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Abstract

We describe a new approach to the problem of motion planning for mobile robots
on natural, nonhomogenous terrain. QOur approach computes a multiresolution rep-
resentation of the terrain using wavelets, and hierarchically plans the path through
sections which are well approximated on coarser levels and relatively smooth. Un-
like most methods, the hierarchical approximation errors are used explicitly in a cost
function to distinguish preferred terrain sections. The error is computed using the
corresponding wavelet coefficients. The path planning algorithm uses a new non-scalar
path cost measure based on the sorted terrain costs along the path. This measure can
be incorporated into standard global path search algorithms and yields intuitively good
paths. Additional constraints for specific robots can be integrated into this approach
for efficient hierarchical motion planning on rough terrain. We present the algorithms
and experimental results for real terrain data.

*Supported in part by NSERC, BC Advanced Systems Institute, and IRIS NCE. The authors would like
to thank R. J. Woodham, J. J. Little, and the UBC Remote Sensing Council for the St. Mary Lake terrain
data, and A. K. Mackworth, D. G. Lowe, RJW and JJL for discussions.
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Figure 1: Digital Elevation Map of St. Mary Lake Region

1 Introduction

We consider motion planning for mobile robots on rough terrain, i.e. we wish to navigate a
robot such as the Platonic Beast legged robot developed in our laboratory [24] to a prescribed
goal, without violating terrain dependent constraints. We assume that the terrain is given
by a digital elevation map, z = f(u,v), which has been sampled on a uniform grid of points.
Such data is obtained from geographic data bases, satellite imagery, or range finding using
lasers [2]. Figure 1 depicts an example of such terrain.

We propose a general multiresolution method which involves four parts: terrain prepro-
cessing, the optional inclusion of terrain-dependent forbidden regions (“obstacles”), path
finding, and path refinement. The terrain is first decomposed into its wavelet coefficients,
and these are used to obtain a multilevel terrain cost function described below. A suitable
level of the multiresolution is chosen to initiate the algorithm; possible additional terrain-
dependent obstacles are computed, and an optimal coarse path is found at that level. This
computation is repeated hierarchically, moving towards higher resolution levels, and using
information from the lower resolution path to restrict the search. Thus only a small subset
of the terrain has to be searched at higher resolutions, resulting in a fast algorithm suitable
for real-time, and “anytime” planning.

A key feature of our algorithm which makes it work well in practice is that the approxi-
mation error in the low resolution representation is explicitly taken into account in the cost
of paths. A general shortcoming of some hierarchical methods is that they cannot be guar-
anteed to find a globally optimal path since some information is ignored at low resolution



levels. In our method, low resolution paths are encouraged to traverse well approximated re-
gions, thereby increasing the likelihood that the traversed terrain “looks the same” at higher
resolution. The well approximated regions consist of areas where the terrain is smooth (has
small variation on all scales). The approximation error (called terrain roughness here) is
efficiently estimated using the wavelet coefficients of the multiresolution.

Another important feature is a new non-scalar path cost measure based on sorted terrain
costs along the path. We show that this measure is well suited for rough terrain motion plan-
ning, makes it possible to use standard global path search algorithms, and yields intuitively
good paths.

We have implemented the algorithm and tested it on real terrain data. We plan to use
the algorithms for rough terrain navigation of the “Platonic Beast” spherically symmetric
legged robot [24] designed for rough terrain, and other mobile robots in our laboratory [3].

The paper is organized as follows: § 2 describes how to efficiently construct roughness
measures for terrain using the wavelet decomposition — small values of these measures imply
that the terrain is well approximated at lower resolution. In § 3 the roughness measures are
used to design a new, non-scalar measure on paths. The path measure is used to search for
good paths at each level, i.e. paths that go through regions with small approximation error.
Details of the algorithms are given in § 4. We have implemented our algorithms and in § 5
we present the experimental results of using our method with real terrain data from the St.
Mary Lake region of British Columbia.

