
function to the resulting curve. Though such a
fit may in fact be a poor approximation (since we
have a linear elastic solid), it will still incorporate
a geometric dependence, where previously there
was none. The suitability of particular models is
discussed in detail in [HEF75].

5 Contact Simulation

We now develop an algorithm which uses the pre-
computed boundary element surface tractions to
generate collision forces during interactive simu-
lations.



5.1 Action Reaction

The remaining requirement for a full solution
to the contact problem is to enforce the action-
reaction principle, or Newton’s Third Law. As
this is dependent on the exact contact configura-
tion, it must be done during the simulation pro-
cess. We state this requirement as: f4 = —fB,

In our model, the response of the elastic solid is
linear in the displacement depth, which allows us
to write the force as a function of current depth
and any residual effects from previous depths.

To simulate the contact, it is possible to define
several numerical schemes for time stepping. We
outline one scheme here; for simplicity we present
the frictionless case — since the algorithm com-
putes the normal contact force, one can extend
this method to include Coulomb friction effects,
as in [GPS94a].

We first introduce some additional notation.
Let the nominal, undeformed position of the con-
tact point on body A be @4, and let the actual
position be u#; then the penetration of A, §4, is
defined as

6 =t —ut.
When the time needs to be specified, we will use
the abbreviation &§; = §4(#;) and the backward
time difference operator A, defined as

ASE =64 — 61 .

Finally, let f,(¢) be the surface traction response
to a unit step (of boundary node displacement)
at ¢t = 0.

At time t;, we advance the simulation to time
tr+1 as follows:

1. Compute the nominal forces on the body
due to penetration upto time #g.

l
S =7 F g — temj ) ASEL .

=0

f~1§+1 is computed similarly. We note that if
the time steps are of equal size, this is can
be done efficiently as a digital filter applied
to the penetration trajectory.

2. Integrate the equations of motion for each
body (which may be part of a larger multi-
body system), using an appropriate ODE
or DAE integrator, and compute the nom-
inal positions ﬂf_l_l and ?NLE_H. Integration
of multibody dynamics equations is treated
extensively elsewhere in the literature (e.g.,

[APCOT]).

3. Compute the total penetration along the
contact surface normal n as

~B

k1 = (Upgy — lippy) - P

Here n is pointed from B to A. We assume
that the the total displacement of the bodies
during contact is small relative to spacing of
boundary element nodes.

4. Action-Reaction. Compute the penetration
of each body so that it satisfies the kine-
matic constraint

51?+1 + 51]5+1 = 5k+1 (7)

and Newton’s third law

fl?+1 = —f1£3+1- (8)

Since
fl?+1 = JZI?H + f;A(tk-I—l - tk)A(Sf,

this is a linear equation in 5;‘“ and 5E_H.
Therefore we can solve the Equations 7 and
8 simulataneously for the actual penetra-
tions 5;‘“ and 5E+1.

If necessary, fl?+1 and ufﬂ can be computed
from 5?“.

5. Advance time to tx41.

5.2 Sustained Contact, Multiple Con-
tacts

Since the model we describe is force response
rigid, sustained contact requires no special pro-
cessing. This is a definite advantage over impul-
sive models which require additional calculations
and assumptions to handle long term contact sit-
uations.



Force response models also have the advan-
tage that multiple contacts are handled simply
by superposition. In the impulse case, multiple
contacts are known to cause (sometimes severe)
uniqueness problems as discussed in [Bar92].

6 Storage considerations

Clearly this approach to dynamic simulation uses
more memory per object than the coefficient
of restitution approach [Cha97] or the spring-
damper approach [GPS94a]. For each bound-
ary element, we store Ny numbers to describe
the force response (Ny = 1 for our steady state
model). We can write the total storage per ob-
ject as NNy floating point numbers. However,
this is modest by the standards of today’s com-
puters. For example, in our study Ny =1 and we
used Ny = 28 boundary elements. Even to store
the full force response we need at most Ny = 100,
and the number of boundary points can often be
reduced by considering object symmetries.

7 Conclusions

We presented a numerical technique to quantita-
tively generate force response, given a geometry
and material parameters. Qur approach is more
accurate than impact laws currently used for real
time simulation, since it is based the PDEs of
linear elastic solids. The PDEs are solved using
well established boundary element method. Our
approach captures experimentally observed im-
pact phenomena such as the dependence of the
contact response on the particular geometry of
impacting objects. Given a computed force re-
sponse, real time simulation becomes a possibil-
ity even for complex multibody systems. This
will allow for the construction detailed virtual
environments that can be relied upon as faithful
representations of the real world, useful for engi-
neering, education and countless other fields.

In future work, we plan to extend this ap-
proach to other types of continuous media such
as viscoelastic and anisotropic materials, and to
demonstrate it in a 3D simulation enviornment
being developed in our lab. We also plan to

directly estimate the contact response map for

more complex objects, from responses measured
with our ACME facility.
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