1.1 Related work

Robot motion planning methods have been investigated extensively (see [17] for a survey).
Most of this work considers the robot environment as consisting of obstacles, and treats these
at a single resolution. Some authors have approached the collision free motion planning prob-
lem using hierarchical techniques, for instance, [5, 35]. Multiresolution collision free motion
planning for mobile robots using quadtrees has been considered by [15], [23]. Most of these
techniques rely on the labeling of terrain cells on any level as “free” or “mixed”; there are
no measures to differentiate between two mixed cells on a level. In our method, there are no
obstacles as such and since we wish to take the approximation error into account, all cells are
“mixed”. Paths prefer coarse level cells which approximate the original data better. Some-
what closer to our strategy, [25] uses a filtering method to obtain coarse level information
from the finer levels in the context of obstacle avoidance using dynamic programming.
There has been recent interest in planning for robots capable of navigating rough terrain
(e.g. [2, 12, 18, 13]). The work of Simeon and Dacre-Wright ([30, 9]) performs all-terrain
path planning using placement constraints for a robot with n wheels and spring suspension.
The feasible and stable placements of the robot define the “free space” for the robot in a
three-dimensional slice of the configuration space. The free space is subdivided using an
octree decomposition and searched using A*. In [29], a point robot with tip-over constraints



is used to find a time optimal path through rough terrain. The JPL robot [12] uses a gradient
method for path planning. For the RAMI robot [13] a multi-layer controller plans paths using
a heuristic based on ground filtering. A multi-layer strategy is also used in ARCANE [28].

Our method relies on the type of multiresolution filtering techniques common in computer
vision (e.g.,[16, 19, 22, 27, 33, 32, 34]). Wavelets are an outgrowth of both pyramid methods
(e.g. [6]) and the time-frequency localization methods of signal processing — discrete mul-
tiresolution wavelet approximation was introduced by Mallat and Meyer for computer vision
applications ([20]). Wavelets concentrate on the properties of the approximation error, and a
large number of theoretical results are available. They can now be considered an important
mathematical tool with applications areas which include edge detection, signal compression
and approximation theory, and many others ([20],[21], [11]).

2 Measures for terrain roughness

A key criterion for a reasonable path in a multiresolution application is that the path traverses
sections of terrain that are well approximated. We call such areas smooth! and poorly
approximated regions as rough. To obtain a hierarchical measure for terrain roughness, will
use a wavelet decomposition of the 2-dimensional terrain data. By providing successive
smoother approximations of the original data, and a handle on the approximation error, the
decomposition yields natural roughness measures.

Is there a reason to use wavelets rather than other methods of hierarchical data smooth-
ing, such as pyramid filtering? The methods are obviously related and both methods provide
successively smoothed approximations of the original data. However, unlike the usual pyra-
mid algorithms, wavelet filtering emphasizes the approximation error, and a precise measure
of the order of approximation is given by the number of vanishing moments of the wavelet.
Wavelets fit into a well studied mathematical framework, and have been shown to have good,
polynomial-like approximation properties, which can be extended to apply to different norms
([11]). Wavelet methods therefore have an advantage: the degree of “smoothing” performed
by wavelet filtering is well quantified. In addition, the wavelet decomposition provides a
compact representation from which to calculate the roughness measures.

In this section we first briefly review the notation used and then discuss wavelet based
measures of terrain roughness.

2.1 Wavelet notation

We consider the usual discrete “multiresolution” construction of wavelets obtained by dila-
tions by powers of 2 and integer translations from a basic wavelet :

! This corresponds to the C” notion of smoothness with certain assumptions on the wavelet.
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We will use the interpolating pseudocoiflets of [26] - these belong to the class of biorthog-
onal wavelets ([8]), which generalize the standard orthonormal construction: the wavelets ¢
and its dual wavelet, L/N)), form dual bases for L?. The wavelets are constructed together with
a scaling function ¢ and the dual ¢. The translated and dilated scaling functions give the
bases for a multiresolution hierarchy.

The wavelet terminology we use is standard: the wavelet decomposition of a function f
is the representation of f in the wavelet basis. The wavelet coefficients are the coefficients
wii(f) =<1, @ZJNZ] > of this decomposition. We also use the scaling coefficients s;;(f) of f at
level i: s;;(f) =< f, qb;] >.

In practice, the wavelet and scaling coefficients are obtained via two pairs of filters, the
scaling filters H and H, and the wavelet fillers G and G, using Mallat’s tree algorithm:

s — 8 — 83 —>
G G G (1)
N N\ N\
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Reconstruction is performed in the opposite direction with primal filters. We note that
the number of wavelet and scaling coefficients drops by a factor of 2 at each level in the
decomposition, and by a factor of 4 in 2 dimensions.

2.2 Roughness measures using wavelet coefficients

We begin with a hierarchical representation of the terrain data. On a given level of approx-
imation, we wish to choose paths which remain on relatively well approximated (smooth)
sections of the original terrain whenever possible. We propose the following heuristic to
apply to an admissible path on a given level; in the rest of the section we make it more
precise.

Heuristic (version 1): Do not cross areas with large errors between the
approximation and the original data.

To apply this heuristic, along with the a lower resolution approximation, we need to esti-
mate the approximation error. This can be done efficiently using the wavelet decomposition.

First, the scaling coefficients of a function f give a smoothed approximation f; of f at
each resolution level ¢:
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where é;(z) = 27/26(27x — j) .

The wavelet coefficients provide the error of this approximation — the L2-error F; =
| f — fi || of the level i approximation to f is equivalent ? to the norm of the “unused”
higher level wavelet coefficients:
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Precise results connecting the local and global smoothness of a function and the size of its
wavelet coefficients are summarized for instance in [10], [21]. These results rely on the fact
that the approximation error can be expressed in terms of the wavelet coefficients (Eq. 2).
Here we will state the basic L?-approximation property of wavelets, which connects global
approximation properties with the number of vanishing moments of the wavelet (see [31]):

Approximation property: For functions f with at least C'N-continuity, the wavelet
error of f decays as 2V, as i — —oo, provided that the wavelet has N vanishing moments:

B, < KN, (3)

Informally, some of the consequences of wavelet approximation can be restated as follows,
combining equation 2 with 3:

e For smooth areas of the terrain, the approximation error of Equation 2 decays rapidly
towards finer scales.

o Wavelets filter noise: for noisy data, high resolution coefficients are uniformly large,
but lower resolution coefficients take on the characteristics of the underlying object.

e The number of vanishing moments of the wavelet controls the rate at which the data is
smoothed — areas of high variation and discontinuity will stick out more prominently
in the wavelet coefficients if the number of vanishing moments is larger.

Therefore, at a given level, the heuristic for planning paths which remain on the better
approximated, “smoother” sections of the actual terrain data can now be restated in terms
of the wavelet coefficients:

2Equivalence means that the norm FE; is bounded from above and below by the wavelet coefficient norm,
multiplied by fixed constants. When the wavelets are orthogonal, we have equality between the two norms.



Heuristic (version 2): Do not cross areas with large higher resolution
wavelet coefficients.

2.3 Approximate roughness measures

With the use of wavelets with compact support, the error F; (equation 2), and corresponding
local errors, can be computed in a finite number of steps. For faster computations, the local
version of the error F; has to be approximated. We choose the approximation to be the
truncated L% error, E*(A,l) where E*(A,l)? is given by the sum of the squared wavelet
coefficients corresponding to the area A 3. This quantity represents the local error between
the low resolution approximation given by the scaling functions at a level [ and the original
data f.

We construct the approximation E*(A,[)? as follows. For a cell A on level [, corresponding
to an interval [K, L] of the original data,

(E™(A,D)* =2 ( > )wfnj) ) (4)

m<l \jeI*(Am

where

"(Aym)={k € Z:ke[l/2m,]/2™)}.

We then average the error contributions of neighboring cells:

E*(AD)= > E™(A1)?/#nbhd(A), (5)
A’Enbhd(A)
where nbhd(A) consists of A and the cells in the immediate neighborhood of A on level
[. The averaging evens out the contribution of wavelet coefficients to neighboring intervals
and creates an extra “buffer zone” around an area of high variation or discontinuity. For 2-d
data, the definitions are analogous.
Intuitively, the cost function captures the discrepancy resulting from using the approx-
imation of the terrain at a lower resolution instead of with the original data. Areas with
small £* are more likely to look the same at finer resolutions than areas with large £*.

3 Measures for paths on rough terrain

Using the roughness measure of § 2, we now construct appropriate measures for gauging
the quality of candidate paths at a given level of approximation. After considering some

3Use of these approximations requires wavelets with good spatial localization, for instance, the wavelets

in [26].



candidates and their drawbacks, we propose a new non-scalar measure, Dgy.x, suitable for
rough terrain.

First, a small generalization: we will assume that we have a non-negative terrain cost C;
defined for each cell of data. In this paper we will usually assume that the terrain cost is
the roughness measure described in § 2.3, i.e. for each level [ the terrain cost of cell (1, j)
is Ci(1,7) = E*(A,l), where A is the cell determined by the index pair (,7). However, in
general F*(A,[) can be combined with other non-negative measures of terrain cost, such as
terrain slope, coefficient of friction, cost of crossing rivers and other non-geometric features
of the terrain, etc.

A path p through a discrete terrain is a sequence xgzix;...x; of connected cells from a
starting cell zy to an ending cell z; such that each cell on the path is free. Cell connectivity
is usually defined in one of two ways: 4-connectivity (two cells are connected if they share
an edge) or 8-connectivity (two cells are connected if they share a vertex). We will consider,
without loss of generality, 4-connected cells.

With a terrain cost (', we can now define path costs ). Some obvious candidates are:

o Total Cost Diotar:

Dtotal(p): Z C(i,j) (6)

(¢,7)€p
o Worst Cost Dpax:
Dmax(p) = Imax C(/Lv.]) (7)
(4,5)€p
o Average Cost Dayg:
Daavg(p) = Diotar/length(p) (8)

None of these costs in completely adequate for our application. The total cost Diggar is
not suitable since Dy implicitly involves path length and hence will choose paths that pass
through regions of high cost with shorter path length. Using D,y,, the average cost, creates
a new problem: paths wander aimlessly in regions of low cost merely to lower the average.

Using Dax 1s better from the point of view of safety since the selected path will minimize
the cost of the worst region the path traverses. However, Dy, suffers from being unable to
discriminate among large sets of paths — a phenomenon we can call “the ravine effect.” If
there is a small region of uniformly high cost (the “ravine”) that separates the start from
the goal, all paths from the start to the goal have the same cost Dy.x. To take a concrete
example, suppose the terrain contains a river that separates the robot from the goal (see
Figure 2). Suppose, further that the river can be crossed by the robot at any point, but at
a high, fixed cost. Then using D,ax all paths which cross the river will have the same path
cost.



"gsc. 2
"got hercost . 2g" -e--

“ “ X
y “‘0\6’6 ‘o“‘“ S
lo'z/,;,’{ l“ ,,"o‘\,,,',«
iy

N7

X S
’ ey 'I;""’h“ % /'“'O,:“ SIS )m 0
50 RS LiLss

100
X/ 120

Figure 2: A river can separate the terrain with a small region of high terrain cost

We propose a new non-scalar measure called Dgynax which addresses this problem by
generalizing Dy.x. For a path p = zozi24... 2, we define

Dsmax(p) = list of costs of z; € p,i # 0,

sorted in non-increasing order. (9)

Dgmax 1s not a scalar, but has a natural, lexicographic ordering <;. Recall that lexicographic
order [1] means {ujuz...w} < {vive...v,} when either (1) there exists an integer j such
that u; < v; and for all ¢ < j,u; = v;, or (2) I <m and u; = v, for 1 <@ < p.

This induces the following order relation on paths:

P1 S P2 — Dsmax(pl) Sl Dsmax(pQ)- (10)

This is a linear order.
We define an “addition” of the costs of two paths p; and p, as

Dsmax(}h) S, Dsmax(pQ) =
sorted merge( Domax(P1); Dsmax(p2))- (11)

Dimax thus provides finer discrimination than D, and is immune to the ravine effect.
This is illustrated in § 5, figure 15. In addition, the ordering properties are sufficient to allow
it to be used in standard path search algorithms (see § 4.3).
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4 Algorithms

The proposed multiresolution solution to motion planning on rough terrain consists of four
parts: terrain preprocessing, computation of terrain-dependent obstacles, path finding, and
path refinement. We now describe each of these parts in detail.

4.1 Terrain preprocessing

We perform a 2-dimensional wavelet decomposition on the sampled data, giving a sequence of
scaling coefficients (s;;) and wavelet coefficients (w;;), for each level [. The scaling coefficients
give rise to approximating terrain surfaces z = fij(u,v) = 2~z 51015

The underlying wavelet used can be an orthonormal wavelet or a biorthogonal wavelet pair
obtained from multiresolution. The 2-dimensional wavelets are obtained from the standard
multiresolution tensor product construction ([10]).* In this construction, the wavelet coeffi-
cient sequences consist in fact of three sequences (wf}l), (wl‘;), and (wll;). (The superscripts
indicate the wavelet’s propensity to distinguish between horizontal, vertical, and diagonal
features.) The wavelet coefficients are obtained by a 2-dimensional version of Mallat’s tree
algorithm ([20]).

As scaling filters, we can choose filters which represent “well behaved” underlying func-
tions, such as B-splines ([8]), or the interpolating scaling functions of [26]. The wavelets
should be chosen to be concentrated in absolute value around a given point, making the use
of the above approximate error measure effective. The pseudocoiflets Py of [26], for instance,
have this property. In addition, the interpolation property for the scaling functions corre-
sponding to these wavelets guarantees that the scaling coefficients form a sampling of the
actual approximation surface; thus multiresolution planning can be performed reliably on
the scaling coefficient surface, and not the approximation surface, which, although smoother
than the original, consists of just as many points.

The specific wavelets we use are the pseudocoiflets Py [26], which have 2NV = 4 vanishing
moments and are shown in Figure 3. The scaling filters for these wavelets are also shown.

4.2 Terrain Obstacle Computation

In general, the robot’s motion is subject to several constraints depending on the specific
robot and application. These can include terrain slope constraints (there is a limit on the
slope of terrain that can be traversed by the robot), contact constraints (a suitable subset of
feet or wheels should be in contact with the terrain), static stability constraints (the vertical
projection of the robot’s center of mass is inside its support polygon), and collision avoidance
constraints (parts of the robot do not intersect the terrain or other parts of the robots). See

also [13, 29, 30].

*Other constructions for 2-dimensional wavelets are possible.
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Figure 3: Analyzing and reconstructing pseudocoiflets. (a) The case quzglqu:Q (b) Filter
coefficients for N = 2. The left column represents the analyzing filter ¢, and the right

column, the reconstructing filter ¢
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The planner must find a path from the initial position to the goal position, without
violating any of the constraints imposed. We consider holonomic constraints on the terrain,
i.e. constraints that can be expressed as a function of the position of the robot on the
terrain. Regions that do not satisfy the constraints are considered to be virtual obstacles, i.e.,
forbidden regions of the terrain. The areas of the terrain where all constraints are satisfied
are called free. Static stability constraints and terrain slope constraints, for example, can be
formulated in this way. These terrain-dependent constraints can also be computed efficiently
using multiresolution.

Since this depends on the specific application, we do not discuss it in detail here. However
we do present a concrete example of a terrain-dependent obstacle below in § 5. We consider
the case of a robot which is small relative to the resolution of the terrain data and hence can
be considered as a point for the sake of motion planning. This is reasonable, for instance, for
navigation of human-scale mobile vehicles with terrain data obtained from satellite imaging.

We impose obstacles due to limitations on maximum terrain slope. The slope is computed
from the gradient obtained by applying the 3 x 3 Sobel gradient operators to the scaling
coefficients®. Regions of slope greater the maximum slope are marked as obstacles. Figure 4
shows the slope obstacles for a maximum slope of 0.6 (about 31 degrees) and 0.4 (about 22
degrees) at level 2. In § 5 we show the effect this has on paths.

4.3 Path finding

The basic algorithm is a variation of Dijkstra’s single source shortest path algorithm [1] and
is shown in Figure 4.3. It finds a path from a start cell s to a goal cell g or reports that
there is no such path. The algorithm assumes that free space cells (i.e. the cells that are not
obstacles) are marked FREE during the obstacle computation step and their costs v.Dgpax
are initialized to +oc®.

We sketch the proof of correctness of the algorithm here. The key point is that the cost
measure Dgyax under the “addition” operation @& behaves like a non-negative number under
addition. In particular it is easy to show

Proposition 1. Let L; denote a sorted list of costs and L be the singleton list {/}. Then
Li<Ly=1,<L;& L.

We denote by u.Dgnax the cost of a path from the start s to u, and u.Dgnax" is the cost
of any path from v to u. The previous result then implies:

5Note that at poorly approximated regions, the computed slope will be poorly approximated as well. The
wavelet coefficients can be used to estimate bounds on the derivatives as well, but we do not deal with this
issue here.

6i.e. a sufficiently large number, e.g. the maximum terrain cost computed on the data
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Figure 4: Obstacles due to maximum slope constraint

Proposition 2. w.Dgnax < 2. Dgmax = W.Demax < 2. Dymax @ w. Dgmax”, for all x and for all
path costs w. Dypax”-

Thus we show that at each iteration of the while loop in Figure 4.3, w. Dgnax is the cost
of the optimal path to w and v.Dgyax is the cost of the best path through VISITED cells.

4.4 Path refinement

The hierarchical path planner begins with a suitable initial level [. The path is then planned
in the free terrain areas on level [, according to the algorithm of § 4.3.

We then employ a simple path refinement strategy similar to, for example, [16]. First
the path pis grown into channel P by a given margin m, i.e. if p is a level [ path, a cell with
index (u,v) € P if there exists a cell (¢,7) € p and |[(u — )] < m and |(v—j)| < m.

At the next finer level of resolution, [ — 1, cells which are not refinements of the channel
P are marked as obstacles”. Other obstacles at level I — 1 can also be incorporated in this
stage, and the path finding algorithm of § 4.3 is repeated, using terrain cost C;_; on this
restricted area.

Growing the path in this way provides a simple way to control the amount of level [ — 1
data to be searched: m is a small positive integer; if m = 0, only the cells corresponding

7Only the boundaries of the channel need be marked.
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PriortyQueue Snext(¢);
Snext.insert(s);
while (Snext # ¢ ) do
w := Snext.delete( Snext.min );
mark w as VISITED;
for each neighbor v of w do
if v is FREE and not VISITED then
if v.Dgmax > W.Dgmax® { v.TerrainCost } then
V. Dgmax := W.Dgmax® { v.TerrainCost };
v.PreviousCell := w;
if v € Snext then
Snext.delete(v);
end if;
end if;
Snext.insert(v);
end if;
end for;
end while;
if goal ¢ is marked VISITED then
read off path by following
the PreviousCell pointers;
else
report failure;

end if

Figure 5: Path finding algorithm
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Figure 6: Wavelet decomposition of terrain data; s and w are the scaling and wavelet
coefficients, respectively.

to the level [ path are searched; as m increases, larger neighborhoods of the level [ path are
searched.

5 Experimental results

We have implemented a motion planner for rough terrain based on the above algorithms, in
C++. The planner has been tested on both synthetic and real terrain data. We describe the
results for the St. Mary Lake terrain data shown in Figure 1.

In the terrain preprocessing phase, the terrain was decomposed for 4 refinements levels.
Figure 6 shows the decomposition at level 3. The surfaces depicted in Figures 10, 9 and 8
are the scaling coefficients of the terrain at levels 2, 3 and 4 respectively. Figure 7 plots the
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terrain cost functions C; computed from the wavelet coefficients.

In all cases below, the boundary of the data set is marked as an obstacle to keep the
robot within the mapped terrain. For illustration, we consider the terrain at approximation
levels 2,3 and 4 (higher resolution terrain is difficult to display clearly at the resolution of
printed paper). We shall call a path of type (a > b) if the path was found by starting at the
coarser level b and refined to a level a path.

Figure 8 shows a (4 > 4)-path found at level 4. Figures 9 and 10 shows the refinement
of this path to (3 = 4) and (2 = 4) respectively. In this example, the path was grown into a
channel by margin m = 3.

We also computed the (2 > 2) path, i.e. found at level 2 using our Dgpayx cost, but
without multiresolution. As hoped for, this turns out to be indentical to the (2 > 4) path.
This behavior is common but not necessary.

For a different set of end points, Figure 11 shows a (2 > 4)-path, and the corresponding
(2 > 2)-path is shown in figure 12. Keep in mind that in these examples, for illustration,
we are using only the terrain roughness measure as the terrain cost; other costs can be
incorporated as indicated in §3. In this case the paths are different, illustrating that the
globally optimal level-2 path need not be found. However, see Figure 13, which depicts the
Dismax path costs for the (2 > 2) and (2 > 4) paths. However, we observe that in this case the
the suboptimal (2 = 4) path is not very bad at all: in fact it is only worse than the optimal
(2 > 2) path in the thirteenth largest cost along the path and generally passes through lower
cost terrain. This is to be expected since the (2 = 4) path passes through terrain that is low
in cost at all lower resolution levels, and not just at level 2.

We note that the paths stay on the large smooth regions whenever possible. In the
above examples, the paths were found that avoid regions of slope greater than 0.4 (about
22 degrees) by marking such regions as obstacles. In Figure 14 the (2 > 4) path is found
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without any additional obstacles (constraints) imposed. Observe that as may be expected,
the path prefers smoothest regions even when these are the sides of mountains, and avoids
the less steep, albeit high variation (and hence high cost) valleys.

Finally, we illustrate the robustness of our path cost measure Dyax to the “ravine”-effect.
Consider the case where a river (of very high cost) crosses the terrain and separates the goal
from the robot (see figure 2).

We observe that usually (e.g., the (2 = 4) path) the path is identical to the path found
without no river present: almost all paths from start to goal have a the same high cost of
crossing the river appended to the front of the Dgynax cost, and hence the ordinal relationship
among paths is unchanged. In some cases, if the original path crosses the river several times,
then the new path (see figure 15) is slightly perturbed to reduce the number of crossings to
the minimum possible. This is shown clearly in Figure 15. We see (2 > 2) paths in a close
up of the region around the river fork, both without taking the river into account and with
the river cost included.

6 Conclusions

We have developed, implemented and tested a new motion planning algorithm for navigating
mobile robots on natural, non-homogeneous terrain. Multiresolution terrain representation
is used and leads to a fast algorithm; this is important due to the large size of the terrain
data and the global search required. Significantly, multiresolution permits motion planning
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Figure 15: Behavior of paths that cross the river: immunity to the “Ravine effect”

to be anytime since a coarse level solution is obtained extremely fast and is successively
refined to higher resolution levels.

A key contribution is the use of a “terrain roughness measure” to guide the search for
paths at each level of resolution. This brings two benefits: First, the paths are encouraged to
traverse well approximated regions, so that the refinement of the traversed terrain is likely to
be similar at finer resolutions. Second, the paths are intuitively appealing since they prefer
large, smooth sections of the terrain, rather than relying on small features in the data.

We use wavelet multiresolution to compute both the smoothed terrain as well the rough-
ness measure. Wavelets allows the degree of smoothing performed by wavelet filtering to be
well quantified; the wavelet coefficients are also used calculate the roughness measure. By
using interpolating pseudocoiflets, the multiresolution planning can be performed directly
on the scaling coefficient surface, rather than on the approximation surface.

Another feature is a new non-scalar path cost measure, Dypax, for paths on rough terrain.
It is based on terrain costs along the path, sorted in non-increasing order. The measure
retains the safety property of the maximum-cost measure, i.e. the selected path always has
best value of the worst terrain cost along the path. However, it provides finer discrimination
among alternate paths that may have the same worst cost, i.e. it is immune to the “ravine
effect.”

Finally, our solution method is quite general, consisting of four parts: terrain prepro-
cessing; optional computation of additional, terrain-dependent obstacles; path finding; and
path refinement. We believe it is easily extensible to problem-specific constraints. In future
work, we plan to incorporate constraints due to foot placement, stability in the presence of
frictional contacts, etc., for navigating our Platonic Beast legged robot over natural terrain.
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